10249
|
1 |
(* Title: HOL/Library/Multiset.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow, TU Muenchen
|
|
4 |
Author: Markus Wenzel, TU Muenchen
|
|
5 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
6 |
*)
|
|
7 |
|
|
8 |
header {*
|
|
9 |
\title{Multisets}
|
|
10 |
\author{Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson}
|
|
11 |
*}
|
|
12 |
|
|
13 |
theory Multiset = Accessible_Part:
|
|
14 |
|
|
15 |
subsection {* The type of multisets *}
|
|
16 |
|
|
17 |
typedef 'a multiset = "{f::'a => nat. finite {x . 0 < f x}}"
|
|
18 |
proof
|
10277
|
19 |
show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp
|
10249
|
20 |
qed
|
|
21 |
|
|
22 |
lemmas multiset_typedef [simp] =
|
10277
|
23 |
Abs_multiset_inverse Rep_multiset_inverse Rep_multiset
|
|
24 |
and [simp] = Rep_multiset_inject [symmetric]
|
10249
|
25 |
|
|
26 |
constdefs
|
|
27 |
Mempty :: "'a multiset" ("{#}")
|
|
28 |
"{#} == Abs_multiset (\<lambda>a. 0)"
|
|
29 |
|
|
30 |
single :: "'a => 'a multiset" ("{#_#}")
|
|
31 |
"{#a#} == Abs_multiset (\<lambda>b. if b = a then 1 else 0)"
|
|
32 |
|
|
33 |
count :: "'a multiset => 'a => nat"
|
|
34 |
"count == Rep_multiset"
|
|
35 |
|
|
36 |
MCollect :: "'a multiset => ('a => bool) => 'a multiset"
|
|
37 |
"MCollect M P == Abs_multiset (\<lambda>x. if P x then Rep_multiset M x else 0)"
|
|
38 |
|
|
39 |
syntax
|
|
40 |
"_Melem" :: "'a => 'a multiset => bool" ("(_/ :# _)" [50, 51] 50)
|
|
41 |
"_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset" ("(1{# _ : _./ _#})")
|
|
42 |
translations
|
|
43 |
"a :# M" == "0 < count M a"
|
|
44 |
"{#x:M. P#}" == "MCollect M (\<lambda>x. P)"
|
|
45 |
|
|
46 |
constdefs
|
|
47 |
set_of :: "'a multiset => 'a set"
|
|
48 |
"set_of M == {x. x :# M}"
|
|
49 |
|
10313
|
50 |
instance multiset :: ("term") plus ..
|
|
51 |
instance multiset :: ("term") minus ..
|
|
52 |
instance multiset :: ("term") zero ..
|
10249
|
53 |
|
|
54 |
defs (overloaded)
|
|
55 |
union_def: "M + N == Abs_multiset (\<lambda>a. Rep_multiset M a + Rep_multiset N a)"
|
|
56 |
diff_def: "M - N == Abs_multiset (\<lambda>a. Rep_multiset M a - Rep_multiset N a)"
|
|
57 |
Zero_def [simp]: "0 == {#}"
|
|
58 |
size_def: "size M == setsum (count M) (set_of M)"
|
|
59 |
|
|
60 |
|
|
61 |
text {*
|
|
62 |
\medskip Preservation of the representing set @{term multiset}.
|
|
63 |
*}
|
|
64 |
|
|
65 |
lemma const0_in_multiset [simp]: "(\<lambda>a. 0) \<in> multiset"
|
|
66 |
apply (simp add: multiset_def)
|
|
67 |
done
|
|
68 |
|
|
69 |
lemma only1_in_multiset [simp]: "(\<lambda>b. if b = a then 1 else 0) \<in> multiset"
|
|
70 |
apply (simp add: multiset_def)
|
|
71 |
done
|
|
72 |
|
|
73 |
lemma union_preserves_multiset [simp]:
|
|
74 |
"M \<in> multiset ==> N \<in> multiset ==> (\<lambda>a. M a + N a) \<in> multiset"
|
|
75 |
apply (unfold multiset_def)
|
|
76 |
apply simp
|
|
77 |
apply (drule finite_UnI)
|
|
78 |
apply assumption
|
|
79 |
apply (simp del: finite_Un add: Un_def)
|
|
80 |
done
|
|
81 |
|
|
82 |
lemma diff_preserves_multiset [simp]:
|
|
83 |
"M \<in> multiset ==> (\<lambda>a. M a - N a) \<in> multiset"
|
|
84 |
apply (unfold multiset_def)
|
|
85 |
apply simp
|
|
86 |
apply (rule finite_subset)
|
|
87 |
prefer 2
|
|
88 |
apply assumption
|
|
89 |
apply auto
|
|
90 |
done
|
|
91 |
|
|
92 |
|
|
93 |
subsection {* Algebraic properties of multisets *}
|
|
94 |
|
|
95 |
subsubsection {* Union *}
|
|
96 |
|
|
97 |
theorem union_empty [simp]: "M + {#} = M \<and> {#} + M = M"
|
|
98 |
apply (simp add: union_def Mempty_def)
|
|
99 |
done
|
|
100 |
|
|
101 |
theorem union_commute: "M + N = N + (M::'a multiset)"
|
|
102 |
apply (simp add: union_def add_ac)
|
|
103 |
done
|
|
104 |
|
|
105 |
theorem union_assoc: "(M + N) + K = M + (N + (K::'a multiset))"
|
|
106 |
apply (simp add: union_def add_ac)
|
|
107 |
done
|
|
108 |
|
|
109 |
theorem union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))"
