| author | wenzelm | 
| Fri, 06 Mar 2015 23:57:01 +0100 | |
| changeset 59643 | f3be9235503d | 
| parent 58889 | 5b7a9633cfa8 | 
| child 60758 | d8d85a8172b5 | 
| permissions | -rw-r--r-- | 
| 
55018
 
2a526bd279ed
moved 'Zorn' into 'Main', since it's a BNF dependency
 
blanchet 
parents: 
54552 
diff
changeset
 | 
1  | 
(* Title: HOL/Zorn.thy  | 
| 52181 | 2  | 
Author: Jacques D. Fleuriot  | 
3  | 
Author: Tobias Nipkow, TUM  | 
|
4  | 
Author: Christian Sternagel, JAIST  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
5  | 
|
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
6  | 
Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
7  | 
The well-ordering theorem.  | 
| 14706 | 8  | 
*)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
9  | 
|
| 58889 | 10  | 
section {* Zorn's Lemma *}
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
11  | 
|
| 15131 | 12  | 
theory Zorn  | 
| 
55018
 
2a526bd279ed
moved 'Zorn' into 'Main', since it's a BNF dependency
 
blanchet 
parents: 
54552 
diff
changeset
 | 
13  | 
imports Order_Relation Hilbert_Choice  | 
| 15131 | 14  | 
begin  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
15  | 
|
| 52181 | 16  | 
subsection {* Zorn's Lemma for the Subset Relation *}
 | 
17  | 
||
18  | 
subsubsection {* Results that do not require an order *}
 | 
|
19  | 
||
20  | 
text {*Let @{text P} be a binary predicate on the set @{text A}.*}
 | 
|
21  | 
locale pred_on =  | 
|
22  | 
fixes A :: "'a set"  | 
|
23  | 
and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50)  | 
|
24  | 
begin  | 
|
25  | 
||
26  | 
abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) where  | 
|
27  | 
"x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y"  | 
|
28  | 
||
29  | 
text {*A chain is a totally ordered subset of @{term A}.*}
 | 
|
30  | 
definition chain :: "'a set \<Rightarrow> bool" where  | 
|
31  | 
"chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"  | 
|
32  | 
||
33  | 
text {*We call a chain that is a proper superset of some set @{term X},
 | 
|
34  | 
but not necessarily a chain itself, a superchain of @{term X}.*}
 | 
|
35  | 
abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50) where  | 
|
36  | 
"X <c C \<equiv> chain C \<and> X \<subset> C"  | 
|
37  | 
||
38  | 
text {*A maximal chain is a chain that does not have a superchain.*}
 | 
|
39  | 
definition maxchain :: "'a set \<Rightarrow> bool" where  | 
|
40  | 
"maxchain C \<longleftrightarrow> chain C \<and> \<not> (\<exists>S. C <c S)"  | 
|
41  | 
||
42  | 
text {*We define the successor of a set to be an arbitrary
 | 
|
43  | 
superchain, if such exists, or the set itself, otherwise.*}  | 
|
44  | 
definition suc :: "'a set \<Rightarrow> 'a set" where  | 
|
45  | 
"suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))"  | 
|
46  | 
||
47  | 
lemma chainI [Pure.intro?]:  | 
|
48  | 
"\<lbrakk>C \<subseteq> A; \<And>x y. \<lbrakk>x \<in> C; y \<in> C\<rbrakk> \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> chain C"  | 
|
49  | 
unfolding chain_def by blast  | 
|
50  | 
||
51  | 
lemma chain_total:  | 
|
52  | 
"chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
|
53  | 
by (simp add: chain_def)  | 
|
54  | 
||
55  | 
lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X"  | 
|
56  | 
by (simp add: suc_def)  | 
|
57  | 
||
58  | 
lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X"  | 
|
59  | 
by (simp add: suc_def)  | 
|
60  | 
||
61  | 
lemma suc_subset: "X \<subseteq> suc X"  | 
|
62  | 
by (auto simp: suc_def maxchain_def intro: someI2)  | 
|
63  | 
||
64  | 
lemma chain_empty [simp]: "chain {}"
 | 
|
65  | 
by (auto simp: chain_def)  | 
|
66  | 
||
67  | 
lemma not_maxchain_Some:  | 
|
68  | 
"chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)"  | 
|
69  | 
by (rule someI_ex) (auto simp: maxchain_def)  | 
|
70  | 
||
71  | 
lemma suc_not_equals:  | 
|
72  | 
"chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C"  | 
|
| 55811 | 73  | 
using not_maxchain_Some by (auto simp: suc_def)  | 
| 52181 | 74  | 
|
75  | 
lemma subset_suc:  | 
|
76  | 
assumes "X \<subseteq> Y" shows "X \<subseteq> suc Y"  | 
|
77  | 
using assms by (rule subset_trans) (rule suc_subset)  | 
|
78  | 
||
79  | 
text {*We build a set @{term \<C>} that is closed under applications
 | 
|
80  | 
of @{term suc} and contains the union of all its subsets.*}
 | 
|
81  | 
inductive_set suc_Union_closed ("\<C>") where
 | 
|
82  | 
suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" |  | 
|
83  | 
Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>"  | 
|
84  | 
||
85  | 
text {*Since the empty set as well as the set itself is a subset of
 | 
|
86  | 
every set, @{term \<C>} contains at least @{term "{} \<in> \<C>"} and
 | 
|
87  | 
@{term "\<Union>\<C> \<in> \<C>"}.*}
 | 
|
88  | 
lemma  | 
|
89  | 
  suc_Union_closed_empty: "{} \<in> \<C>" and
 | 
|
90  | 
suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>"  | 
|
91  | 
  using Union [of "{}"] and Union [of "\<C>"] by simp+
 | 
|
92  | 
text {*Thus closure under @{term suc} will hit a maximal chain
 | 
|
93  | 
eventually, as is shown below.*}  | 
|
94  | 
||
95  | 
lemma suc_Union_closed_induct [consumes 1, case_names suc Union,  | 
|
96  | 
induct pred: suc_Union_closed]:  | 
|
97  | 
assumes "X \<in> \<C>"  | 
|
98  | 
and "\<And>X. \<lbrakk>X \<in> \<C>; Q X\<rbrakk> \<Longrightarrow> Q (suc X)"  | 
|
99  | 
