| 2640 |      1 | (*  Title:      HOLCF/Lift.thy
 | 
|  |      2 |     ID:         $Id$
 | 
| 12026 |      3 |     Author:     Olaf Mueller
 | 
|  |      4 |     License:    GPL (GNU GENERAL PUBLIC LICENSE)
 | 
| 2640 |      5 | *)
 | 
|  |      6 | 
 | 
| 12026 |      7 | header {* Lifting types of class term to flat pcpo's *}
 | 
|  |      8 | 
 | 
|  |      9 | theory Lift = Cprod3:
 | 
|  |     10 | 
 | 
|  |     11 | defaultsort "term"
 | 
|  |     12 | 
 | 
|  |     13 | 
 | 
|  |     14 | typedef 'a lift = "UNIV :: 'a option set" ..
 | 
|  |     15 | 
 | 
|  |     16 | constdefs
 | 
|  |     17 |   Undef :: "'a lift"
 | 
|  |     18 |   "Undef == Abs_lift None"
 | 
|  |     19 |   Def :: "'a => 'a lift"
 | 
|  |     20 |   "Def x == Abs_lift (Some x)"
 | 
|  |     21 | 
 | 
|  |     22 | instance lift :: ("term") sq_ord ..
 | 
|  |     23 | 
 | 
|  |     24 | defs (overloaded)
 | 
|  |     25 |   less_lift_def: "x << y == (x=y | x=Undef)"
 | 
|  |     26 | 
 | 
|  |     27 | instance lift :: ("term") po
 | 
|  |     28 | proof
 | 
|  |     29 |   fix x y z :: "'a lift"
 | 
|  |     30 |   show "x << x" by (unfold less_lift_def) blast
 | 
|  |     31 |   { assume "x << y" and "y << x" thus "x = y" by (unfold less_lift_def) blast }
 | 
|  |     32 |   { assume "x << y" and "y << z" thus "x << z" by (unfold less_lift_def) blast }
 | 
|  |     33 | qed
 | 
|  |     34 | 
 | 
|  |     35 | lemma inst_lift_po: "(op <<) = (\<lambda>x y. x = y | x = Undef)"
 | 
|  |     36 |   -- {* For compatibility with old HOLCF-Version. *}
 | 
|  |     37 |   by (simp only: less_lift_def [symmetric])
 | 
|  |     38 | 
 | 
|  |     39 | 
 | 
|  |     40 | subsection {* Type lift is pointed *}
 | 
|  |     41 | 
 | 
|  |     42 | lemma minimal_lift [iff]: "Undef << x"
 | 
|  |     43 |   by (simp add: inst_lift_po)
 | 
|  |     44 | 
 | 
|  |     45 | lemma UU_lift_def: "(SOME u. \<forall>y. u \<sqsubseteq> y) = Undef"
 | 
|  |     46 |   apply (rule minimal2UU [symmetric])
 | 
|  |     47 |   apply (rule minimal_lift)
 | 
|  |     48 |   done
 | 
|  |     49 | 
 | 
|  |     50 | lemma least_lift: "EX x::'a lift. ALL y. x << y"
 | 
|  |     51 |   apply (rule_tac x = Undef in exI)
 | 
|  |     52 |   apply (rule minimal_lift [THEN allI])
 | 
|  |     53 |   done
 | 
|  |     54 | 
 | 
|  |     55 | 
 | 
|  |     56 | subsection {* Type lift is a cpo *}
 | 
|  |     57 | 
 | 
|  |     58 | text {*
 | 
|  |     59 |   The following lemmas have already been proved in @{text Pcpo.ML} and
 | 
|  |     60 |   @{text Fix.ML}, but there class @{text pcpo} is assumed, although
 | 
|  |     61 |   only @{text po} is necessary and a least element. Therefore they are
 | 
|  |     62 |   redone here for the @{text po} lift with least element @{text
 | 
|  |     63 |   Undef}.