|
|
110 |
apply (rule union_commute [THEN trans])
|
|
111 |
apply (rule union_assoc [THEN trans])
|
|
112 |
apply (rule union_commute [THEN arg_cong])
|
|
113 |
done
|
|
114 |
|
|
115 |
theorems union_ac = union_assoc union_commute union_lcomm
|
|
116 |
|
10277
|
117 |
instance multiset :: ("term") plus_ac0
|
|
118 |
apply intro_classes
|
|
119 |
apply (rule union_commute)
|
|
120 |
apply (rule union_assoc)
|
|
121 |
apply simp
|
|
122 |
done
|
|
123 |
|
10249
|
124 |
|
|
125 |
subsubsection {* Difference *}
|
|
126 |
|
|
127 |
theorem diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}"
|
|
128 |
apply (simp add: Mempty_def diff_def)
|
|
129 |
done
|
|
130 |
|
|
131 |
theorem diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M"
|
|
132 |
apply (simp add: union_def diff_def)
|
|
133 |
done
|
|
134 |
|
|
135 |
|
|
136 |
subsubsection {* Count of elements *}
|
|
137 |
|
|
138 |
theorem count_empty [simp]: "count {#} a = 0"
|
|
139 |
apply (simp add: count_def Mempty_def)
|
|
140 |
done
|
|
141 |
|
|
142 |
theorem count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)"
|
|
143 |
apply (simp add: count_def single_def)
|
|
144 |
done
|
|
145 |
|
|
146 |
theorem count_union [simp]: "count (M + N) a = count M a + count N a"
|
|
147 |
apply (simp add: count_def union_def)
|
|
148 |
done
|
|
149 |
|
|
150 |
theorem count_diff [simp]: "count (M - N) a = count M a - count N a"
|
|
151 |
apply (simp add: count_def diff_def)
|
|
152 |
done
|
|
153 |
|
|
154 |
|
|
155 |
subsubsection {* Set of elements *}
|
|
156 |
|
|
157 |
theorem set_of_empty [simp]: "set_of {#} = {}"
|
|
158 |
apply (simp add: set_of_def)
|
|
159 |
done
|
|
160 |
|
|
161 |
theorem set_of_single [simp]: "set_of {#b#} = {b}"
|
|
162 |
apply (simp add: set_of_def)
|
|
163 |
done
|
|
164 |
|
|
165 |
theorem set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N"
|
|
166 |
apply (auto simp add: set_of_def)
|
|
167 |
done
|
|
168 |
|
|
169 |
theorem set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})"
|
|
170 |
apply (auto simp add: set_of_def Mempty_def count_def expand_fun_eq)
|
|
171 |
done
|
|
172 |
|
|
173 |
theorem mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)"
|
|
174 |
apply (auto simp add: set_of_def)
|
|
175 |
done
|
|
176 |
|
|
177 |
|
|
178 |
subsubsection {* Size *}
|
|
179 |
|
|
180 |
theorem size_empty [simp]: "size {#} = 0"
|
|
181 |
apply (simp add: size_def)
|
|
182 |
done
|
|
183 |
|
|
184 |
theorem size_single [simp]: "size {#b#} = 1"
|
|
185 |
apply (simp add: size_def)
|
|
186 |
done
|
|
187 |
|
|
188 |
theorem finite_set_of [iff]: "finite (set_of M)"
|
|
189 |
apply (cut_tac x = M in Rep_multiset)
|
|
190 |
apply (simp add: multiset_def set_of_def count_def)
|
|
191 |
done
|
|
192 |
|
|
193 |
theorem setsum_count_Int:
|
|
194 |
"finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A"
|
|
195 |
apply (erule finite_induct)
|
|
196 |
apply simp
|
|
197 |
apply (simp add: Int_insert_left set_of_def)
|
|
198 |
done
|
|
199 |
|
|
200 |
theorem size_union [simp]: "size (M + N::'a multiset) = size M + size N"
|
|
201 |
apply (unfold size_def)
|
|
202 |
apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)")
|
|
203 |
prefer 2
|
|
204 |
apply (rule ext)
|
|
205 |
apply simp
|
|
206 |
apply (simp (no_asm_simp) add: setsum_Un setsum_addf setsum_count_Int)
|
|
207 |
apply (subst Int_commute)
|
|
208 |
apply (simp (no_asm_simp) add: setsum_count_Int)
|
|
209 |
done
|
|
210 |
|
|
211 |
theorem size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})"
|
|
212 |
apply (unfold size_def Mempty_def count_def)
|
|
213 |
apply auto
|
|
214 |
apply (simp add: set_of_def count_def expand_fun_eq)
|
|
215 |
done
|
|
216 |
|
|
217 |
theorem size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M"
|
|
218 |
apply (unfold size_def)
|
|
219 |
apply (drule setsum_SucD)
|
|
220 |
apply auto
|
|
221 |
done
|
|
222 |
|
|
223 |
|
|
224 |