and "\<And>X. \<lbrakk>X \<subseteq> \<C>; \<forall>x\<in>X. Q x\<rbrakk> \<Longrightarrow> Q (\<Union>X)"  | 
|
100  | 
shows "Q X"  | 
|
101  | 
using assms by (induct) blast+  | 
|
| 26272 | 102  | 
|
| 52181 | 103  | 
lemma suc_Union_closed_cases [consumes 1, case_names suc Union,  | 
104  | 
cases pred: suc_Union_closed]:  | 
|
105  | 
assumes "X \<in> \<C>"  | 
|
106  | 
and "\<And>Y. \<lbrakk>X = suc Y; Y \<in> \<C>\<rbrakk> \<Longrightarrow> Q"  | 
|
107  | 
and "\<And>Y. \<lbrakk>X = \<Union>Y; Y \<subseteq> \<C>\<rbrakk> \<Longrightarrow> Q"  | 
|
108  | 
shows "Q"  | 
|
109  | 
using assms by (cases) simp+  | 
|
110  | 
||
111  | 
text {*On chains, @{term suc} yields a chain.*}
 | 
|
112  | 
lemma chain_suc:  | 
|
113  | 
assumes "chain X" shows "chain (suc X)"  | 
|
114  | 
using assms  | 
|
115  | 
by (cases "\<not> chain X \<or> maxchain X")  | 
|
116  | 
(force simp: suc_def dest: not_maxchain_Some)+  | 
|
117  | 
||
118  | 
lemma chain_sucD:  | 
|
119  | 
assumes "chain X" shows "suc X \<subseteq> A \<and> chain (suc X)"  | 
|
120  | 
proof -  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
121  | 
from `chain X` have *: "chain (suc X)" by (rule chain_suc)  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
122  | 
then have "suc X \<subseteq> A" unfolding chain_def by blast  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
123  | 
with * show ?thesis by blast  | 
| 52181 | 124  | 
qed  | 
125  | 
||
126  | 
lemma suc_Union_closed_total':  | 
|
127  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
128  | 
and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y"  | 
|
129  | 
shows "X \<subseteq> Y \<or> suc Y \<subseteq> X"  | 
|
130  | 
using `X \<in> \<C>`  | 
|
131  | 
proof (induct)  | 
|
132  | 
case (suc X)  | 
|
133  | 
with * show ?case by (blast del: subsetI intro: subset_suc)  | 
|
134  | 
qed blast  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
135  | 
|
| 52181 | 136  | 
lemma suc_Union_closed_subsetD:  | 
137  | 
assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
138  | 
shows "X = Y \<or> suc Y \<subseteq> X"  | 
|
139  | 
using assms(2-, 1)  | 
|
140  | 
proof (induct arbitrary: Y)  | 
|
141  | 
case (suc X)  | 
|
142  | 
note * = `\<And>Y. \<lbrakk>Y \<in> \<C>; Y \<subseteq> X\<rbrakk> \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X`  | 
|
143  | 
with suc_Union_closed_total' [OF `Y \<in> \<C>` `X \<in> \<C>`]  | 
|
144  | 
have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast  | 
|
145  | 
then show ?case  | 
|
146  | 
proof  | 
|
147  | 
assume "Y \<subseteq> X"  | 
|
148  | 
with * and `Y \<in> \<C>` have "X = Y \<or> suc Y \<subseteq> X" by blast  | 
|
149  | 
then show ?thesis  | 
|
150  | 
proof  | 
|
151  | 
assume "X = Y" then show ?thesis by simp  | 
|
152  | 
next  | 
|
153  | 
assume "suc Y \<subseteq> X"  | 
|
154  | 
then have "suc Y \<subseteq> suc X" by (rule subset_suc)  | 
|
155  | 
then show ?thesis by simp  | 
|
156  | 
qed  | 
|
157  | 
next  | 
|
158  | 
assume "suc X \<subseteq> Y"  | 
|
159  | 
with `Y \<subseteq> suc X` show ?thesis by blast  | 
|
160  | 
qed  | 
|
161  | 
next  | 
|
162  | 
case (Union X)  | 
|
163  | 
show ?case  | 
|
164  | 
proof (rule ccontr)  | 
|
165  | 
assume "\<not> ?thesis"  | 
|
166  | 
with `Y \<subseteq> \<Union>X` obtain x y z  | 
|
167  | 
where "\<not> suc Y \<subseteq> \<Union>X"  | 
|
168  | 
and "x \<in> X" and "y \<in> x" and "y \<notin> Y"  | 
|
169  | 
and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast  | 
|
170  | 
with `X \<subseteq> \<C>` have "x \<in> \<C>" by blast  | 
|
171  | 
from Union and `x \<in> X`  | 
|
172  | 
have *: "\<And>y. \<lbrakk>y \<in> \<C>; y \<subseteq> x\<rbrakk> \<Longrightarrow> x = y \<or> suc y \<subseteq> x" by blast  | 
|
173  | 
with suc_Union_closed_total' [OF `Y \<in> \<C>` `x \<in> \<C>`]  | 
|
174  | 
have "Y \<subseteq> x \<or> suc x \<subseteq> Y" by blast  | 
|
175  | 
then show False  | 
|
176  | 
proof  | 
|
177  | 
assume "Y \<subseteq> x"  | 
|
178  | 
with * [OF `Y \<in> \<C>`] have "x = Y \<or> suc Y \<subseteq> x" by blast  | 
|
179  | 
then show False  | 
|
180  | 
proof  | 
|
181  | 
assume "x = Y" with `y \<in> x` and `y \<notin> Y` show False by blast  | 
|
182  | 
next  | 
|
183  | 
assume "suc Y \<subseteq> x"  | 
|
184  | 
with `x \<in> X` have "suc Y \<subseteq> \<Union>X" by blast  | 
|
185  | 
with `\<not> suc Y \<subseteq> \<Union>X` show False by contradiction  | 
|
186  | 
qed  | 
|
187  | 
next  | 
|
188  | 
assume "suc x \<subseteq> Y"  | 
|
189  | 
moreover from suc_subset and `y \<in> x` have "y \<in> suc x" by blast  | 
|
190  | 
ultimately show False using `y \<notin> Y` by blast  | 
|
191  | 
qed  | 
|
192  | 
qed  | 
|
193  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
194  | 
|
| 52181 | 195  | 
text {*The elements of @{term \<C>} are totally ordered by the subset relation.*}
 | 
196  | 
lemma suc_Union_closed_total:  | 
|
197  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>"  | 
|
198  | 
shows "X \<subseteq> Y \<or> Y \<subseteq> X"  | 
|
199  | 
proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y")  | 
|
200  | 
case True  | 
|
201  | 
with suc_Union_closed_total' [OF assms]  | 
|
202  | 
have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast  | 
|
203  | 
then show ?thesis using suc_subset [of Y] by blast  | 
|
204  | 
next  | 
|
205  | 
case False  | 
|
206  | 
then obtain Z  | 
|
207  | 
where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" by blast  | 
