| author | desharna | 
| Fri, 20 Oct 2023 12:25:35 +0200 | |
| changeset 78789 | f2e845c3e65c | 
| parent 77811 | ae9e6218443d | 
| permissions | -rw-r--r-- | 
| 56796 | 1 | (* Title: HOL/Library/Finite_Lattice.thy | 
| 2 | Author: Alessandro Coglio | |
| 3 | *) | |
| 50634 | 4 | |
| 77811 | 5 | section \<open>Finite Lattices\<close> | 
| 6 | ||
| 50634 | 7 | theory Finite_Lattice | 
| 51115 
7dbd6832a689
consolidation of library theories on product orders
 haftmann parents: 
50634diff
changeset | 8 | imports Product_Order | 
| 50634 | 9 | begin | 
| 10 | ||
| 77811 | 11 | subsection \<open>Finite Complete Lattices\<close> | 
| 12 | ||
| 60500 | 13 | text \<open>A non-empty finite lattice is a complete lattice. | 
| 50634 | 14 | Since types are never empty in Isabelle/HOL, | 
| 69593 | 15 | a type of classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close> | 
| 16 | should also have class \<^class>\<open>complete_lattice\<close>. | |
| 50634 | 17 | A type class is defined | 
| 69593 | 18 | that extends classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close> | 
| 19 | with the operators \<^const>\<open>bot\<close>, \<^const>\<open>top\<close>, \<^const>\<open>Inf\<close>, and \<^const>\<open>Sup\<close>, | |
| 50634 | 20 | along with assumptions that define these operators | 
| 69593 | 21 | in terms of the ones of classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close>. | 
| 22 | The resulting class is a subclass of \<^class>\<open>complete_lattice\<close>.\<close> | |
| 50634 | 23 | |
| 24 | class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup + | |
| 56796 | 25 | assumes bot_def: "bot = Inf_fin UNIV" | 
| 26 | assumes top_def: "top = Sup_fin UNIV" | |
| 27 | assumes Inf_def: "Inf A = Finite_Set.fold inf top A" | |
| 28 | assumes Sup_def: "Sup A = Finite_Set.fold sup bot A" | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 29 | |
| 60500 | 30 | text \<open>The definitional assumptions | 
| 69593 | 31 | on the operators \<^const>\<open>bot\<close> and \<^const>\<open>top\<close> | 
| 32 | of class \<^class>\<open>finite_lattice_complete\<close> | |
| 60500 | 33 | ensure that they yield bottom and top.\<close> | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 34 | |
| 56796 | 35 | lemma finite_lattice_complete_bot_least: "(bot::'a::finite_lattice_complete) \<le> x" | 
| 36 | by (auto simp: bot_def intro: Inf_fin.coboundedI) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 37 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 38 | instance finite_lattice_complete \<subseteq> order_bot | 
| 60679 | 39 | by standard (auto simp: finite_lattice_complete_bot_least) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 40 | |
| 56796 | 41 | lemma finite_lattice_complete_top_greatest: "(top::'a::finite_lattice_complete) \<ge> x" | 
| 42 | by (auto simp: top_def Sup_fin.coboundedI) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 43 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 44 | instance finite_lattice_complete \<subseteq> order_top | 
| 60679 | 45 | by standard (auto simp: finite_lattice_complete_top_greatest) | 
| 50634 | 46 | |
| 47 | instance finite_lattice_complete \<subseteq> bounded_lattice .. | |
| 48 | ||
| 60500 | 49 | text \<open>The definitional assumptions | 
| 69593 | 50 | on the operators \<^const>\<open>Inf\<close> and \<^const>\<open>Sup\<close> | 
| 51 | of class \<^class>\<open>finite_lattice_complete\<close> | |
| 60500 | 52 | ensure that they yield infimum and supremum.\<close> | 
| 50634 | 53 | |
| 56796 | 54 | lemma finite_lattice_complete_Inf_empty: "Inf {} = (top :: 'a::finite_lattice_complete)"
 | 
| 51489 | 55 | by (simp add: Inf_def) | 
| 56 | ||
| 56796 | 57 | lemma finite_lattice_complete_Sup_empty: "Sup {} = (bot :: 'a::finite_lattice_complete)"
 | 
| 51489 | 58 | by (simp add: Sup_def) | 
| 59 | ||
| 60 | lemma finite_lattice_complete_Inf_insert: | |
| 61 | fixes A :: "'a::finite_lattice_complete set" | |
| 62 | shows "Inf (insert x A) = inf x (Inf A)" | |
| 63 | proof - | |
| 56796 | 64 | interpret comp_fun_idem "inf :: 'a \<Rightarrow> _" | 
| 65 | by (fact comp_fun_idem_inf) | |
| 51489 | 66 | show ?thesis by (simp add: Inf_def) | 
| 67 | qed | |