subsubsection {* Equality of multisets *}
|
|
225 |
|
|
226 |
theorem multiset_eq_conv_count_eq: "(M = N) = (\<forall>a. count M a = count N a)"
|
|
227 |
apply (simp add: count_def expand_fun_eq)
|
|
228 |
done
|
|
229 |
|
|
230 |
theorem single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}"
|
|
231 |
apply (simp add: single_def Mempty_def expand_fun_eq)
|
|
232 |
done
|
|
233 |
|
|
234 |
theorem single_eq_single [simp]: "({#a#} = {#b#}) = (a = b)"
|
|
235 |
apply (auto simp add: single_def expand_fun_eq)
|
|
236 |
done
|
|
237 |
|
|
238 |
theorem union_eq_empty [iff]: "(M + N = {#}) = (M = {#} \<and> N = {#})"
|
|
239 |
apply (auto simp add: union_def Mempty_def expand_fun_eq)
|
|
240 |
done
|
|
241 |
|
|
242 |
theorem empty_eq_union [iff]: "({#} = M + N) = (M = {#} \<and> N = {#})"
|
|
243 |
apply (auto simp add: union_def Mempty_def expand_fun_eq)
|
|
244 |
done
|
|
245 |
|
|
246 |
theorem union_right_cancel [simp]: "(M + K = N + K) = (M = (N::'a multiset))"
|
|
247 |
apply (simp add: union_def expand_fun_eq)
|
|
248 |
done
|
|
249 |
|
|
250 |
theorem union_left_cancel [simp]: "(K + M = K + N) = (M = (N::'a multiset))"
|
|
251 |
apply (simp add: union_def expand_fun_eq)
|
|
252 |
done
|
|
253 |
|
|
254 |
theorem union_is_single:
|
|
255 |
"(M + N = {#a#}) = (M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#})"
|
|
256 |
apply (unfold Mempty_def single_def union_def)
|
|
257 |
apply (simp add: add_is_1 expand_fun_eq)
|
|
258 |
apply blast
|
|
259 |
done
|
|
260 |
|
|
261 |
theorem single_is_union:
|
|
262 |
"({#a#} = M + N) =
|
|
263 |
({#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N)"
|
|
264 |
apply (unfold Mempty_def single_def union_def)
|
|
265 |
apply (simp add: one_is_add expand_fun_eq)
|
|
266 |
apply (blast dest: sym)
|
|
267 |
done
|
|
268 |
|
|
269 |
theorem add_eq_conv_diff:
|
|
270 |
"(M + {#a#} = N + {#b#}) =
|
|
271 |
(M = N \<and> a = b \<or>
|
|
272 |
M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#})"
|
|
273 |
apply (unfold single_def union_def diff_def)
|
|
274 |
apply (simp (no_asm) add: expand_fun_eq)
|
|
275 |
apply (rule conjI)
|
|
276 |
apply force
|
|
277 |
apply clarify
|
|
278 |
apply (rule conjI)
|
|
279 |
apply blast
|
|
280 |
apply clarify
|
|
281 |
apply (rule iffI)
|
|
282 |
apply (rule conjI)
|
|
283 |
apply clarify
|
|
284 |
apply (rule conjI)
|
|
285 |
apply (simp add: eq_sym_conv) (* FIXME blast fails !? *)
|
|
286 |
apply fast
|
|
287 |
apply simp
|
|
288 |
apply force
|
|
289 |
done
|
|
290 |
|
|
291 |
(*
|
|
292 |
val prems = Goal
|
|
293 |
"[| !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> finite F --> P F";
|
|
294 |
by (res_inst_tac [("a","F"),("f","\<lambda>A. if finite A then card A else 0")]
|
|
295 |
measure_induct 1);
|
|
296 |
by (Clarify_tac 1);
|
|
297 |
by (resolve_tac prems 1);
|
|
298 |
by (assume_tac 1);
|
|
299 |
by (Clarify_tac 1);
|
|
300 |
by (subgoal_tac "finite G" 1);
|
|
301 |
by (fast_tac (claset() addDs [finite_subset,order_less_le RS iffD1]) 2);
|
|
302 |
by (etac allE 1);
|
|
303 |
by (etac impE 1);
|
|
304 |
by (Blast_tac 2);
|
|
305 |
by (asm_simp_tac (simpset() addsimps [psubset_card]) 1);
|
|
306 |
no_qed();
|
|
307 |
val lemma = result();
|
|
308 |
|
|
309 |
val prems = Goal
|
|
310 |
"[| finite F; !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> P F";
|
|
311 |
by (rtac (lemma RS mp) 1);
|
|
312 |
by (REPEAT(ares_tac prems 1));
|
|
313 |
qed "finite_psubset_induct";
|
|
314 |
|
|
315 |
Better: use wf_finite_psubset in WF_Rel
|
|
316 |
*)
|
|
317 |
|
|
318 |
|
|
319 |
subsection {* Induction over multisets *}
|
|
320 |
|
|
321 |
lemma setsum_decr:
|
|
322 |
"finite F ==> 0 < f a ==>
|
|
323 |
setsum (f (a := f a - 1)) F = (if a \<in> F then setsum f F - 1 else setsum f F)"
|
|
324 |
apply (erule finite_induct)
|
|
325 |
apply auto
|
|
326 |
apply (drule_tac a = a in mk_disjoint_insert)
|
|
327 |
apply auto
|
|
328 |
done
