| author | haftmann |
| Fri, 15 Feb 2008 16:09:12 +0100 | |
| changeset 26072 | f65a7fa2da6c |
| parent 26062 | 16f334d7156a |
| child 26100 | fbc60cd02ae2 |
| permissions | -rw-r--r-- |
| 3366 | 1 |
(* Title: HOL/Divides.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
|
6865
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
paulson
parents:
3366
diff
changeset
|
4 |
Copyright 1999 University of Cambridge |
| 18154 | 5 |
*) |
| 3366 | 6 |
|
| 18154 | 7 |
header {* The division operators div, mod and the divides relation "dvd" *}
|
| 3366 | 8 |
|
| 15131 | 9 |
theory Divides |
|
26072
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
haftmann
parents:
26062
diff
changeset
|
10 |
imports Power Wellfounded_Recursion |
| 22993 | 11 |
uses "~~/src/Provers/Arith/cancel_div_mod.ML" |
| 15131 | 12 |
begin |
| 3366 | 13 |
|
| 25942 | 14 |
subsection {* Syntactic division operations *}
|
15 |
||
| 24993 | 16 |
class div = times + |
| 25062 | 17 |
fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) |
18 |
fixes mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) |
|
| 25942 | 19 |
begin |
| 21408 | 20 |
|
| 25942 | 21 |
definition |
22 |
dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) |
|
23 |
where |
|
24 |
[code func del]: "m dvd n \<longleftrightarrow> (\<exists>k. n = m * k)" |
|
25 |
||
26 |
end |
|
27 |
||
28 |
subsection {* Abstract divisibility in commutative semirings. *}
|
|
29 |
||
30 |
class semiring_div = comm_semiring_1_cancel + div + |
|
31 |
assumes mod_div_equality: "a div b * b + a mod b = a" |
|
32 |
and div_by_0: "a div 0 = 0" |
|
33 |
and mult_div: "b \<noteq> 0 \<Longrightarrow> a * b div b = a" |
|
34 |
begin |
|
35 |
||
36 |
lemma div_by_1: "a div 1 = a" |
|
| 26062 | 37 |
using mult_div [of 1 a] zero_neq_one by simp |
| 25942 | 38 |
|
39 |
lemma mod_by_1: "a mod 1 = 0" |
|
40 |
proof - |
|
41 |
from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp |
|
42 |
then have "a + a mod 1 = a + 0" by simp |
|
43 |
then show ?thesis by (rule add_left_imp_eq) |
|
44 |
qed |
|
45 |
||
46 |
lemma mod_by_0: "a mod 0 = a" |
|
47 |
using mod_div_equality [of a zero] by simp |
|
48 |
||
49 |
lemma mult_mod: "a * b mod b = 0" |
|
50 |
proof (cases "b = 0") |
|
51 |
case True then show ?thesis by (simp add: mod_by_0) |
|
52 |
next |
|
53 |
case False with mult_div have abb: "a * b div b = a" . |
|
54 |
from mod_div_equality have "a * b div b * b + a * b mod b = a * b" . |
|
55 |
with abb have "a * b + a * b mod b = a * b + 0" by simp |
|
56 |
then show ?thesis by (rule add_left_imp_eq) |
|
57 |
qed |
|
58 |
||
59 |
lemma mod_self: "a mod a = 0" |
|
60 |
using mult_mod [of one] by simp |
|
61 |
||
62 |
lemma div_self: "a \<noteq> 0 \<Longrightarrow> a div a = 1" |
|
63 |
using mult_div [of _ one] by simp |
|
64 |
||
65 |
lemma div_0: "0 div a = 0" |
|
66 |
proof (cases "a = 0") |
|
67 |
case True then show ?thesis by (simp add: div_by_0) |
|
68 |
next |
|
69 |
case False with mult_div have "0 * a div a = 0" . |
|
70 |
then show ?thesis by simp |
|
71 |
qed |
|
72 |
||
73 |
lemma mod_0: "0 mod a = 0" |
|
74 |
using mod_div_equality [of zero a] div_0 by simp |
|
75 |
||
| 26062 | 76 |
lemma mod_div_equality2: "b * (a div b) + a mod b = a" |
77 |
unfolding mult_commute [of b] |
|
78 |
by (rule mod_div_equality) |
|
79 |
||
80 |
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c" |
|
81 |
by (simp add: mod_div_equality) |
|
82 |
||
83 |
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c" |
|
84 |
by (simp add: mod_div_equality2) |
|
85 |
||
86 |
lemma dvdI [intro?]: "a = b * c \<Longrightarrow> b dvd a" |
|
87 |
unfolding dvd_def .. |