|
208  | 
with suc_Union_closed_subsetD and `Y \<in> \<C>` show ?thesis by blast  | 
|
209  | 
qed  | 
|
210  | 
||
211  | 
text {*Once we hit a fixed point w.r.t. @{term suc}, all other elements
 | 
|
212  | 
of @{term \<C>} are subsets of this fixed point.*}
 | 
|
213  | 
lemma suc_Union_closed_suc:  | 
|
214  | 
assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y"  | 
|
215  | 
shows "X \<subseteq> Y"  | 
|
216  | 
using `X \<in> \<C>`  | 
|
217  | 
proof (induct)  | 
|
218  | 
case (suc X)  | 
|
219  | 
with `Y \<in> \<C>` and suc_Union_closed_subsetD  | 
|
220  | 
have "X = Y \<or> suc X \<subseteq> Y" by blast  | 
|
221  | 
then show ?case by (auto simp: `suc Y = Y`)  | 
|
222  | 
qed blast  | 
|
223  | 
||
224  | 
lemma eq_suc_Union:  | 
|
225  | 
assumes "X \<in> \<C>"  | 
|
226  | 
shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>"  | 
|
227  | 
proof  | 
|
228  | 
assume "suc X = X"  | 
|
229  | 
with suc_Union_closed_suc [OF suc_Union_closed_Union `X \<in> \<C>`]  | 
|
230  | 
have "\<Union>\<C> \<subseteq> X" .  | 
|
231  | 
with `X \<in> \<C>` show "X = \<Union>\<C>" by blast  | 
|
232  | 
next  | 
|
233  | 
from `X \<in> \<C>` have "suc X \<in> \<C>" by (rule suc)  | 
|
234  | 
then have "suc X \<subseteq> \<Union>\<C>" by blast  | 
|
235  | 
moreover assume "X = \<Union>\<C>"  | 
|
236  | 
ultimately have "suc X \<subseteq> X" by simp  | 
|
237  | 
moreover have "X \<subseteq> suc X" by (rule suc_subset)  | 
|
238  | 
ultimately show "suc X = X" ..  | 
|
239  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
240  | 
|
| 52181 | 241  | 
lemma suc_in_carrier:  | 
242  | 
assumes "X \<subseteq> A"  | 
|
243  | 
shows "suc X \<subseteq> A"  | 
|
244  | 
using assms  | 
|
245  | 
by (cases "\<not> chain X \<or> maxchain X")  | 
|
246  | 
(auto dest: chain_sucD)  | 
|
247  | 
||
248  | 
lemma suc_Union_closed_in_carrier:  | 
|
249  | 
assumes "X \<in> \<C>"  | 
|
250  | 
shows "X \<subseteq> A"  | 
|
251  | 
using assms  | 
|
252  | 
by (induct) (auto dest: suc_in_carrier)  | 
|
253  | 
||
254  | 
text {*All elements of @{term \<C>} are chains.*}
 | 
|
255  | 
lemma suc_Union_closed_chain:  | 
|
256  | 
assumes "X \<in> \<C>"  | 
|
257  | 
shows "chain X"  | 
|
258  | 
using assms  | 
|
259  | 
proof (induct)  | 
|
| 55811 | 260  | 
case (suc X) then show ?case using not_maxchain_Some by (simp add: suc_def)  | 
| 52181 | 261  | 
next  | 
262  | 
case (Union X)  | 
|
263  | 
then have "\<Union>X \<subseteq> A" by (auto dest: suc_Union_closed_in_carrier)  | 
|
264  | 
moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
|
265  | 
proof (intro ballI)  | 
|
266  | 
fix x y  | 
|
267  | 
assume "x \<in> \<Union>X" and "y \<in> \<Union>X"  | 
|
268  | 
then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" by blast  | 
|
269  | 
with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" by blast+  | 
|
270  | 
with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" by blast  | 
|
271  | 
then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x"  | 
|
272  | 
proof  | 
|
273  | 
assume "u \<subseteq> v"  | 
|
274  | 
from `chain v` show ?thesis  | 
|
275  | 
proof (rule chain_total)  | 
|
276  | 
show "y \<in> v" by fact  | 
|
277  | 
show "x \<in> v" using `u \<subseteq> v` and `x \<in> u` by blast  | 
|
278  | 
qed  | 
|
279  | 
next  | 
|
280  | 
assume "v \<subseteq> u"  | 
|
281  | 
from `chain u` show ?thesis  | 
|
282  | 
proof (rule chain_total)  | 
|
283  | 
show "x \<in> u" by fact  | 
|
284  | 
show "y \<in> u" using `v \<subseteq> u` and `y \<in> v` by blast  | 
|
285  | 
qed  | 
|
286  | 
qed  | 
|
287  | 
qed  | 
|
288  | 
ultimately show ?case unfolding chain_def ..  | 
|
289  | 
qed  | 
|
290  | 
||
291  | 
subsubsection {* Hausdorff's Maximum Principle *}
 | 
|
292  | 
||
293  | 
text {*There exists a maximal totally ordered subset of @{term A}. (Note that we do not
 | 
|
294  | 
require @{term A} to be partially ordered.)*}
 | 
|
| 46980 | 295  | 
|
| 52181 | 296  | 
theorem Hausdorff: "\<exists>C. maxchain C"  | 
297  | 
proof -  | 
|
298  | 
let ?M = "\<Union>\<C>"  | 
|
299  | 
have "maxchain ?M"  | 
|
300  | 
proof (rule ccontr)  | 
|
301  | 
assume "\<not> maxchain ?M"  | 
|
302  | 
then have "suc ?M \<noteq> ?M"  | 
|
303  | 
using suc_not_equals and  | 
|
304  | 
suc_Union_closed_chain [OF suc_Union_closed_Union] by simp  | 
|
305  | 
moreover have "suc ?M = ?M"  | 
|
306  | 
using eq_suc_Union [OF suc_Union_closed_Union] by simp  | 
|
307  | 
ultimately show False by contradiction  | 
|
308  | 
qed  | 
|
309  | 
then show ?thesis by blast  | 
|
310  | 
qed  | 
|
311  | 
||
312  | 
text {*Make notation @{term \<C>} available again.*}
 | 
|
313  | 
no_notation suc_Union_closed ("\<C>")
 | 
|
314  | 
||
315  | 
lemma chain_extend:  | 
|
316  | 
  "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
 | 
|
317  | 
unfolding chain_def by blast  | 
|
318  | 
||
319  | 
lemma maxchain_imp_chain:  | 
|
320  | 
"maxchain C \<Longrightarrow> chain C"  | 
|
321  | 
by (simp add: maxchain_def)  | 
|
322  | 
||
323  | 
end  | 
|
324  | 
||
325  | 
text {*Hide constant @{const pred_on.suc_Union_closed}, which was just needed
 | 
|
326  | 
for the proof of Hausforff's maximum principle.*}  | 
|
327  | 
hide_const pred_on.suc_Union_closed  | 
|
328  | 
||
329  | 
lemma chain_mono:  | 
|
330  | 
assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A; P x y\<rbrakk> \<Longrightarrow> Q x y"  | 