|
|
329 |
|
10313
|
330 |
lemma rep_multiset_induct_aux:
|
10249
|
331 |
"P (\<lambda>a. 0) ==> (!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1)))
|
|
332 |
==> \<forall>f. f \<in> multiset --> setsum f {x. 0 < f x} = n --> P f"
|
|
333 |
proof -
|
|
334 |
case antecedent
|
|
335 |
note prems = this [unfolded multiset_def]
|
|
336 |
show ?thesis
|
|
337 |
apply (unfold multiset_def)
|
|
338 |
apply (induct_tac n)
|
|
339 |
apply simp
|
|
340 |
apply clarify
|
|
341 |
apply (subgoal_tac "f = (\<lambda>a.0)")
|
|
342 |
apply simp
|
|
343 |
apply (rule prems)
|
|
344 |
apply (rule ext)
|
|
345 |
apply force
|
|
346 |
apply clarify
|
|
347 |
apply (frule setsum_SucD)
|
|
348 |
apply clarify
|
|
349 |
apply (rename_tac a)
|
|
350 |
apply (subgoal_tac "finite {x. 0 < (f (a := f a - 1)) x}")
|
|
351 |
prefer 2
|
|
352 |
apply (rule finite_subset)
|
|
353 |
prefer 2
|
|
354 |
apply assumption
|
|
355 |
apply simp
|
|
356 |
apply blast
|
|
357 |
apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)")
|
|
358 |
prefer 2
|
|
359 |
apply (rule ext)
|
|
360 |
apply (simp (no_asm_simp))
|
|
361 |
apply (erule ssubst, rule prems)
|
|
362 |
apply blast
|
|
363 |
apply (erule allE, erule impE, erule_tac [2] mp)
|
|
364 |
apply blast
|
|
365 |
apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply)
|
|
366 |
apply (subgoal_tac "{x. x \<noteq> a --> 0 < f x} = {x. 0 < f x}")
|
|
367 |
prefer 2
|
|
368 |
apply blast
|
|
369 |
apply (subgoal_tac "{x. x \<noteq> a \<and> 0 < f x} = {x. 0 < f x} - {a}")
|
|
370 |
prefer 2
|
|
371 |
apply blast
|
|
372 |
apply (simp add: le_imp_diff_is_add setsum_diff1 cong: conj_cong)
|
|
373 |
done
|
|
374 |
qed
|
|
375 |
|
10313
|
376 |
theorem rep_multiset_induct:
|
10249
|
377 |
"f \<in> multiset ==> P (\<lambda>a. 0) ==>
|
|
378 |
(!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f"
|
10313
|
379 |
apply (insert rep_multiset_induct_aux)
|
10249
|
380 |
apply blast
|
|
381 |
done
|
|
382 |
|
|
383 |
theorem multiset_induct [induct type: multiset]:
|
|
384 |
"P {#} ==> (!!M x. P M ==> P (M + {#x#})) ==> P M"
|
|
385 |
proof -
|
|
386 |
note defns = union_def single_def Mempty_def
|
|
387 |
assume prem1 [unfolded defns]: "P {#}"
|
|
388 |
assume prem2 [unfolded defns]: "!!M x. P M ==> P (M + {#x#})"
|
|
389 |
show ?thesis
|
|
390 |
apply (rule Rep_multiset_inverse [THEN subst])
|
10313
|
391 |
apply (rule Rep_multiset [THEN rep_multiset_induct])
|
10249
|
392 |
apply (rule prem1)
|
|
393 |
apply (subgoal_tac "f (b := f b + 1) = (\<lambda>a. f a + (if a = b then 1 else 0))")
|
|
394 |
prefer 2
|
|
395 |
apply (simp add: expand_fun_eq)
|
|
396 |
apply (erule ssubst)
|
|
397 |
apply (erule Abs_multiset_inverse [THEN subst])
|
|
398 |
apply (erule prem2 [simplified])
|
|
399 |
done
|
|
400 |
qed
|
|
401 |
|
|
402 |
|
|
403 |
lemma MCollect_preserves_multiset:
|
|
404 |
"M \<in> multiset ==> (\<lambda>x. if P x then M x else 0) \<in> multiset"
|
|
405 |
apply (simp add: multiset_def)
|
|
406 |
apply (rule finite_subset)
|
|
407 |
apply auto
|
|
408 |
done
|
|
409 |
|
|
410 |
theorem count_MCollect [simp]:
|
|
411 |
"count {# x:M. P x #} a = (if P a then count M a else 0)"
|
|
412 |
apply (unfold count_def MCollect_def)
|
|
413 |
apply (simp add: MCollect_preserves_multiset)
|
|
414 |
done
|
|
415 |
|
|
416 |
theorem set_of_MCollect [simp]: "set_of {# x:M. P x #} = set_of M \<inter> {x. P x}"
|
|
417 |
apply (auto simp add: set_of_def)
|
|
418 |
done
|
|
419 |
|
|
420 |
theorem multiset_partition: "M = {# x:M. P x #} + {# x:M. \<not> P x #}"
|
|
421 |
apply (subst multiset_eq_conv_count_eq)
|
|
422 |
apply auto
|
|
423 |
done
|
|
424 |
|
10277
|
425 |
declare Rep_multiset_inject [symmetric, simp del]
|
10249
|
426 |
declare multiset_typedef [simp del]
|
|
427 |
|
|
428 |
theorem add_eq_conv_ex:
|
|
429 |
"(M + {#a#} = N + {#b#}) =
|
|
430 |
(M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))"
|
