| author | wenzelm | 
| Fri, 18 Oct 2024 14:37:09 +0200 | |
| changeset 81184 | f270cd6ee185 | 
| parent 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 62696 | 1  | 
(* Title: HOL/Corec_Examples/Tests/Small_Concrete.thy  | 
2  | 
Author: Aymeric Bouzy, Ecole polytechnique  | 
|
3  | 
Author: Jasmin Blanchette, Inria, LORIA, MPII  | 
|
4  | 
Copyright 2015, 2016  | 
|
5  | 
||
6  | 
Small concrete examples.  | 
|
7  | 
*)  | 
|
8  | 
||
| 62726 | 9  | 
section \<open>Small Concrete Examples\<close>  | 
| 62696 | 10  | 
|
11  | 
theory Small_Concrete  | 
|
| 
66453
 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 
wenzelm 
parents: 
62733 
diff
changeset
 | 
12  | 
imports "HOL-Library.BNF_Corec"  | 
| 62696 | 13  | 
begin  | 
14  | 
||
| 62726 | 15  | 
subsection \<open>Streams of Natural Numbers\<close>  | 
| 62696 | 16  | 
|
17  | 
codatatype natstream = S (head: nat) (tail: natstream)  | 
|
18  | 
||
19  | 
corec (friend) incr_all where  | 
|
20  | 
"incr_all s = S (head s + 1) (incr_all (tail s))"  | 
|
21  | 
||
22  | 
corec all_numbers where  | 
|
23  | 
"all_numbers = S 0 (incr_all all_numbers)"  | 
|
24  | 
||
25  | 
corec all_numbers_efficient where  | 
|
26  | 
"all_numbers_efficient n = S n (all_numbers_efficient (n + 1))"  | 
|
27  | 
||
28  | 
corec remove_multiples where  | 
|
29  | 
"remove_multiples n s =  | 
|
30  | 
(if (head s) mod n = 0 then  | 
|
31  | 
S (head (tail s)) (remove_multiples n (tail (tail s)))  | 
|
32  | 
else  | 
|
33  | 
S (head s) (remove_multiples n (tail s)))"  | 
|
34  | 
||
35  | 
corec prime_numbers where  | 
|
36  | 
"prime_numbers known_primes =  | 
|
37  | 
(let next_prime = head (fold (%n s. remove_multiples n s) known_primes (tail (tail all_numbers))) in  | 
|
38  | 
S next_prime (prime_numbers (next_prime # known_primes)))"  | 
|
39  | 
||
40  | 
term "prime_numbers []"  | 
|
41  | 
||
42  | 
corec prime_numbers_more_efficient where  | 
|
43  | 
"prime_numbers_more_efficient n remaining_numbers =  | 
|
44  | 
(let remaining_numbers = remove_multiples n remaining_numbers in  | 
|
45  | 
S (head remaining_numbers) (prime_numbers_more_efficient (head remaining_numbers) remaining_numbers))"  | 
|
46  | 
||
47  | 
term "prime_numbers_more_efficient 0 (tail (tail all_numbers))"  | 
|
48  | 
||
49  | 
corec (friend) alternate where  | 
|
50  | 
"alternate s1 s2 = S (head s1) (S (head s2) (alternate (tail s1) (tail s2)))"  | 
|
51  | 
||
52  | 
corec (friend) all_sums where  | 
|
53  | 
"all_sums s1 s2 = S (head s1 + head s2) (alternate (all_sums s1 (tail s2)) (all_sums (tail s1) s2))"  | 
|
54  | 
||
55  | 
corec app_list where  | 
|
56  | 
"app_list s l = (case l of  | 
|
57  | 
[] \<Rightarrow> s  | 
|
58  | 
| a # r \<Rightarrow> S a (app_list s r))"  | 
|
59  | 
||
60  | 
friend_of_corec app_list where  | 
|
61  | 
"app_list s l = (case l of  | 
|
62  | 
[] \<Rightarrow> (case s of S a b \<Rightarrow> S a b)  | 
|
63  | 
| a # r \<Rightarrow> S a (app_list s r))"  | 
|
64  | 
sorry  | 
|
65  | 
||
66  | 
corec expand_with where  | 
|
67  | 
"expand_with f s = (let l = f (head s) in S (hd l) (app_list (expand_with f (tail s)) (tl l)))"  | 
|
68  | 
||
69  | 
friend_of_corec expand_with where  | 
|
70  | 
"expand_with f s = (let l = f (head s) in S (hd l) (app_list (expand_with f (tail s)) (tl l)))"  | 
|
71  | 
sorry  | 
|
72  | 
||
73  | 
corec iterations where  | 
|
74  | 
"iterations f a = S a (iterations f (f a))"  | 
|
75  | 
||
76  | 
corec exponential_iterations where  | 
|
77  | 
"exponential_iterations f a = S (f a) (exponential_iterations (f o f) a)"  | 
|
78  | 
||
79  | 
corec (friend) alternate_list where  | 
|
80  | 
"alternate_list l = (let heads = (map head l) in S (hd heads) (app_list (alternate_list (map tail l)) (tl heads)))"  | 