|
331  | 
and "pred_on.chain A P C"  | 
|
332  | 
shows "pred_on.chain A Q C"  | 
|
333  | 
using assms unfolding pred_on.chain_def by blast  | 
|
334  | 
||
335  | 
subsubsection {* Results for the proper subset relation *}
 | 
|
336  | 
||
337  | 
interpretation subset: pred_on "A" "op \<subset>" for A .  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
338  | 
|
| 52181 | 339  | 
lemma subset_maxchain_max:  | 
340  | 
assumes "subset.maxchain A C" and "X \<in> A" and "\<Union>C \<subseteq> X"  | 
|
341  | 
shows "\<Union>C = X"  | 
|
342  | 
proof (rule ccontr)  | 
|
343  | 
  let ?C = "{X} \<union> C"
 | 
|
344  | 
from `subset.maxchain A C` have "subset.chain A C"  | 
|
345  | 
and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S"  | 
|
346  | 
by (auto simp: subset.maxchain_def)  | 
|
347  | 
moreover have "\<forall>x\<in>C. x \<subseteq> X" using `\<Union>C \<subseteq> X` by auto  | 
|
348  | 
ultimately have "subset.chain A ?C"  | 
|
349  | 
using subset.chain_extend [of A C X] and `X \<in> A` by auto  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
350  | 
moreover assume **: "\<Union>C \<noteq> X"  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
351  | 
moreover from ** have "C \<subset> ?C" using `\<Union>C \<subseteq> X` by auto  | 
| 52181 | 352  | 
ultimately show False using * by blast  | 
353  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
354  | 
|
| 52181 | 355  | 
subsubsection {* Zorn's lemma *}
 | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
356  | 
|
| 52181 | 357  | 
text {*If every chain has an upper bound, then there is a maximal set.*}
 | 
358  | 
lemma subset_Zorn:  | 
|
359  | 
assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U"  | 
|
360  | 
shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
361  | 
proof -  | 
|
362  | 
from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..  | 
|
363  | 
then have "subset.chain A M" by (rule subset.maxchain_imp_chain)  | 
|
364  | 
with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" by blast  | 
|
365  | 
moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X"  | 
|
366  | 
proof (intro ballI impI)  | 
|
367  | 
fix X  | 
|
368  | 
assume "X \<in> A" and "Y \<subseteq> X"  | 
|
369  | 
show "Y = X"  | 
|
370  | 
proof (rule ccontr)  | 
|
371  | 
assume "Y \<noteq> X"  | 
|
372  | 
with `Y \<subseteq> X` have "\<not> X \<subseteq> Y" by blast  | 
|
373  | 
from subset.chain_extend [OF `subset.chain A M` `X \<in> A`] and `\<forall>X\<in>M. X \<subseteq> Y`  | 
|
374  | 
        have "subset.chain A ({X} \<union> M)" using `Y \<subseteq> X` by auto
 | 
|
375  | 
      moreover have "M \<subset> {X} \<union> M" using `\<forall>X\<in>M. X \<subseteq> Y` and `\<not> X \<subseteq> Y` by auto
 | 
|
376  | 
ultimately show False  | 
|
377  | 
using `subset.maxchain A M` by (auto simp: subset.maxchain_def)  | 
|
378  | 
qed  | 
|
379  | 
qed  | 
|
| 55811 | 380  | 
ultimately show ?thesis by blast  | 
| 52181 | 381  | 
qed  | 
382  | 
||
383  | 
text{*Alternative version of Zorn's lemma for the subset relation.*}
 | 
|
384  | 
lemma subset_Zorn':  | 
|
385  | 
assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A"  | 
|
386  | 
shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
387  | 
proof -  | 
|
388  | 
from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" ..  | 
|
389  | 
then have "subset.chain A M" by (rule subset.maxchain_imp_chain)  | 
|
390  | 
with assms have "\<Union>M \<in> A" .  | 
|
391  | 
moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z"  | 
|
392  | 
proof (intro ballI impI)  | 
|
393  | 
fix Z  | 
|
394  | 
assume "Z \<in> A" and "\<Union>M \<subseteq> Z"  | 
|
395  | 
with subset_maxchain_max [OF `subset.maxchain A M`]  | 
|
396  | 
show "\<Union>M = Z" .  | 
|
397  | 
qed  | 
|
398  | 
ultimately show ?thesis by blast  | 
|
399  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
400  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
401  | 
|
| 52181 | 402  | 
subsection {* Zorn's Lemma for Partial Orders *}
 | 
403  | 
||
404  | 
text {*Relate old to new definitions.*}
 | 
|
| 17200 | 405  | 
|
| 52181 | 406  | 
(* Define globally? In Set.thy? *)  | 
407  | 
definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^sub>\<subseteq>") where
 | 
|
408  | 
"chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)"  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
409  | 
|
| 52181 | 410  | 
definition chains :: "'a set set \<Rightarrow> 'a set set set" where  | 
411  | 
  "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
 | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
412  | 
|
| 52181 | 413  | 
(* Define globally? In Relation.thy? *)  | 
414  | 
definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set" where
 | 
|
415  | 
  "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
 | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
416  | 
|
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
417  | 
lemma chains_extend:  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
418  | 
  "[| c \<in> chains S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chains S"
 | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
419  | 
by (unfold chains_def chain_subset_def) blast  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
420  | 
|
| 52181 | 421  | 
lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s"  | 
422  | 
unfolding Chains_def by blast  | 
|
423  | 