|
431 |
apply (auto simp add: add_eq_conv_diff)
|
|
432 |
done
|
|
433 |
|
|
434 |
|
|
435 |
subsection {* Multiset orderings *}
|
|
436 |
|
|
437 |
subsubsection {* Well-foundedness *}
|
|
438 |
|
|
439 |
constdefs
|
|
440 |
mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
|
|
441 |
"mult1 r ==
|
|
442 |
{(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and>
|
|
443 |
(\<forall>b. b :# K --> (b, a) \<in> r)}"
|
|
444 |
|
|
445 |
mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set"
|
10392
|
446 |
"mult r == (mult1 r)\<^sup>+"
|
10249
|
447 |
|
|
448 |
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r"
|
10277
|
449 |
by (simp add: mult1_def)
|
10249
|
450 |
|
|
451 |
lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==>
|
|
452 |
(\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or>
|
|
453 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)"
|
|
454 |
(concl is "?case1 (mult1 r) \<or> ?case2")
|
|
455 |
proof (unfold mult1_def)
|
|
456 |
let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r"
|
|
457 |
let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a"
|
|
458 |
let ?case1 = "?case1 {(N, M). ?R N M}"
|
|
459 |
|
|
460 |
assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}"
|
|
461 |
hence "\<exists>a' M0' K.
|
|
462 |
M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp
|
|
463 |
thus "?case1 \<or> ?case2"
|
|
464 |
proof (elim exE conjE)
|
|
465 |
fix a' M0' K
|
|
466 |
assume N: "N = M0' + K" and r: "?r K a'"
|
|
467 |
assume "M0 + {#a#} = M0' + {#a'#}"
|
|
468 |
hence "M0 = M0' \<and> a = a' \<or>
|
|
469 |
(\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})"
|
|
470 |
by (simp only: add_eq_conv_ex)
|
|
471 |
thus ?thesis
|
|
472 |
proof (elim disjE conjE exE)
|
|
473 |
assume "M0 = M0'" "a = a'"
|
|
474 |
with N r have "?r K a \<and> N = M0 + K" by simp
|
|
475 |
hence ?case2 .. thus ?thesis ..
|
|
476 |
next
|
|
477 |
fix K'
|
|
478 |
assume "M0' = K' + {#a#}"
|
|
479 |
with N have n: "N = K' + K + {#a#}" by (simp add: union_ac)
|
|
480 |
|
|
481 |
assume "M0 = K' + {#a'#}"
|
|
482 |
with r have "?R (K' + K) M0" by blast
|
|
483 |
with n have ?case1 by simp thus ?thesis ..
|
|
484 |
qed
|
|
485 |
qed
|
|
486 |
qed
|
|
487 |
|
|
488 |
lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)"
|
|
489 |
proof
|
|
490 |
let ?R = "mult1 r"
|
|
491 |
let ?W = "acc ?R"
|
|
492 |
{
|
|
493 |
fix M M0 a
|
|
494 |
assume M0: "M0 \<in> ?W"
|
|
495 |
and wf_hyp: "\<forall>b. (b, a) \<in> r --> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
|
|
496 |
and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W"
|
|
497 |
have "M0 + {#a#} \<in> ?W"
|
|
498 |
proof (rule accI [of "M0 + {#a#}"])
|
|
499 |
fix N
|
|
500 |
assume "(N, M0 + {#a#}) \<in> ?R"
|
|
501 |
hence "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or>
|
|
502 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))"
|
|
503 |
by (rule less_add)
|
|
504 |
thus "N \<in> ?W"
|
|
505 |
proof (elim exE disjE conjE)
|
|
506 |
fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}"
|
|
507 |
from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" ..
|
|
508 |
hence "M + {#a#} \<in> ?W" ..
|
|
509 |
thus "N \<in> ?W" by (simp only: N)
|
|
510 |
next
|
|
511 |
fix K
|
|
512 |
assume N: "N = M0 + K"
|
|
513 |
assume "\<forall>b. b :# K --> (b, a) \<in> r"
|
|
514 |
have "?this --> M0 + K \<in> ?W" (is "?P K")
|
|
515 |
proof (induct K)
|
|
516 |
from M0 have "M0 + {#} \<in> ?W" by simp
|
|
517 |
thus "?P {#}" ..
|
|
518 |
|
|
519 |
fix K x assume hyp: "?P K"
|
|
520 |
show "?P (K + {#x#})"
|
|
521 |
proof
|
|
522 |
assume a: "\<forall>b. b :# (K + {#x#}) --> (b, a) \<in> r"
|
|
523 |
hence "(x, a) \<in> r" by simp
|
|
524 |
with wf_hyp have b: "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
|
|
525 |
|
|
526 |
from a hyp have "M0 + K \<in> ?W" by simp
|
|
527 |
with b have "(M0 + K) + {#x#} \<in> ?W" ..