|
88 |
||
89 |
lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>c. a = b * c \<Longrightarrow> P) \<Longrightarrow> P" |
|
90 |
unfolding dvd_def by blast |
|
91 |
||
| 25942 | 92 |
lemma dvd_def_mod [code func]: "a dvd b \<longleftrightarrow> b mod a = 0" |
93 |
proof |
|
94 |
assume "b mod a = 0" |
|
95 |
with mod_div_equality [of b a] have "b div a * a = b" by simp |
|
96 |
then have "b = a * (b div a)" unfolding mult_commute .. |
|
97 |
then have "\<exists>c. b = a * c" .. |
|
98 |
then show "a dvd b" unfolding dvd_def . |
|
99 |
next |
|
100 |
assume "a dvd b" |
|
101 |
then have "\<exists>c. b = a * c" unfolding dvd_def . |
|
102 |
then obtain c where "b = a * c" .. |
|
103 |
then have "b mod a = a * c mod a" by simp |
|
104 |
then have "b mod a = c * a mod a" by (simp add: mult_commute) |
|
105 |
then show "b mod a = 0" by (simp add: mult_mod) |
|
106 |
qed |
|
107 |
||
108 |
lemma dvd_refl: "a dvd a" |
|
109 |
unfolding dvd_def_mod mod_self .. |
|
110 |
||
111 |
lemma dvd_trans: |
|
112 |
assumes "a dvd b" and "b dvd c" |
|
113 |
shows "a dvd c" |
|
114 |
proof - |
|
115 |
from assms obtain v where "b = a * v" unfolding dvd_def by auto |
|
116 |
moreover from assms obtain w where "c = b * w" unfolding dvd_def by auto |
|
117 |
ultimately have "c = a * (v * w)" by (simp add: mult_assoc) |
|
118 |
then show ?thesis unfolding dvd_def .. |
|
119 |
qed |
|
120 |
||
| 26062 | 121 |
lemma zero_dvd_iff [noatp]: "0 dvd a \<longleftrightarrow> a = 0" |
| 25942 | 122 |
unfolding dvd_def by simp |
123 |
||
124 |
lemma dvd_0: "a dvd 0" |
|
125 |
unfolding dvd_def proof |
|
126 |
show "0 = a * 0" by simp |
|
127 |
qed |
|
128 |
||
| 26062 | 129 |
lemma one_dvd: "1 dvd a" |
130 |
unfolding dvd_def by simp |
|
131 |
||
132 |
lemma dvd_mult: "a dvd c \<Longrightarrow> a dvd (b * c)" |
|
133 |
unfolding dvd_def by (blast intro: mult_left_commute) |
|
134 |
||
135 |
lemma dvd_mult2: "a dvd b \<Longrightarrow> a dvd (b * c)" |
|
136 |
apply (subst mult_commute) |
|
137 |
apply (erule dvd_mult) |
|
138 |
done |
|
139 |
||
140 |
lemma dvd_triv_right: "a dvd b * a" |
|
141 |
by (rule dvd_mult) (rule dvd_refl) |
|
142 |
||
143 |
lemma dvd_triv_left: "a dvd a * b" |
|
144 |
by (rule dvd_mult2) (rule dvd_refl) |
|
145 |
||
146 |
lemma mult_dvd_mono: "a dvd c \<Longrightarrow> b dvd d \<Longrightarrow> a * b dvd c * d" |
|
147 |
apply (unfold dvd_def, clarify) |
|
148 |
apply (rule_tac x = "k * ka" in exI) |
|
149 |
apply (simp add: mult_ac) |
|
150 |
done |
|
151 |
||
152 |
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" |
|
153 |
by (simp add: dvd_def mult_assoc, blast) |
|
154 |
||
155 |
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" |
|
156 |
unfolding mult_ac [of a] by (rule dvd_mult_left) |
|
157 |
||
| 25942 | 158 |
end |
159 |
||
160 |
||
161 |
subsection {* Division on the natural numbers *}
|
|
162 |
||
163 |
instantiation nat :: semiring_div |
|
|
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
164 |
begin |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
165 |
|
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
166 |
definition |
| 22993 | 167 |
div_def: "m div n == wfrec (pred_nat^+) |
168 |
(%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m" |
|
|
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
169 |
|
| 25942 | 170 |
lemma div_eq: "(%m. m div n) = wfrec (pred_nat^+) |
171 |
(%f j. if j<n | n=0 then 0 else Suc (f (j-n)))" |
|
172 |
by (simp add: div_def) |
|
173 |
||
|
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
174 |
definition |
|
22261
9e185f78e7d4
Adapted to changes in Transitive_Closure theory.