| 68 | ||
| 69 | lemma finite_lattice_complete_Sup_insert: | |
| 70 | fixes A :: "'a::finite_lattice_complete set" | |
| 71 | shows "Sup (insert x A) = sup x (Sup A)" | |
| 72 | proof - | |
| 56796 | 73 | interpret comp_fun_idem "sup :: 'a \<Rightarrow> _" | 
| 74 | by (fact comp_fun_idem_sup) | |
| 51489 | 75 | show ?thesis by (simp add: Sup_def) | 
| 76 | qed | |
| 77 | ||
| 50634 | 78 | lemma finite_lattice_complete_Inf_lower: | 
| 79 | "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Inf A \<le> x" | |
| 56796 | 80 | using finite [of A] | 
| 81 | by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2) | |
| 50634 | 82 | |
| 83 | lemma finite_lattice_complete_Inf_greatest: | |
| 84 | "\<forall>x::'a::finite_lattice_complete \<in> A. z \<le> x \<Longrightarrow> z \<le> Inf A" | |
| 56796 | 85 | using finite [of A] | 
| 86 | by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert) | |
| 50634 | 87 | |
| 88 | lemma finite_lattice_complete_Sup_upper: | |
| 89 | "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Sup A \<ge> x" | |
| 56796 | 90 | using finite [of A] | 
| 91 | by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2) | |
| 50634 | 92 | |
| 93 | lemma finite_lattice_complete_Sup_least: | |
| 94 | "\<forall>x::'a::finite_lattice_complete \<in> A. z \<ge> x \<Longrightarrow> z \<ge> Sup A" | |
| 56796 | 95 | using finite [of A] | 
| 96 | by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert) | |
| 50634 | 97 | |
| 98 | instance finite_lattice_complete \<subseteq> complete_lattice | |
| 99 | proof | |
| 100 | qed (auto simp: | |
| 56796 | 101 | finite_lattice_complete_Inf_lower | 
| 102 | finite_lattice_complete_Inf_greatest | |
| 103 | finite_lattice_complete_Sup_upper | |
| 104 | finite_lattice_complete_Sup_least | |
| 105 | finite_lattice_complete_Inf_empty | |
| 106 | finite_lattice_complete_Sup_empty) | |
| 50634 | 107 | |
| 60500 | 108 | text \<open>The product of two finite lattices is already a finite lattice.\<close> | 
| 50634 | 109 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 110 | lemma finite_bot_prod: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 111 |   "(bot :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
 | 
| 56796 | 112 | Inf_fin UNIV" | 
| 113 | by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 114 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 115 | lemma finite_top_prod: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 116 |   "(top :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
 | 
| 56796 | 117 | Sup_fin UNIV" | 
| 118 | by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV) | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 119 | |
| 50634 | 120 | lemma finite_Inf_prod: | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 121 |   "Inf(A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
| 56796 | 122 | Finite_Set.fold inf top A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 123 | by (metis Inf_fold_inf finite) | 
| 50634 | 124 | |
| 125 | lemma finite_Sup_prod: | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 126 |   "Sup (A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
| 56796 | 127 | Finite_Set.fold sup bot A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 128 | by (metis Sup_fold_sup finite) | 
| 50634 | 129 | |
| 56796 | 130 | instance prod :: (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete | 
| 60679 | 131 | by standard (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod) | 
| 50634 | 132 | |
| 60500 | 133 | text \<open>Functions with a finite domain and with a finite lattice as codomain | 
| 134 | already form a finite lattice.\<close> | |
| 50634 | 135 | |
| 56796 | 136 | lemma finite_bot_fun: "(bot :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Inf_fin UNIV"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 137 | by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 138 | |
| 56796 | 139 | lemma finite_top_fun: "(top :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Sup_fin UNIV"
 | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 140 | by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 141 | |
| 50634 | 142 | lemma finite_Inf_fun: | 