|
|
528 |
thus "M0 + (K + {#x#}) \<in> ?W" by (simp only: union_assoc)
|
|
529 |
qed
|
|
530 |
qed
|
|
531 |
hence "M0 + K \<in> ?W" ..
|
|
532 |
thus "N \<in> ?W" by (simp only: N)
|
|
533 |
qed
|
|
534 |
qed
|
|
535 |
} note tedious_reasoning = this
|
|
536 |
|
|
537 |
assume wf: "wf r"
|
|
538 |
fix M
|
|
539 |
show "M \<in> ?W"
|
|
540 |
proof (induct M)
|
|
541 |
show "{#} \<in> ?W"
|
|
542 |
proof (rule accI)
|
|
543 |
fix b assume "(b, {#}) \<in> ?R"
|
|
544 |
with not_less_empty show "b \<in> ?W" by contradiction
|
|
545 |
qed
|
|
546 |
|
|
547 |
fix M a assume "M \<in> ?W"
|
|
548 |
from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
|
|
549 |
proof induct
|
|
550 |
fix a
|
|
551 |
assume "\<forall>b. (b, a) \<in> r --> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)"
|
|
552 |
show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W"
|
|
553 |
proof
|
|
554 |
fix M assume "M \<in> ?W"
|
|
555 |
thus "M + {#a#} \<in> ?W"
|
|
556 |
by (rule acc_induct) (rule tedious_reasoning)
|
|
557 |
qed
|
|
558 |
qed
|
|
559 |
thus "M + {#a#} \<in> ?W" ..
|
|
560 |
qed
|
|
561 |
qed
|
|
562 |
|
|
563 |
theorem wf_mult1: "wf r ==> wf (mult1 r)"
|
|
564 |
by (rule acc_wfI, rule all_accessible)
|
|
565 |
|
|
566 |
theorem wf_mult: "wf r ==> wf (mult r)"
|
|
567 |
by (unfold mult_def, rule wf_trancl, rule wf_mult1)
|
|
568 |
|
|
569 |
|
|
570 |
subsubsection {* Closure-free presentation *}
|
|
571 |
|
|
572 |
(*Badly needed: a linear arithmetic procedure for multisets*)
|
|
573 |
|
|
574 |
lemma diff_union_single_conv: "a :# J ==> I + J - {#a#} = I + (J - {#a#})"
|
|
575 |
apply (simp add: multiset_eq_conv_count_eq)
|
|
576 |
done
|
|
577 |
|
|
578 |
text {* One direction. *}
|
|
579 |
|
|
580 |
lemma mult_implies_one_step:
|
|
581 |
"trans r ==> (M, N) \<in> mult r ==>
|
|
582 |
\<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and>
|
|
583 |
(\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)"
|
|
584 |
apply (unfold mult_def mult1_def set_of_def)
|
|
585 |
apply (erule converse_trancl_induct)
|
|
586 |
apply clarify
|
|
587 |
apply (rule_tac x = M0 in exI)
|
|
588 |
apply simp
|
|
589 |
apply clarify
|
|
590 |
apply (case_tac "a :# K")
|
|
591 |
apply (rule_tac x = I in exI)
|
|
592 |
apply (simp (no_asm))
|
|
593 |
apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
|
|
594 |
apply (simp (no_asm_simp) add: union_assoc [symmetric])
|
|
595 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
|
|
596 |
apply (simp add: diff_union_single_conv)
|
|
597 |
apply (simp (no_asm_use) add: trans_def)
|
|
598 |
apply blast
|
|
599 |
apply (subgoal_tac "a :# I")
|
|
600 |
apply (rule_tac x = "I - {#a#}" in exI)
|
|
601 |
apply (rule_tac x = "J + {#a#}" in exI)
|
|
602 |
apply (rule_tac x = "K + Ka" in exI)
|
|
603 |
apply (rule conjI)
|
|
604 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split)
|
|
605 |
apply (rule conjI)
|
|
606 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong)
|
|
607 |
apply simp
|
|
608 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split)
|
|
609 |
apply (simp (no_asm_use) add: trans_def)
|
|
610 |
apply blast
|
10277
|
611 |
apply (subgoal_tac "a :# (M0 + {#a#})")
|
10249
|
612 |
apply simp
|
|
613 |
apply (simp (no_asm))
|
|
614 |
done
|
|
615 |
|
|
616 |
lemma elem_imp_eq_diff_union: "a :# M ==> M = M - {#a#} + {#a#}"
|
|
617 |
apply (simp add: multiset_eq_conv_count_eq)
|
|
618 |
done
|
|
619 |
|
|
620 |
lemma size_eq_Suc_imp_eq_union: "size M = Suc n ==> \<exists>a N. M = N + {#a#}"
|
|
621 |
apply (erule size_eq_Suc_imp_elem [THEN exE])
|
|
622 |
apply (drule elem_imp_eq_diff_union)
|
|
623 |
apply auto
|
|
624 |
done
|
|
625 |
|
|