berghofe
parents:
21911
diff
changeset
|
175 |
mod_def: "m mod n == wfrec (pred_nat^+) |
|
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
176 |
(%f j. if j<n | n=0 then j else f (j-n)) m" |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25162
diff
changeset
|
177 |
|
| 22718 | 178 |
lemma mod_eq: "(%m. m mod n) = |
|
22261
9e185f78e7d4
Adapted to changes in Transitive_Closure theory.
berghofe
parents:
21911
diff
changeset
|
179 |
wfrec (pred_nat^+) (%f j. if j<n | n=0 then j else f (j-n))" |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
180 |
by (simp add: mod_def) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
181 |
|
| 25942 | 182 |
lemmas wf_less_trans = def_wfrec [THEN trans, |
183 |
OF eq_reflection wf_pred_nat [THEN wf_trancl], standard] |
|
184 |
||
185 |
lemma div_less [simp]: "m < n \<Longrightarrow> m div n = (0\<Colon>nat)" |
|
186 |
by (rule div_eq [THEN wf_less_trans]) simp |
|
187 |
||
188 |
lemma le_div_geq: "0 < n \<Longrightarrow> n \<le> m \<Longrightarrow> m div n = Suc ((m - n) div n)" |
|
189 |
by (rule div_eq [THEN wf_less_trans]) (simp add: cut_apply less_eq) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
190 |
|
| 25942 | 191 |
lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a\<Colon>nat)" |
192 |
by (rule mod_eq [THEN wf_less_trans]) simp |
|
193 |
||
194 |
lemma mod_less [simp]: "m < n \<Longrightarrow> m mod n = (m\<Colon>nat)" |
|
195 |
by (rule mod_eq [THEN wf_less_trans]) simp |
|
196 |
||
197 |
lemma le_mod_geq: "(n\<Colon>nat) \<le> m \<Longrightarrow> m mod n = (m - n) mod n" |
|
198 |
by (cases "n = 0", simp, rule mod_eq [THEN wf_less_trans]) |
|
199 |
(simp add: cut_apply less_eq) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
200 |
|
| 25942 | 201 |
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)" |
202 |
by (simp add: le_mod_geq) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
203 |
|
| 25942 | 204 |
instance proof |
205 |
fix n m :: nat |
|
206 |
show "(m div n) * n + m mod n = m" |
|
207 |
apply (cases "n = 0", simp) |
|
| 25947 | 208 |
apply (induct m rule: less_induct) |
| 25942 | 209 |
apply (subst mod_if) |
210 |
apply (simp add: add_assoc add_diff_inverse le_div_geq) |
|
211 |
done |
|
212 |
next |
|
213 |
fix n :: nat |
|
214 |
show "n div 0 = 0" |
|
| 25947 | 215 |
by (rule div_eq [THEN wf_less_trans]) simp |
| 25942 | 216 |
next |
217 |
fix n m :: nat |
|
218 |
assume "n \<noteq> 0" |
|
219 |
then show "m * n div n = m" |
|
220 |
by (induct m) (simp_all add: le_div_geq) |
|
221 |
qed |
|
222 |
||
223 |
end |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
224 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
225 |
|
| 25942 | 226 |
subsubsection{*Simproc for Cancelling Div and Mod*}
|
227 |
||
228 |
lemmas mod_div_equality = semiring_div_class.times_div_mod_plus_zero_one.mod_div_equality [of "m\<Colon>nat" n, standard] |
|
| 26062 | 229 |
lemmas mod_div_equality2 = mod_div_equality2 [of "n\<Colon>nat" m, standard] |
230 |
lemmas div_mod_equality = div_mod_equality [of "m\<Colon>nat" n k, standard] |
|
231 |
lemmas div_mod_equality2 = div_mod_equality2 [of "m\<Colon>nat" n k, standard] |
|
| 25942 | 232 |
|
233 |
ML {*
|
|
234 |
structure CancelDivModData = |
|
235 |
struct |
|
236 |
||
237 |
val div_name = @{const_name Divides.div};
|
|
238 |
val mod_name = @{const_name Divides.mod};
|
|
239 |
val mk_binop = HOLogic.mk_binop; |
|
240 |
val mk_sum = NatArithUtils.mk_sum; |
|
241 |
val dest_sum = NatArithUtils.dest_sum; |
|
242 |
||
243 |
(*logic*) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
244 |
|
| 25942 | 245 |
val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}]
|
246 |
||
247 |
val trans = trans |
|
248 |
||
249 |
val prove_eq_sums = |
|
250 |
let val simps = @{thm add_0} :: @{thm add_0_right} :: @{thms add_ac}
|
|
251 |
in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all_tac simps) end; |