| 143 |   "Inf (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | |
| 56796 | 144 | Finite_Set.fold inf top A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 145 | by (metis Inf_fold_inf finite) | 
| 50634 | 146 | |
| 147 | lemma finite_Sup_fun: | |
| 148 |   "Sup (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | |
| 56796 | 149 | Finite_Set.fold sup bot A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 150 | by (metis Sup_fold_sup finite) | 
| 50634 | 151 | |
| 152 | instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete | |
| 60679 | 153 | by standard (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun) | 
| 50634 | 154 | |
| 155 | ||
| 60500 | 156 | subsection \<open>Finite Distributive Lattices\<close> | 
| 50634 | 157 | |
| 60500 | 158 | text \<open>A finite distributive lattice is a complete lattice | 
| 69593 | 159 | whose \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> operators | 
| 160 | distribute over \<^const>\<open>Sup\<close> and \<^const>\<open>Inf\<close>.\<close> | |
| 50634 | 161 | |
| 162 | class finite_distrib_lattice_complete = | |
| 163 | distrib_lattice + finite_lattice_complete | |
| 164 | ||
| 165 | lemma finite_distrib_lattice_complete_sup_Inf: | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
67829diff
changeset | 166 | "sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y\<in>A. sup x y)" | 
| 56796 | 167 | using finite | 
| 168 | by (induct A rule: finite_induct) (simp_all add: sup_inf_distrib1) | |
| 50634 | 169 | |
| 170 | lemma finite_distrib_lattice_complete_inf_Sup: | |
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
67829diff
changeset | 171 | "inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y\<in>A. inf x y)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
60679diff
changeset | 172 | using finite [of A] by induct (simp_all add: inf_sup_distrib1) | 
| 50634 | 173 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 174 | context finite_distrib_lattice_complete | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 175 | begin | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 176 | subclass finite_distrib_lattice | 
| 73832 | 177 | proof - | 
| 178 | show "class.finite_distrib_lattice Inf Sup inf (\<le>) (<) sup bot top" | |
| 179 | proof | |
| 180 | show "bot = Inf UNIV" | |
| 181 | unfolding bot_def top_def Inf_def | |
| 182 | using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force | |
| 183 | next | |
| 184 | show "top = Sup UNIV" | |
| 185 | unfolding bot_def top_def Sup_def | |
| 186 | using Sup_fin.eq_fold Sup_fin.insert by force | |
| 187 | next | |
| 188 |     show "Inf {} = Sup UNIV"
 | |
| 189 | unfolding Inf_def Sup_def bot_def top_def | |
| 190 | using Sup_fin.eq_fold Sup_fin.insert by force | |
| 191 | next | |
| 192 |     show "Sup {} = Inf UNIV"
 | |
| 193 | unfolding Inf_def Sup_def bot_def top_def | |
| 194 | using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force | |
| 195 | next | |
| 196 | interpret comp_fun_idem_inf: comp_fun_idem inf | |
| 197 | by (fact comp_fun_idem_inf) | |
| 198 | show "Inf (insert a A) = inf a (Inf A)" for a A | |
| 199 | using comp_fun_idem_inf.fold_insert_idem Inf_def finite by simp | |
| 200 | next | |
| 201 | interpret comp_fun_idem_sup: comp_fun_idem sup | |
| 202 | by (fact comp_fun_idem_sup) | |
| 203 | show "Sup (insert a A) = sup a (Sup A)" for a A | |
| 204 | using comp_fun_idem_sup.fold_insert_idem Sup_def finite by simp | |
| 205 | qed | |
| 206 | qed | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 207 | end | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 208 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
62343diff
changeset | 209 | instance finite_distrib_lattice_complete \<subseteq> complete_distrib_lattice .. | 
| 50634 | 210 | |
| 60500 | 211 | text \<open>The product of two finite distributive lattices | 
| 212 | is already a finite distributive lattice.\<close> | |
| 50634 | 213 | |
| 214 | instance prod :: | |
| 215 | (finite_distrib_lattice_complete, finite_distrib_lattice_complete) | |
| 216 | finite_distrib_lattice_complete | |
| 56796 | 217 | .. | 
| 50634 | 218 | |
| 60500 | 219 | text \<open>Functions with a finite domain | 