||
424  | 
lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C"  | 
|
| 54482 | 425  | 
unfolding chain_subset_def subset.chain_def by fast  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
426  | 
|
| 52181 | 427  | 
lemma chains_alt_def: "chains A = {C. subset.chain A C}"
 | 
428  | 
by (simp add: chains_def chain_subset_alt_def subset.chain_def)  | 
|
429  | 
||
430  | 
lemma Chains_subset:  | 
|
431  | 
  "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | 
|
432  | 
by (force simp add: Chains_def pred_on.chain_def)  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
433  | 
|
| 52181 | 434  | 
lemma Chains_subset':  | 
435  | 
assumes "refl r"  | 
|
436  | 
  shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
 | 
|
437  | 
using assms  | 
|
438  | 
by (auto simp add: Chains_def pred_on.chain_def refl_on_def)  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
439  | 
|
| 52181 | 440  | 
lemma Chains_alt_def:  | 
441  | 
assumes "refl r"  | 
|
442  | 
  shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | 
|
| 55811 | 443  | 
using assms Chains_subset Chains_subset' by blast  | 
| 52181 | 444  | 
|
445  | 
lemma Zorn_Lemma:  | 
|
446  | 
"\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
447  | 
using subset_Zorn' [of A] by (force simp: chains_alt_def)  | 
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
448  | 
|
| 52181 | 449  | 
lemma Zorn_Lemma2:  | 
450  | 
"\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"  | 
|
451  | 
using subset_Zorn [of A] by (auto simp: chains_alt_def)  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
452  | 
|
| 
52183
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
453  | 
text{*Various other lemmas*}
 | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
454  | 
|
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
455  | 
lemma chainsD: "[| c \<in> chains S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
456  | 
by (unfold chains_def chain_subset_def) blast  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
457  | 
|
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
458  | 
lemma chainsD2: "!!(c :: 'a set set). c \<in> chains S ==> c \<subseteq> S"  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
459  | 
by (unfold chains_def) blast  | 
| 
 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 
popescua 
parents: 
52181 
diff
changeset
 | 
460  | 
|
| 52181 | 461  | 
lemma Zorns_po_lemma:  | 
462  | 
assumes po: "Partial_order r"  | 
|
463  | 
and u: "\<forall>C\<in>Chains r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r"  | 
|
464  | 
shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"  | 
|
465  | 
proof -  | 
|
466  | 
have "Preorder r" using po by (simp add: partial_order_on_def)  | 
|
467  | 
--{* Mirror r in the set of subsets below (wrt r) elements of A*}
 | 
|
468  | 
  let ?B = "%x. r\<inverse> `` {x}" let ?S = "?B ` Field r"
 | 
|
469  | 
  {
 | 
|
470  | 
fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"  | 
|
471  | 
    let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
 | 
|
472  | 
have "C = ?B ` ?A" using 1 by (auto simp: image_def)  | 
|
473  | 
have "?A \<in> Chains r"  | 
|
474  | 
proof (simp add: Chains_def, intro allI impI, elim conjE)  | 
|
475  | 
fix a b  | 
|
476  | 
assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C"  | 
|
477  | 
hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto  | 
|
478  | 
thus "(a, b) \<in> r \<or> (b, a) \<in> r"  | 
|
479  | 
using `Preorder r` and `a \<in> Field r` and `b \<in> Field r`  | 
|
480  | 
by (simp add:subset_Image1_Image1_iff)  | 
|
481  | 
qed  | 
|
482  | 
then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" using u by auto  | 
|
483  | 
    have "\<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}" (is "?P u")
 | 
|
484  | 
proof auto  | 
|
485  | 
fix a B assume aB: "B \<in> C" "a \<in> B"  | 
|
486  | 
      with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
 | 
|
487  | 
thus "(a, u) \<in> r" using uA and aB and `Preorder r`  | 
|
| 54482 | 488  | 
unfolding preorder_on_def refl_on_def by simp (fast dest: transD)  | 
| 52181 | 489  | 
qed  | 
490  | 
then have "\<exists>u\<in>Field r. ?P u" using `u \<in> Field r` by blast  | 
|
491  | 
}  | 
|
492  | 
then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U"  | 
|
493  | 
by (auto simp: chains_def chain_subset_def)  | 
|
494  | 
from Zorn_Lemma2 [OF this]  | 
|
495  | 
  obtain m B where "m \<in> Field r" and "B = r\<inverse> `` {m}"
 | 
|
496  | 
    and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
 | 
|
497  | 
by auto  | 
|
498  | 
hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"  | 
|
499  | 
using po and `Preorder r` and `m \<in> Field r`  | 
|
500  | 
by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)  | 
|
501  | 
thus ?thesis using `m \<in> Field r` by blast  | 
|
502  | 
qed  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
503  | 
|
| 
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
504  | 
|
| 52181 | 505  | 
subsection {* The Well Ordering Theorem *}
 | 
| 26191 | 506  | 
|
507  | 
(* The initial segment of a relation appears generally useful.  | 
|
508  | 
Move to Relation.thy?  | 
|
509  | 
Definition correct/most general?  | 
|
510  | 
Naming?  | 
|
511  | 
*)  | 
|
| 52181 | 512  | 
definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set" where
 | 
513  | 
  "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