|
252 |
||
253 |
end; |
|
254 |
||
255 |
structure CancelDivMod = CancelDivModFun(CancelDivModData); |
|
256 |
||
257 |
val cancel_div_mod_proc = NatArithUtils.prep_simproc |
|
258 |
("cancel_div_mod", ["(m::nat) + n"], K CancelDivMod.proc);
|
|
259 |
||
260 |
Addsimprocs[cancel_div_mod_proc]; |
|
261 |
*} |
|
262 |
||
263 |
||
264 |
subsubsection {* Remainder *}
|
|
265 |
||
266 |
lemmas DIVISION_BY_ZERO_MOD [simp] = mod_by_0 [of "a\<Colon>nat", standard] |
|
267 |
||
268 |
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)" |
|
269 |
by (induct m) (simp_all add: le_div_geq) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
270 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
271 |
lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n" |
| 25942 | 272 |
by (simp add: le_mod_geq linorder_not_less) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
273 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
274 |
lemma mod_1 [simp]: "m mod Suc 0 = 0" |
| 22718 | 275 |
by (induct m) (simp_all add: mod_geq) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
276 |
|
| 25942 | 277 |
lemmas mod_self [simp] = semiring_div_class.mod_self [of "n\<Colon>nat", standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
278 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
279 |
lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)" |
| 22718 | 280 |
apply (subgoal_tac "(n + m) mod n = (n+m-n) mod n") |
281 |
apply (simp add: add_commute) |
|
| 25942 | 282 |
apply (subst le_mod_geq [symmetric], simp_all) |
| 22718 | 283 |
done |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
284 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
285 |
lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)" |
| 22718 | 286 |
by (simp add: add_commute mod_add_self2) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
287 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
288 |
lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)" |
| 22718 | 289 |
by (induct k) (simp_all add: add_left_commute [of _ n]) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
290 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
291 |
lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)" |
| 22718 | 292 |
by (simp add: mult_commute mod_mult_self1) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
293 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
294 |
lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)" |
| 22718 | 295 |
apply (cases "n = 0", simp) |
296 |
apply (cases "k = 0", simp) |
|
297 |
apply (induct m rule: nat_less_induct) |
|
298 |
apply (subst mod_if, simp) |
|
299 |
apply (simp add: mod_geq diff_mult_distrib) |
|
300 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
301 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
302 |
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)" |
| 22718 | 303 |
by (simp add: mult_commute [of k] mod_mult_distrib) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
304 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
305 |
lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)" |
| 22718 | 306 |
apply (cases "n = 0", simp) |
307 |
apply (induct m, simp) |
|
308 |
apply (rename_tac k) |
|
309 |
apply (cut_tac m = "k * n" and n = n in mod_add_self2) |
|
310 |
apply (simp add: add_commute) |
|
311 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
312 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
313 |
lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)" |
| 22718 | 314 |
by (simp add: mult_commute mod_mult_self_is_0) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
315 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
316 |
|
| 25942 | 317 |
subsubsection{*Quotient*}
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
318 |
|
| 25942 | 319 |