 | 
|  |     64 | *}
 | 
|  |     65 | 
 | 
|  |     66 | lemma notUndef_I: "[| x<<y; x ~= Undef |] ==> y ~= Undef"
 | 
|  |     67 |   -- {* Tailoring @{text notUU_I} of @{text Pcpo.ML} to @{text Undef} *}
 | 
|  |     68 |   by (blast intro: antisym_less)
 | 
|  |     69 | 
 | 
|  |     70 | lemma chain_mono2_po: "[| EX j.~Y(j)=Undef; chain(Y::nat=>('a)lift) |]
 | 
|  |     71 |          ==> EX j. ALL i. j<i-->~Y(i)=Undef"
 | 
|  |     72 |   -- {* Tailoring @{text chain_mono2} of @{text Pcpo.ML} to @{text Undef} *}
 | 
|  |     73 |   apply safe
 | 
|  |     74 |   apply (rule exI)
 | 
|  |     75 |   apply (intro strip)
 | 
|  |     76 |   apply (rule notUndef_I)
 | 
|  |     77 |    apply (erule (1) chain_mono)
 | 
|  |     78 |   apply assumption
 | 
|  |     79 |   done
 | 
|  |     80 | 
 | 
|  |     81 | lemma flat_imp_chfin_poo: "(ALL Y. chain(Y::nat=>('a)lift)-->(EX n. max_in_chain n Y))"
 | 
|  |     82 |   -- {* Tailoring @{text flat_imp_chfin} of @{text Fix.ML} to @{text lift} *}
 | 
|  |     83 |   apply (unfold max_in_chain_def)
 | 
|  |     84 |   apply (intro strip)
 | 
|  |     85 |   apply (rule_tac P = "ALL i. Y (i) = Undef" in case_split)
 | 
|  |     86 |    apply (rule_tac x = 0 in exI)
 | 
|  |     87 |    apply (intro strip)
 | 
|  |     88 |    apply (rule trans)
 | 
|  |     89 |     apply (erule spec)
 | 
|  |     90 |    apply (rule sym)
 | 
|  |     91 |    apply (erule spec)
 | 
|  |     92 |   apply (subgoal_tac "ALL x y. x << (y:: ('a) lift) --> x=Undef | x=y")
 | 
|  |     93 |    prefer 2 apply (simp add: inst_lift_po)
 | 
|  |     94 |   apply (rule chain_mono2_po [THEN exE])
 | 
|  |     95 |     apply fast
 | 
|  |     96 |    apply assumption
 | 
|  |     97 |   apply (rule_tac x = "Suc x" in exI)
 | 
|  |     98 |   apply (intro strip)
 | 
|  |     99 |   apply (rule disjE)
 | 
|  |    100 |     prefer 3 apply assumption
 | 
|  |    101 |    apply (rule mp)
 | 
|  |    102 |     apply (drule spec)
 | 
|  |    103 |     apply (erule spec)
 | 
|  |    104 |    apply (erule le_imp_less_or_eq [THEN disjE])
 | 
|  |    105 |     apply (erule chain_mono)
 | 
|  |    106 |     apply auto
 | 
|  |    107 |   done
 | 
|  |    108 | 
 | 
|  |    109 | theorem cpo_lift: "chain (Y::nat => 'a lift) ==> EX x. range Y <<| x"
 | 
|  |    110 |   apply (cut_tac flat_imp_chfin_poo)
 | 
|  |    111 |   apply (blast intro: lub_finch1)
 | 
|  |    112 |   done
 | 
|  |    113 | 
 | 
|  |    114 | instance lift :: ("term") pcpo
 | 
|  |    115 |   apply intro_classes
 | 
|  |    116 |    apply (erule cpo_lift)
 | 
|  |    117 |   apply (rule least_lift)
 | 
|  |    118 |   done
 | 
|  |    119 | 
 | 
|  |    120 | lemma inst_lift_pcpo: "UU = Undef"
 | 
|  |    121 |   -- {* For compatibility with old HOLCF-Version. *}
 | 
|  |    122 |   by (simp add: UU_def UU_lift_def)
 | 
|  |    123 | 
 | 
|  |    124 | 
 | 
|  |    125 | subsection {* Lift as a datatype *}
 | 
|  |    126 | 
 | 
|  |    127 | lemma lift_distinct1: "UU ~= Def x"
 | 
|  |    128 |   by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
 | 
|  |    129 | 
 | 
|  |    130 | lemma lift_distinct2: "Def x ~= UU"
 | 
|  |    131 |   by (simp add: Undef_def Def_def Abs_lift_inject lift_def inst_lift_pcpo)
 | 
|  |    132 | 
 | 
|  |    133 | lemma Def_inject: "(Def x = Def x') = (x = x')"
 | 
|  |    134 |   by (simp add: Def_def Abs_lift_inject lift_def)
 | 
|  |    135 | 
 | 