 | 
|
| 26191 | 514  | 
|
| 52181 | 515  | 
abbreviation  | 
516  | 
  initialSegmentOf :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infix "initial'_segment'_of" 55)
 | 
|
517  | 
where  | 
|
518  | 
"r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of"  | 
|
| 26191 | 519  | 
|
| 52181 | 520  | 
lemma refl_on_init_seg_of [simp]: "r initial_segment_of r"  | 
521  | 
by (simp add: init_seg_of_def)  | 
|
| 26191 | 522  | 
|
523  | 
lemma trans_init_seg_of:  | 
|
524  | 
"r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"  | 
|
| 54482 | 525  | 
by (simp (no_asm_use) add: init_seg_of_def) blast  | 
| 26191 | 526  | 
|
527  | 
lemma antisym_init_seg_of:  | 
|
| 52181 | 528  | 
"r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s"  | 
529  | 
unfolding init_seg_of_def by safe  | 
|
| 26191 | 530  | 
|
| 52181 | 531  | 
lemma Chains_init_seg_of_Union:  | 
532  | 
"R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"  | 
|
533  | 
by (auto simp: init_seg_of_def Ball_def Chains_def) blast  | 
|
| 26191 | 534  | 
|
| 26272 | 535  | 
lemma chain_subset_trans_Union:  | 
| 55811 | 536  | 
assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. trans r"  | 
537  | 
shows "trans (\<Union>R)"  | 
|
538  | 
proof (intro transI, elim UnionE)  | 
|
539  | 
fix S1 S2 :: "'a rel" and x y z :: 'a  | 
|
540  | 
assume "S1 \<in> R" "S2 \<in> R"  | 
|
541  | 
with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast  | 
|
542  | 
moreover assume "(x, y) \<in> S1" "(y, z) \<in> S2"  | 
|
543  | 
ultimately have "((x, y) \<in> S1 \<and> (y, z) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, z) \<in> S2)" by blast  | 
|
544  | 
with `S1 \<in> R` `S2 \<in> R` assms(2) show "(x, z) \<in> \<Union>R" by (auto elim: transE)  | 
|
545  | 
qed  | 
|
| 26191 | 546  | 
|
| 26272 | 547  | 
lemma chain_subset_antisym_Union:  | 
| 55811 | 548  | 
assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. antisym r"  | 
549  | 
shows "antisym (\<Union>R)"  | 
|
550  | 
proof (intro antisymI, elim UnionE)  | 
|
551  | 
fix S1 S2 :: "'a rel" and x y :: 'a  | 
|
552  | 
assume "S1 \<in> R" "S2 \<in> R"  | 
|
553  | 
with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast  | 
|
554  | 
moreover assume "(x, y) \<in> S1" "(y, x) \<in> S2"  | 
|
555  | 
ultimately have "((x, y) \<in> S1 \<and> (y, x) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, x) \<in> S2)" by blast  | 
|
556  | 
with `S1 \<in> R` `S2 \<in> R` assms(2) show "x = y" unfolding antisym_def by auto  | 
|
557  | 
qed  | 
|
| 26191 | 558  | 
|
| 26272 | 559  | 
lemma chain_subset_Total_Union:  | 
| 52181 | 560  | 
assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r"  | 
561  | 
shows "Total (\<Union>R)"  | 
|
562  | 
proof (simp add: total_on_def Ball_def, auto del: disjCI)  | 
|
563  | 
fix r s a b assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b"  | 
|
564  | 
from `chain\<^sub>\<subseteq> R` and `r \<in> R` and `s \<in> R` have "r \<subseteq> s \<or> s \<subseteq> r"  | 
|
565  | 
by (auto simp add: chain_subset_def)  | 
|
566  | 
thus "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)"  | 
|
| 26191 | 567  | 
proof  | 
| 55811 | 568  | 
assume "r \<subseteq> s" hence "(a, b) \<in> s \<or> (b, a) \<in> s" using assms(2) A mono_Field[of r s]  | 
569  | 
by (auto simp add: total_on_def)  | 
|
| 52181 | 570  | 
thus ?thesis using `s \<in> R` by blast  | 
| 26191 | 571  | 
next  | 
| 55811 | 572  | 
assume "s \<subseteq> r" hence "(a, b) \<in> r \<or> (b, a) \<in> r" using assms(2) A mono_Field[of s r]  | 
573  | 
by (fastforce simp add: total_on_def)  | 
|
| 52181 | 574  | 
thus ?thesis using `r \<in> R` by blast  | 
| 26191 | 575  | 
qed  | 
576  | 
qed  | 
|
577  | 
||
578  | 
lemma wf_Union_wf_init_segs:  | 
|
| 52181 | 579  | 
assumes "R \<in> Chains init_seg_of" and "\<forall>r\<in>R. wf r"  | 
580  | 
shows "wf (\<Union>R)"  | 
|
581  | 
proof(simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto)  | 
|
582  | 
fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r"  | 
|
583  | 
then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto  | 
|
584  | 
  { fix i have "(f (Suc i), f i) \<in> r"
 | 
|
585  | 
proof (induct i)  | 
|
| 26191 | 586  | 
case 0 show ?case by fact  | 
587  | 
next  | 
|
588  | 
case (Suc i)  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
589  | 
then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s"  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30663 
diff
changeset
 | 
590  | 
using 1 by auto  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
591  | 
then have "s initial_segment_of r \<or> r initial_segment_of s"  | 
| 52181 | 592  | 
using assms(1) `r \<in> R` by (simp add: Chains_def)  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
593  | 
with Suc s show ?case by (simp add: init_seg_of_def) blast  | 
| 26191 | 594  | 
qed  | 
595  | 
}  | 
|
| 52181 | 596  | 
thus False using assms(2) and `r \<in> R`  | 
597  | 
by (simp add: wf_iff_no_infinite_down_chain) blast  | 
|
| 26191 | 598  | 
qed  | 
599  | 
||
| 27476 | 600  | 
lemma initial_segment_of_Diff:  | 
601  | 
"p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"  | 
|
| 52181 | 602  | 
unfolding init_seg_of_def by blast  | 
| 27476 | 603  | 
|
| 52181 | 604  | 
lemma Chains_inits_DiffI:  | 
605  | 
  "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
 | 
|
606  | 
unfolding Chains_def by (blast intro: initial_segment_of_Diff)  | 