|
81  | 
||
82  | 
corec switch_one_two0 where  | 
|
83  | 
"switch_one_two0 f a s = (case s of  | 
|
84  | 
S b r \<Rightarrow> S b (S a (f r)))"  | 
|
85  | 
||
86  | 
corec switch_one_two where  | 
|
87  | 
"switch_one_two s = (case s of  | 
|
88  | 
S a (S b r) \<Rightarrow> S b (S a (switch_one_two r)))"  | 
|
89  | 
||
90  | 
corec fibonacci where  | 
|
91  | 
"fibonacci n m = S m (fibonacci (n + m) n)"  | 
|
92  | 
||
93  | 
corec sequence2 where  | 
|
94  | 
"sequence2 f u1 u0 = S u0 (sequence2 f (f u1 u0) u1)"  | 
|
95  | 
||
96  | 
corec (friend) alternate_with_function where  | 
|
97  | 
"alternate_with_function f s =  | 
|
98  | 
(let f_head_s = f (head s) in S (head f_head_s) (alternate (tail f_head_s) (alternate_with_function f (tail s))))"  | 
|
99  | 
||
100  | 
corec h where  | 
|
101  | 
"h l s = (case l of  | 
|
102  | 
[] \<Rightarrow> s  | 
|
103  | 
| (S a s') # r \<Rightarrow> S a (alternate s (h r s')))"  | 
|
104  | 
||
105  | 
friend_of_corec h where  | 
|
106  | 
"h l s = (case l of  | 
|
107  | 
[] \<Rightarrow> (case s of S a b \<Rightarrow> S a b)  | 
|
108  | 
| (S a s') # r \<Rightarrow> S a (alternate s (h r s')))"  | 
|
109  | 
sorry  | 
|
110  | 
||
111  | 
corec z where  | 
|
112  | 
"z = S 0 (S 0 z)"  | 
|
113  | 
||
114  | 
lemma "\<And>x. x = S 0 (S 0 x) \<Longrightarrow> x = z"  | 
|
115  | 
apply corec_unique  | 
|
116  | 
apply (rule z.code)  | 
|
117  | 
done  | 
|
118  | 
||
119  | 
corec enum where  | 
|
120  | 
"enum m = S m (enum (m + 1))"  | 
|
121  | 
||
122  | 
lemma "(\<And>m. f m = S m (f (m + 1))) \<Longrightarrow> f m = enum m"  | 
|
123  | 
apply corec_unique  | 
|
124  | 
apply (rule enum.code)  | 
|
125  | 
done  | 
|
126  | 
||
127  | 
lemma "(\<forall>m. f m = S m (f (m + 1))) \<Longrightarrow> f m = enum m"  | 
|
128  | 
apply corec_unique  | 
|
129  | 
apply (rule enum.code)  | 
|
130  | 
done  | 
|
131  | 
||
132  | 
||
| 62726 | 133  | 
subsection \<open>Lazy Lists of Natural Numbers\<close>  | 
| 62696 | 134  | 
|
135  | 
codatatype llist = LNil | LCons nat llist  | 
|
136  | 
||
137  | 
corec h1 where  | 
|
138  | 
"h1 x = (if x = 1 then  | 
|
139  | 
LNil  | 
|
140  | 
else  | 
|
141  | 
let x = if x mod 2 = 0 then x div 2 else 3 * x + 1 in  | 
|
142  | 
LCons x (h1 x))"  | 
|
143  | 
||
144  | 
corec h3 where  | 
|
145  | 
"h3 s = (case s of  | 
|
146  | 
LNil \<Rightarrow> LNil  | 
|
147  | 
| LCons x r \<Rightarrow> LCons x (h3 r))"  | 
|
148  | 
||
| 62733 | 149  | 
corec fold_map where  | 
| 62696 | 150  | 
"fold_map f a s = (let v = f a (head s) in S v (fold_map f v (tail s)))"  | 
151  | 
||
| 62733 | 152  | 
friend_of_corec fold_map where  | 
153  | 
"fold_map f a s = (let v = f a (head s) in S v (fold_map f v (tail s)))"  | 
|
154  | 
apply (rule fold_map.code)  | 
|
155  | 
sorry  | 
|
| 62696 | 156  | 
|
| 62733 | 157  | 
|
158  | 
subsection \<open>Coinductive Natural Numbers\<close>  | 
|
| 62696 | 159  | 
|
160  | 
codatatype conat = CoZero | CoSuc conat  | 
|
161  | 
||
162  | 
corec sum where  | 
|
163  | 
"sum x y = (case x of  | 
|
164  | 
CoZero \<Rightarrow> y  | 
|
165  | 
| CoSuc x \<Rightarrow> CoSuc (sum x y))"  | 
|
166  | 
||
167  | 
friend_of_corec sum where  | 
|
168  | 
"sum x y = (case x of  | 
|
169  | 
CoZero \<Rightarrow> (case y of CoZero \<Rightarrow> CoZero | CoSuc y \<Rightarrow> CoSuc y)  | 
|
170  | 
| CoSuc x \<Rightarrow> CoSuc (sum x y))"  | 
|
171  | 
sorry  | 
|
172  | 
||
173  | 
corec (friend) prod where  | 
|
174  | 
"prod x y = (case (x, y) of  | 
|
175  | 
(CoZero, _) \<Rightarrow> CoZero  | 
|
176  | 
| (_, CoZero) \<Rightarrow> CoZero  | 
|
177  | 
| (CoSuc x, CoSuc y) \<Rightarrow> CoSuc (sum (prod x y) (sum x y)))"  | 
|
178  | 
||
179  | 
end  |