|  |    136 | lemma lift_induct: "P UU ==> (!!x. P (Def x)) ==> P y"
 | 
|  |    137 |   apply (induct y)
 | 
|  |    138 |   apply (induct_tac y)
 | 
|  |    139 |    apply (simp_all add: Undef_def Def_def inst_lift_pcpo)
 | 
|  |    140 |   done
 | 
|  |    141 | 
 | 
|  |    142 | rep_datatype lift
 | 
|  |    143 |   distinct lift_distinct1 lift_distinct2
 | 
|  |    144 |   inject Def_inject
 | 
|  |    145 |   induction lift_induct
 | 
|  |    146 | 
 | 
|  |    147 | lemma Def_not_UU: "Def a ~= UU"
 | 
|  |    148 |   by simp
 | 
|  |    149 | 
 | 
|  |    150 | 
 | 
|  |    151 | subsection {* Further operations *}
 | 
|  |    152 | 
 | 
|  |    153 | consts
 | 
|  |    154 |  flift1      :: "('a => 'b::pcpo) => ('a lift -> 'b)"
 | 
|  |    155 |  flift2      :: "('a => 'b)       => ('a lift -> 'b lift)"
 | 
|  |    156 |  liftpair    ::"'a::term lift * 'b::term lift => ('a * 'b) lift"
 | 
| 2640 |    157 | 
 | 
| 12026 |    158 | defs
 | 
|  |    159 |  flift1_def:
 | 
|  |    160 |   "flift1 f == (LAM x. (case x of
 | 
|  |    161 |                    UU => UU
 | 
|  |    162 |                  | Def y => (f y)))"
 | 
|  |    163 |  flift2_def:
 | 
|  |    164 |   "flift2 f == (LAM x. (case x of
 | 
|  |    165 |                    UU => UU
 | 
|  |    166 |                  | Def y => Def (f y)))"
 | 
|  |    167 |  liftpair_def:
 | 
|  |    168 |   "liftpair x  == (case (cfst$x) of
 | 
|  |    169 |                   UU  => UU
 | 
|  |    170 |                 | Def x1 => (case (csnd$x) of
 | 
|  |    171 |                                UU => UU
 | 
|  |    172 |                              | Def x2 => Def (x1,x2)))"
 | 
|  |    173 | 
 | 
|  |    174 | 
 | 
|  |    175 | declare inst_lift_pcpo [symmetric, simp]
 | 
|  |    176 | 
 | 
|  |    177 | 
 | 
|  |    178 | lemma less_lift: "(x::'a lift) << y = (x=y | x=UU)"
 | 
|  |    179 |   by (simp add: inst_lift_po)
 | 
|  |    180 | 
 | 
|  |    181 | 
 | 
|  |    182 | text {* @{text UU} and @{text Def} *}
 | 
|  |    183 | 
 | 
|  |    184 | lemma Lift_exhaust: "x = UU | (EX y. x = Def y)"
 | 
|  |    185 |   by (induct x) simp_all
 | 
|  |    186 | 
 | 
|  |    187 | lemma Lift_cases: "[| x = UU ==> P; ? a. x = Def a ==> P |] ==> P"
 | 
|  |    188 |   by (insert Lift_exhaust) blast
 | 
|  |    189 | 
 | 
|  |    190 | lemma not_Undef_is_Def: "(x ~= UU) = (EX y. x = Def y)"
 | 
|  |    191 |   by (cases x) simp_all
 | 
|  |    192 | 
 | 
|  |    193 | text {*
 | 
|  |    194 |   For @{term "x ~= UU"} in assumptions @{text def_tac} replaces @{text
 | 
|  |    195 |   x} by @{text "Def a"} in conclusion. *}
 | 
|  |    196 | 
 | 
|  |    197 | ML {*
 | 
|  |    198 |   local val not_Undef_is_Def = thm "not_Undef_is_Def"
 | 
|  |    199 |   in val def_tac = SIMPSET' (fn ss =>
 | 
|  |    200 |     etac (not_Undef_is_Def RS iffD1 RS exE) THEN' asm_simp_tac ss)
 | 
|  |    201 |   end;
 | 
|  |    202 | *}
 | 
|  |    203 | 
 | 
|  |    204 | lemma Undef_eq_UU: "Undef = UU"
 | 
|  |    205 |   by (rule inst_lift_pcpo [symmetric])
 | 
|  |    206 | 
 | 
|  |    207 | lemma DefE: "Def x = UU ==> R"
 | 
|  |    208 |   by simp
 | 
|  |    209 | 
 | 
|  |    210 | lemma DefE2: "[| x = Def s; x = UU |] ==> R"
 | 
|  |    211 |   by simp
 | 
|  |    212 | 
 | 
|  |    213 | lemma Def_inject_less_eq: "Def x << Def y = (x = y)"
 | 
|  |    214 |   by (simp add: less_lift_def)
 | 
|  |    215 | 
 | 