|
| 26191 | 607  | 
|
| 52181 | 608  | 
theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV"  | 
609  | 
proof -  | 
|
| 26191 | 610  | 
-- {*The initial segment relation on well-orders: *}
 | 
| 52181 | 611  | 
  let ?WO = "{r::'a rel. Well_order r}"
 | 
| 26191 | 612  | 
def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"  | 
| 52181 | 613  | 
have I_init: "I \<subseteq> init_seg_of" by (auto simp: I_def)  | 
614  | 
hence subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R"  | 
|
| 54482 | 615  | 
unfolding init_seg_of_def chain_subset_def Chains_def by blast  | 
| 52181 | 616  | 
have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"  | 
617  | 
by (simp add: Chains_def I_def) blast  | 
|
618  | 
have FI: "Field I = ?WO" by (auto simp add: I_def init_seg_of_def Field_def)  | 
|
| 26191 | 619  | 
hence 0: "Partial_order I"  | 
| 52181 | 620  | 
by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def  | 
621  | 
trans_def I_def elim!: trans_init_seg_of)  | 
|
| 26191 | 622  | 
-- {*I-chains have upper bounds in ?WO wrt I: their Union*}
 | 
| 52181 | 623  | 
  { fix R assume "R \<in> Chains I"
 | 
624  | 
hence Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast  | 
|
625  | 
have subch: "chain\<^sub>\<subseteq> R" using `R : Chains I` I_init  | 
|
626  | 
by (auto simp: init_seg_of_def chain_subset_def Chains_def)  | 
|
627  | 
have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r"  | 
|
628  | 
and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)"  | 
|
629  | 
using Chains_wo [OF `R \<in> Chains I`] by (simp_all add: order_on_defs)  | 
|
| 54482 | 630  | 
have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` unfolding refl_on_def by fastforce  | 
| 26191 | 631  | 
moreover have "trans (\<Union>R)"  | 
| 52181 | 632  | 
by (rule chain_subset_trans_Union [OF subch `\<forall>r\<in>R. trans r`])  | 
633  | 
moreover have "antisym (\<Union>R)"  | 
|
634  | 
by (rule chain_subset_antisym_Union [OF subch `\<forall>r\<in>R. antisym r`])  | 
|
| 26191 | 635  | 
moreover have "Total (\<Union>R)"  | 
| 52181 | 636  | 
by (rule chain_subset_Total_Union [OF subch `\<forall>r\<in>R. Total r`])  | 
637  | 
moreover have "wf ((\<Union>R) - Id)"  | 
|
638  | 
proof -  | 
|
639  | 
      have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
 | 
|
640  | 
with `\<forall>r\<in>R. wf (r - Id)` and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]]  | 
|
| 54482 | 641  | 
show ?thesis by fastforce  | 
| 26191 | 642  | 
qed  | 
| 26295 | 643  | 
ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)  | 
| 26191 | 644  | 
moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris  | 
| 52181 | 645  | 
by(simp add: Chains_init_seg_of_Union)  | 
646  | 
ultimately have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)"  | 
|
| 55811 | 647  | 
using mono_Chains [OF I_init] Chains_wo[of R] and `R \<in> Chains I`  | 
648  | 
unfolding I_def by blast  | 
|
| 26191 | 649  | 
}  | 
| 52181 | 650  | 
hence 1: "\<forall>R \<in> Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast  | 
| 26191 | 651  | 
--{*Zorn's Lemma yields a maximal well-order m:*}
 | 
| 52181 | 652  | 
then obtain m::"'a rel" where "Well_order m" and  | 
653  | 
max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m"  | 
|
| 54482 | 654  | 
using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce  | 
| 26191 | 655  | 
--{*Now show by contradiction that m covers the whole type:*}
 | 
656  | 
  { fix x::'a assume "x \<notin> Field m"
 | 
|
657  | 
--{*We assume that x is not covered and extend m at the top with x*}
 | 
|
658  | 
    have "m \<noteq> {}"
 | 
|
659  | 
proof  | 
|
| 52181 | 660  | 
      assume "m = {}"
 | 
661  | 
      moreover have "Well_order {(x, x)}"
 | 
|
662  | 
by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def)  | 
|
| 26191 | 663  | 
ultimately show False using max  | 
| 52181 | 664  | 
by (auto simp: I_def init_seg_of_def simp del: Field_insert)  | 
| 26191 | 665  | 
qed  | 
666  | 
    hence "Field m \<noteq> {}" by(auto simp:Field_def)
 | 
|
| 52181 | 667  | 
moreover have "wf (m - Id)" using `Well_order m`  | 
668  | 
by (simp add: well_order_on_def)  | 
|
| 26191 | 669  | 
--{*The extension of m by x:*}
 | 
| 52181 | 670  | 
    let ?s = "{(a, x) | a. a \<in> Field m}"
 | 
671  | 
let ?m = "insert (x, x) m \<union> ?s"  | 
|
| 26191 | 672  | 
have Fm: "Field ?m = insert x (Field m)"  | 
| 52181 | 673  | 
by (auto simp: Field_def)  | 
674  | 
have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)"  | 
|
675  | 
using `Well_order m` by (simp_all add: order_on_defs)  | 
|
| 26191 | 676  | 
--{*We show that the extension is a well-order*}
 | 
| 54482 | 677  | 
have "Refl ?m" using `Refl m` Fm unfolding refl_on_def by blast  | 
| 52181 | 678  | 
moreover have "trans ?m" using `trans m` and `x \<notin> Field m`  | 
679  | 
unfolding trans_def Field_def by blast  | 
|
680  | 
moreover have "antisym ?m" using `antisym m` and `x \<notin> Field m`  | 
|
681  | 
unfolding antisym_def Field_def by blast  | 
|
682  | 
moreover have "Total ?m" using `Total m` and Fm by (auto simp: total_on_def)  | 
|
683  | 
moreover have "wf (?m - Id)"  | 
|
684  | 
proof -  | 
|
| 55811 | 685  | 
have "wf ?s" using `x \<notin> Field m` unfolding wf_eq_minimal Field_def  | 
686  | 
by (auto simp: Bex_def)  | 
|
| 52181 | 687  | 
thus ?thesis using `wf (m - Id)` and `x \<notin> Field m`  | 
688  | 
wf_subset [OF `wf ?s` Diff_subset]  | 