| 50634 | 220 | and with a finite distributive lattice as codomain | 
| 60500 | 221 | already form a finite distributive lattice.\<close> | 
| 50634 | 222 | |
| 223 | instance "fun" :: | |
| 224 | (finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete | |
| 56796 | 225 | .. | 
| 50634 | 226 | |
| 60500 | 227 | subsection \<open>Linear Orders\<close> | 
| 50634 | 228 | |
| 60500 | 229 | text \<open>A linear order is a distributive lattice. | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 230 | A type class is defined | 
| 69593 | 231 | that extends class \<^class>\<open>linorder\<close> | 
| 232 | with the operators \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close>, | |
| 50634 | 233 | along with assumptions that define these operators | 
| 69593 | 234 | in terms of the ones of class \<^class>\<open>linorder\<close>. | 
| 235 | The resulting class is a subclass of \<^class>\<open>distrib_lattice\<close>.\<close> | |
| 50634 | 236 | |
| 237 | class linorder_lattice = linorder + inf + sup + | |
| 56796 | 238 | assumes inf_def: "inf x y = (if x \<le> y then x else y)" | 
| 239 | assumes sup_def: "sup x y = (if x \<ge> y then x else y)" | |
| 50634 | 240 | |
| 60500 | 241 | text \<open>The definitional assumptions | 
| 69593 | 242 | on the operators \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> | 
| 243 | of class \<^class>\<open>linorder_lattice\<close> | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 244 | ensure that they yield infimum and supremum | 
| 60500 | 245 | and that they distribute over each other.\<close> | 
| 50634 | 246 | |
| 247 | lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y \<le> x" | |
| 56796 | 248 | unfolding inf_def by (metis (full_types) linorder_linear) | 
| 50634 | 249 | |
| 250 | lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y \<le> y" | |
| 56796 | 251 | unfolding inf_def by (metis (full_types) linorder_linear) | 
| 50634 | 252 | |
| 253 | lemma linorder_lattice_inf_greatest: | |
| 254 | "(x::'a::linorder_lattice) \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> inf y z" | |
| 56796 | 255 | unfolding inf_def by (metis (full_types)) | 
| 50634 | 256 | |
| 257 | lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y \<ge> x" | |
| 56796 | 258 | unfolding sup_def by (metis (full_types) linorder_linear) | 
| 50634 | 259 | |
| 260 | lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y \<ge> y" | |
| 56796 | 261 | unfolding sup_def by (metis (full_types) linorder_linear) | 
| 50634 | 262 | |
| 263 | lemma linorder_lattice_sup_least: | |
| 264 | "(x::'a::linorder_lattice) \<ge> y \<Longrightarrow> x \<ge> z \<Longrightarrow> x \<ge> sup y z" | |
| 56796 | 265 | by (auto simp: sup_def) | 
| 50634 | 266 | |
| 267 | lemma linorder_lattice_sup_inf_distrib1: | |
| 268 | "sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)" | |
| 56796 | 269 | by (auto simp: inf_def sup_def) | 
| 270 | ||
| 50634 | 271 | instance linorder_lattice \<subseteq> distrib_lattice | 
| 56796 | 272 | proof | 
| 50634 | 273 | qed (auto simp: | 
| 56796 | 274 | linorder_lattice_inf_le1 | 
| 275 | linorder_lattice_inf_le2 | |
| 276 | linorder_lattice_inf_greatest | |
| 277 | linorder_lattice_sup_ge1 | |
| 278 | linorder_lattice_sup_ge2 | |
| 279 | linorder_lattice_sup_least | |
| 280 | linorder_lattice_sup_inf_distrib1) | |
| 50634 | 281 | |
| 282 | ||
| 60500 | 283 | subsection \<open>Finite Linear Orders\<close> | 
| 50634 | 284 | |
| 60500 | 285 | text \<open>A (non-empty) finite linear order is a complete linear order.\<close> | 
| 50634 | 286 | |
| 287 | class finite_linorder_complete = linorder_lattice + finite_lattice_complete | |
| 288 | ||
| 289 | instance finite_linorder_complete \<subseteq> complete_linorder .. | |
| 290 | ||
| 60500 | 291 | text \<open>A (non-empty) finite linear order is a complete lattice | 
| 69593 | 292 | whose \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> operators | 
| 293 | distribute over \<^const>\<open>Sup\<close> and \<^const>\<open>Inf\<close>.\<close> | |
| 50634 | 294 | |
| 295 | instance finite_linorder_complete \<subseteq> finite_distrib_lattice_complete .. | |
| 296 | ||
| 297 | end | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 298 |