626 |
lemma one_step_implies_mult_aux:
|
|
627 |
"trans r ==>
|
|
628 |
\<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r))
|
|
629 |
--> (I + K, I + J) \<in> mult r"
|
|
630 |
apply (induct_tac n)
|
|
631 |
apply auto
|
|
632 |
apply (frule size_eq_Suc_imp_eq_union)
|
|
633 |
apply clarify
|
|
634 |
apply (rename_tac "J'")
|
|
635 |
apply simp
|
|
636 |
apply (erule notE)
|
|
637 |
apply auto
|
|
638 |
apply (case_tac "J' = {#}")
|
|
639 |
apply (simp add: mult_def)
|
|
640 |
apply (rule r_into_trancl)
|
|
641 |
apply (simp add: mult1_def set_of_def)
|
|
642 |
apply blast
|
|
643 |
txt {* Now we know @{term "J' \<noteq> {#}"}. *}
|
|
644 |
apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition)
|
|
645 |
apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp)
|
|
646 |
apply (erule ssubst)
|
|
647 |
apply (simp add: Ball_def)
|
|
648 |
apply auto
|
|
649 |
apply (subgoal_tac
|
|
650 |
"((I + {# x : K. (x, a) \<in> r #}) + {# x : K. (x, a) \<notin> r #},
|
|
651 |
(I + {# x : K. (x, a) \<in> r #}) + J') \<in> mult r")
|
|
652 |
prefer 2
|
|
653 |
apply force
|
|
654 |
apply (simp (no_asm_use) add: union_assoc [symmetric] mult_def)
|
|
655 |
apply (erule trancl_trans)
|
|
656 |
apply (rule r_into_trancl)
|
|
657 |
apply (simp add: mult1_def set_of_def)
|
|
658 |
apply (rule_tac x = a in exI)
|
|
659 |
apply (rule_tac x = "I + J'" in exI)
|
|
660 |
apply (simp add: union_ac)
|
|
661 |
done
|
|
662 |
|
|
663 |
theorem one_step_implies_mult:
|
|
664 |
"trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r
|
|
665 |
==> (I + K, I + J) \<in> mult r"
|
|
666 |
apply (insert one_step_implies_mult_aux)
|
|
667 |
apply blast
|
|
668 |
done
|
|
669 |
|
|
670 |
|
|
671 |
subsubsection {* Partial-order properties *}
|
|
672 |
|
10313
|
673 |
instance multiset :: ("term") ord ..
|
10249
|
674 |
|
|
675 |
defs (overloaded)
|
|
676 |
less_multiset_def: "M' < M == (M', M) \<in> mult {(x', x). x' < x}"
|
|
677 |
le_multiset_def: "M' <= M == M' = M \<or> M' < (M::'a multiset)"
|
|
678 |
|
|
679 |
lemma trans_base_order: "trans {(x', x). x' < (x::'a::order)}"
|
|
680 |
apply (unfold trans_def)
|
|
681 |
apply (blast intro: order_less_trans)
|
|
682 |
done
|
|
683 |
|
|
684 |
text {*
|
|
685 |
\medskip Irreflexivity.
|
|
686 |
*}
|
|
687 |
|
|
688 |
lemma mult_irrefl_aux:
|
|
689 |
"finite A ==> (\<forall>x \<in> A. \<exists>y \<in> A. x < (y::'a::order)) --> A = {}"
|
|
690 |
apply (erule finite_induct)
|
|
691 |
apply (auto intro: order_less_trans)
|
|
692 |
done
|
|
693 |
|
|
694 |
theorem mult_less_not_refl: "\<not> M < (M::'a::order multiset)"
|
|
695 |
apply (unfold less_multiset_def)
|
|
696 |
apply auto
|
|
697 |
apply (drule trans_base_order [THEN mult_implies_one_step])
|
|
698 |
apply auto
|
|
699 |
apply (drule finite_set_of [THEN mult_irrefl_aux [rule_format (no_asm)]])
|
|
700 |
apply (simp add: set_of_eq_empty_iff)
|
|
701 |
done
|
|
702 |
|
|
703 |
lemma mult_less_irrefl [elim!]: "M < (M::'a::order multiset) ==> R"
|
|
704 |
apply (insert mult_less_not_refl)
|
|
705 |
apply blast
|
|
706 |
done
|
|
707 |
|
|
708 |
|
|
709 |
text {* Transitivity. *}
|
|
710 |
|
|
711 |
theorem mult_less_trans: "K < M ==> M < N ==> K < (N::'a::order multiset)"
|
|
712 |
apply (unfold less_multiset_def mult_def)
|
|
713 |
apply (blast intro: trancl_trans)
|
|
714 |
done
|
|
715 |
|
|
716 |
text {* Asymmetry. *}
|
|
717 |
|
|
718 |
theorem mult_less_not_sym: "M < N ==> \<not> N < (M::'a::order multiset)"
|
|
719 |
apply auto
|
|
720 |
apply (rule mult_less_not_refl [THEN notE])
|
|
721 |
apply (erule mult_less_trans)
|
|
722 |
apply assumption
|
|
723 |
done
|
|
724 |
|
|
725 |
theorem mult_less_asym:
|
|
726 |
"M < N ==> (\<not> P ==> N < (M::'a::order multiset)) ==> P"
|
|
727 |
apply (insert mult_less_not_sym)
|
|
728 |
apply blast
|
|
729 |
done
|
|
730 |
|
|
731 |
theorem mult_le_refl [iff]: "M <= (M::'a::order multiset)"
|
|
732 |
apply (unfold le_multiset_def)
|
|
733 |
apply auto
|
|
734 |
done
|
|
735 |
|
|
736 |
text {* Anti-symmetry. *}
|
|
737 |
|
|
738 |
theorem mult_le_antisym:
|
|
739 |
"M <= N ==> N <= M ==> M = (N::'a::order multiset)"
|
|
740 |
apply (unfold le_multiset_def)
|
|
741 |
apply (blast dest: mult_less_not_sym)
|
|
742 |
done
|
|
743 |
|
|
744 |
text {* Transitivity. *}
|
|
745 |
|
|
746 |
theorem mult_le_trans:
|
|
747 |
"K <= M ==> M <= N ==> K <= (N::'a::order multiset)"
|
|
748 |
apply (unfold le_multiset_def)
|
|
749 |
apply (blast intro: mult_less_trans)
|
|
750 |
done
|
|
751 |
|
|
752 |
theorem mult_less_le: "M < N = (M <= N \<and> M \<noteq> (N::'a::order multiset))"
|
|
753 |
apply (unfold le_multiset_def)
|
|
754 |
apply auto
|
|
755 |
done
|
|
756 |
|
10277
|
757 |
text {* Partial order. *}
|
|
758 |
|
|
759 |
instance multiset :: (order) order
|
|
760 |
apply intro_classes
|
|
761 |
apply (rule mult_le_refl)
|
|
762 |
apply (erule mult_le_trans)
|
|
763 |
apply assumption
|
|
764 |
apply (erule mult_le_antisym)
|
|
765 |
apply assumption
|
|
766 |
apply (rule mult_less_le)
|
|
767 |
done
|
|
768 |
|
10249
|
769 |
|
|
770 |
subsubsection {* Monotonicity of multiset union *}
|
|
771 |
|
|
772 |
theorem mult1_union:
|
|
773 |
"(B, D) \<in> mult1 r ==> trans r ==> (C + B, C + D) \<in> mult1 r"
|
|
774 |
apply (unfold mult1_def)
|
|
775 |
apply auto
|
|
776 |
apply (rule_tac x = a in exI)
|
|
777 |
apply (rule_tac x = "C + M0" in exI)
|
|
778 |
apply (simp add: union_assoc)
|
|
779 |
done
|
|
780 |
|
|
781 |
lemma union_less_mono2: "B < D ==> C + B < C + (D::'a::order multiset)"
|
|
782 |
apply (unfold less_multiset_def mult_def)
|
|
783 |
apply (erule trancl_induct)
|
|
784 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl)
|
|
785 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl trancl_trans)
|
|
786 |
done
|
|
787 |
|
|
788 |
lemma union_less_mono1: "B < D ==> B + C < D + (C::'a::order multiset)"
|
|
789 |
apply (subst union_commute [of B C])
|
|
790 |
apply (subst union_commute [of D C])
|
|
791 |
apply (erule union_less_mono2)
|
|
792 |
done
|
|
793 |
|
|
794 |
theorem union_less_mono:
|
|
795 |
"A < C ==> B < D ==> A + B < C + (D::'a::order multiset)"
|
|
796 |
apply (blast intro!: union_less_mono1 union_less_mono2 mult_less_trans)
|
|
797 |
done
|
|
798 |
|
|
799 |
theorem union_le_mono:
|
|
800 |
"A <= C ==> B <= D ==> A + B <= C + (D::'a::order multiset)"
|
|
801 |
apply (unfold le_multiset_def)
|
|
802 |
apply (blast intro: union_less_mono union_less_mono1 union_less_mono2)
|
|
803 |
done
|
|
804 |
|
|
805 |
theorem empty_leI [iff]: "{#} <= (M::'a::order multiset)"
|
|
806 |
apply (unfold le_multiset_def less_multiset_def)
|
|
807 |
apply (case_tac "M = {#}")
|
|
808 |
prefer 2
|
|
809 |
apply (subgoal_tac "({#} + {#}, {#} + M) \<in> mult (Collect (split op <))")
|
|
810 |
prefer 2
|
|
811 |
apply (rule one_step_implies_mult)
|
|
812 |
apply (simp only: trans_def)
|
|
813 |
apply auto
|
|
814 |
apply (blast intro: order_less_trans)
|
|
815 |
done
|
|
816 |
|
|
817 |
theorem union_upper1: "A <= A + (B::'a::order multiset)"
|
|
818 |
apply (subgoal_tac "A + {#} <= A + B")
|
|
819 |
prefer 2
|
|
820 |
apply (rule union_le_mono)
|
|
821 |
apply auto
|
|
822 |
done
|
|
823 |
|
|
824 |
theorem union_upper2: "B <= A + (B::'a::order multiset)"
|
|
825 |
apply (subst union_commute, rule union_upper1)
|
|
826 |
done
|
|
827 |
|
|
828 |
end
|