|
| 54482 | 689  | 
unfolding Un_Diff Field_def by (auto intro: wf_Un)  | 
| 26191 | 690  | 
qed  | 
| 52181 | 691  | 
ultimately have "Well_order ?m" by (simp add: order_on_defs)  | 
| 26191 | 692  | 
--{*We show that the extension is above m*}
 | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
693  | 
moreover have "(m, ?m) \<in> I" using `Well_order ?m` and `Well_order m` and `x \<notin> Field m`  | 
| 52181 | 694  | 
by (fastforce simp: I_def init_seg_of_def Field_def)  | 
| 26191 | 695  | 
ultimately  | 
696  | 
--{*This contradicts maximality of m:*}
 | 
|
| 52181 | 697  | 
have False using max and `x \<notin> Field m` unfolding Field_def by blast  | 
| 26191 | 698  | 
}  | 
699  | 
hence "Field m = UNIV" by auto  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
52821 
diff
changeset
 | 
700  | 
with `Well_order m` show ?thesis by blast  | 
| 26272 | 701  | 
qed  | 
702  | 
||
| 52181 | 703  | 
corollary well_order_on: "\<exists>r::'a rel. well_order_on A r"  | 
| 26272 | 704  | 
proof -  | 
| 52181 | 705  | 
obtain r::"'a rel" where wo: "Well_order r" and univ: "Field r = UNIV"  | 
706  | 
using well_ordering [where 'a = "'a"] by blast  | 
|
707  | 
  let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
 | 
|
| 26272 | 708  | 
have 1: "Field ?r = A" using wo univ  | 
| 52181 | 709  | 
by (fastforce simp: Field_def order_on_defs refl_on_def)  | 
710  | 
have "Refl r" and "trans r" and "antisym r" and "Total r" and "wf (r - Id)"  | 
|
711  | 
using `Well_order r` by (simp_all add: order_on_defs)  | 
|
712  | 
have "Refl ?r" using `Refl r` by (auto simp: refl_on_def 1 univ)  | 
|
| 26272 | 713  | 
moreover have "trans ?r" using `trans r`  | 
714  | 
unfolding trans_def by blast  | 
|
715  | 
moreover have "antisym ?r" using `antisym r`  | 
|
716  | 
unfolding antisym_def by blast  | 
|
| 52181 | 717  | 
moreover have "Total ?r" using `Total r` by (simp add:total_on_def 1 univ)  | 
718  | 
moreover have "wf (?r - Id)" by (rule wf_subset [OF `wf (r - Id)`]) blast  | 
|
719  | 
ultimately have "Well_order ?r" by (simp add: order_on_defs)  | 
|
| 54482 | 720  | 
with 1 show ?thesis by auto  | 
| 26191 | 721  | 
qed  | 
722  | 
||
| 
58184
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
723  | 
(* Move this to Hilbert Choice and wfrec to Wellfounded*)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
724  | 
|
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
725  | 
lemma wfrec_def_adm: "f \<equiv> wfrec R F \<Longrightarrow> wf R \<Longrightarrow> adm_wf R F \<Longrightarrow> f = F f"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
726  | 
using wfrec_fixpoint by simp  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
727  | 
|
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
728  | 
lemma dependent_wf_choice:  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
729  | 
  fixes P :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
730  | 
assumes "wf R" and adm: "\<And>f g x r. (\<And>z. (z, x) \<in> R \<Longrightarrow> f z = g z) \<Longrightarrow> P f x r = P g x r"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
731  | 
assumes P: "\<And>x f. (\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
732  | 
shows "\<exists>f. \<forall>x. P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
733  | 
proof (intro exI allI)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
734  | 
fix x  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
735  | 
def f \<equiv> "wfrec R (\<lambda>f x. SOME r. P f x r)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
736  | 
from `wf R` show "P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
737  | 
proof (induct x)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
738  | 
fix x assume "\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
739  | 
show "P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
740  | 
proof (subst (2) wfrec_def_adm[OF f_def `wf R`])  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
741  | 
show "adm_wf R (\<lambda>f x. SOME r. P f x r)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
742  | 
by (auto simp add: adm_wf_def intro!: arg_cong[where f=Eps] ext adm)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
743  | 
show "P f x (Eps (P f x))"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
744  | 
using P by (rule someI_ex) fact  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
745  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
746  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
747  | 
qed  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
748  | 
|
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
749  | 
lemma (in wellorder) dependent_wellorder_choice:  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
750  | 
assumes "\<And>r f g x. (\<And>y. y < x \<Longrightarrow> f y = g y) \<Longrightarrow> P f x r = P g x r"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
751  | 
assumes P: "\<And>x f. (\<And>y. y < x \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
752  | 
shows "\<exists>f. \<forall>x. P f x (f x)"  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
753  | 
using wf by (rule dependent_wf_choice) (auto intro!: assms)  | 
| 
 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 
hoelzl 
parents: 
55811 
diff
changeset
 | 
754  | 
|
| 
13551
 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 
paulson 
parents:  
diff
changeset
 | 
755  | 
end  |