|  |    216 | lemma Def_less_is_eq [simp]: "Def x << y = (Def x = y)"
 | 
|  |    217 |   by (simp add: less_lift)
 | 
|  |    218 | 
 | 
|  |    219 | 
 | 
|  |    220 | subsection {* Lift is flat *}
 | 
|  |    221 | 
 | 
|  |    222 | instance lift :: ("term") flat
 | 
|  |    223 | proof
 | 
|  |    224 |   show "ALL x y::'a lift. x << y --> x = UU | x = y"
 | 
|  |    225 |     by (simp add: less_lift)
 | 
|  |    226 | qed
 | 
|  |    227 | 
 | 
|  |    228 | defaultsort pcpo
 | 
|  |    229 | 
 | 
|  |    230 | 
 | 
|  |    231 | text {*
 | 
|  |    232 |   \medskip Two specific lemmas for the combination of LCF and HOL
 | 
|  |    233 |   terms.
 | 
|  |    234 | *}
 | 
|  |    235 | 
 | 
|  |    236 | lemma cont_Rep_CFun_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s)"
 | 
|  |    237 |   apply (rule cont2cont_CF1L)
 | 
|  |    238 |   apply (tactic "resolve_tac cont_lemmas1 1")+
 | 
|  |    239 |    apply auto
 | 
|  |    240 |   done
 | 
|  |    241 | 
 | 
|  |    242 | lemma cont_Rep_CFun_app_app: "[|cont g; cont f|] ==> cont(%x. ((f x)$(g x)) s t)"
 | 
|  |    243 |   apply (rule cont2cont_CF1L)
 | 
|  |    244 |   apply (erule cont_Rep_CFun_app)
 | 
|  |    245 |   apply assumption
 | 
|  |    246 |   done
 | 
| 2640 |    247 | 
 | 
| 12026 |    248 | text {* Continuity of if-then-else. *}
 | 
|  |    249 | 
 | 
|  |    250 | lemma cont_if: "[| cont f1; cont f2 |] ==> cont (%x. if b then f1 x else f2 x)"
 | 
|  |    251 |   by (cases b) simp_all
 | 
|  |    252 | 
 | 
|  |    253 | 
 | 
|  |    254 | subsection {* Continuity Proofs for flift1, flift2, if *}
 | 
|  |    255 | 
 | 
|  |    256 | text {* Need the instance of @{text flat}. *}
 | 
|  |    257 | 
 | 
|  |    258 | lemma cont_flift1_arg: "cont (lift_case UU f)"
 | 
|  |    259 |   -- {* @{text flift1} is continuous in its argument itself. *}
 | 
|  |    260 |   apply (rule flatdom_strict2cont)
 | 
|  |    261 |   apply simp
 | 
|  |    262 |   done
 | 
|  |    263 | 
 | 
|  |    264 | lemma cont_flift1_not_arg: "!!f. [| !! a. cont (%y. (f y) a) |] ==>
 | 
|  |    265 |            cont (%y. lift_case UU (f y))"
 | 
|  |    266 |   -- {* @{text flift1} is continuous in a variable that occurs only
 | 
|  |    267 |     in the @{text Def} branch. *}
 | 
|  |    268 |   apply (rule cont2cont_CF1L_rev)
 | 
|  |    269 |   apply (intro strip)
 | 
|  |    270 |   apply (case_tac y)
 | 
|  |    271 |    apply simp
 | 
|  |    272 |   apply simp
 | 
|  |    273 |   done
 | 
|  |    274 | 
 | 
|  |    275 | lemma cont_flift1_arg_and_not_arg: "!!f. [| !! a. cont (%y. (f y) a); cont g|] ==>
 | 
|  |    276 |     cont (%y. lift_case UU (f y) (g y))"
 | 
|  |    277 |   -- {* @{text flift1} is continuous in a variable that occurs either
 | 
|  |    278 |     in the @{text Def} branch or in the argument. *}
 | 
|  |    279 |   apply (rule_tac tt = g in cont2cont_app)
 | 
|  |    280 |     apply (rule cont_flift1_not_arg)
 | 
|  |    281 |     apply auto
 | 
|  |    282 |   apply (rule cont_flift1_arg)
 | 
|  |    283 |   done
 | 
|  |    284 | 
 | 
|  |    285 | lemma cont_flift2_arg: "cont (lift_case UU (%y. Def (f y)))"
 | 
|  |    286 |   -- {* @{text flift2} is continuous in its argument itself. *}
 | 
|  |    287 |   apply (rule flatdom_strict2cont)
 | 
|  |    288 |   apply simp
 | 
|  |    289 |   done
 | 
|  |    290 | 
 | 
|  |    291 | text {*
 | 
|  |    292 |   \medskip Extension of cont_tac and installation of simplifier.
 | 
|  |    293 | *}
 | 
|  |    294 | 
 | 
|  |    295 | lemma cont2cont_CF1L_rev2: "(!!y. cont (%x. c1 x y)) ==> cont c1"
 | 
|  |    296 |   apply (rule cont2cont_CF1L_rev)
 | 
|  |    297 |   apply simp
 | 
|  |    298 |   done
 | 
|  |    299 | 
 | 
|  |    300 | lemmas cont_lemmas_ext [simp] =
 | 
|  |    301 |   cont_flift1_arg cont_flift2_arg
 | 
|  |    302 |   cont_flift1_arg_and_not_arg cont2cont_CF1L_rev2
 | 
|  |    303 |   cont_Rep_CFun_app cont_Rep_CFun_app_app cont_if
 | 
|  |    304 | 
 | 
|  |    305 | ML_setup {*
 | 
|  |    306 | val cont_lemmas2 = cont_lemmas1 @ thms "cont_lemmas_ext";
 | 
|  |    307 | 
 | 
|  |    308 | fun cont_tac  i = resolve_tac cont_lemmas2 i;
 | 
|  |    309 | fun cont_tacR i = REPEAT (cont_tac i);
 | 
|  |    310 | 
 | 
|  |    311 | local val flift1_def = thm "flift1_def" and flift2_def = thm "flift2_def"
 | 
|  |    312 | in fun cont_tacRs i =
 | 
|  |    313 |   simp_tac (simpset() addsimps [flift1_def, flift2_def]) i THEN
 | 
|  |    314 |   REPEAT (cont_tac i)
 | 
|  |    315 | end;
 | 
|  |    316 | 
 | 
|  |    317 | simpset_ref() := simpset() addSolver
 | 
|  |    318 |   (mk_solver "cont_tac" (K (DEPTH_SOLVE_1 o cont_tac)));
 | 
|  |    319 | *}
 | 
|  |    320 | 
 | 
|  |    321 | 
 | 
|  |    322 | subsection {* flift1, flift2 *}
 | 
|  |    323 | 
 | 
|  |    324 | lemma flift1_Def [simp]: "flift1 f$(Def x) = (f x)"
 | 
|  |    325 |   by (simp add: flift1_def)
 | 
|  |    326 | 
 | 
|  |    327 | lemma flift2_Def [simp]: "flift2 f$(Def x) = Def (f x)"
 | 
|  |    328 |   by (simp add: flift2_def)
 | 
|  |    329 | 
 | 
|  |    330 | lemma flift1_UU [simp]: "flift1 f$UU = UU"
 | 
|  |    331 |   by (simp add: flift1_def)
 | 
|  |    332 | 
 | 
|  |    333 | lemma flift2_UU [simp]: "flift2 f$UU = UU"
 | 
|  |    334 |   by (simp add: flift2_def)
 | 
|  |    335 | 
 | 
|  |    336 | lemma flift2_nUU [simp]: "x~=UU ==> (flift2 f)$x~=UU"
 | 
|  |    337 |   by (tactic "def_tac 1")
 | 
| 2640 |    338 | 
 | 
|  |    339 | end
 |