lemmas DIVISION_BY_ZERO_DIV [simp] = div_by_0 [of "a\<Colon>nat", standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
320 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
321 |
lemma div_geq: "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)" |
| 25942 | 322 |
by (simp add: le_div_geq linorder_not_less) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
323 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
324 |
lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))" |
| 22718 | 325 |
by (simp add: div_geq) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
326 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
327 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
328 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
329 |
(* a simple rearrangement of mod_div_equality: *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
330 |
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)" |
| 22718 | 331 |
by (cut_tac m = m and n = n in mod_div_equality2, arith) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
332 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
333 |
lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)" |
| 22718 | 334 |
apply (induct m rule: nat_less_induct) |
335 |
apply (rename_tac m) |
|
336 |
apply (case_tac "m<n", simp) |
|
337 |
txt{*case @{term "n \<le> m"}*}
|
|
338 |
apply (simp add: mod_geq) |
|
339 |
done |
|
| 15439 | 340 |
|
341 |
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)" |
|
| 22718 | 342 |
apply (drule mod_less_divisor [where m = m]) |
343 |
apply simp |
|
344 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
345 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
346 |
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)" |
| 22718 | 347 |
by (simp add: mult_commute div_mult_self_is_m) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
348 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
349 |
(*mod_mult_distrib2 above is the counterpart for remainder*) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
350 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
351 |
|
| 25942 | 352 |
subsubsection {* Proving advancedfacts about Quotient and Remainder *}
|
353 |
||
354 |
definition |
|
355 |
quorem :: "(nat*nat) * (nat*nat) => bool" where |
|
356 |
(*This definition helps prove the harder properties of div and mod. |
|
357 |
It is copied from IntDiv.thy; should it be overloaded?*) |
|
358 |
"quorem = (%((a,b), (q,r)). |
|
359 |
a = b*q + r & |
|
360 |
(if 0<b then 0\<le>r & r<b else b<r & r \<le>0))" |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
361 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
362 |
lemma unique_quotient_lemma: |
| 22718 | 363 |
"[| b*q' + r' \<le> b*q + r; x < b; r < b |] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
364 |
==> q' \<le> (q::nat)" |
| 22718 | 365 |
apply (rule leI) |
366 |
apply (subst less_iff_Suc_add) |
|
367 |
apply (auto simp add: add_mult_distrib2) |
|
368 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
369 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
370 |
lemma unique_quotient: |
| 22718 | 371 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
372 |
==> q = q'" |
| 22718 | 373 |
apply (simp add: split_ifs quorem_def) |
374 |
apply (blast intro: order_antisym |
|
375 |
dest: order_eq_refl [THEN unique_quotient_lemma] sym) |
|
376 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
377 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
378 |
lemma unique_remainder: |
| 22718 | 379 |
"[| quorem ((a,b), (q,r)); quorem ((a,b), (q',r')); 0 < b |] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
380 |
==> r = r'" |
| 22718 | 381 |
apply (subgoal_tac "q = q'") |
382 |
prefer 2 apply (blast intro: unique_quotient) |
|
383 |
apply (simp add: quorem_def) |
|
384 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
385 |
|
| 25162 | 386 |
lemma quorem_div_mod: "b > 0 ==> quorem ((a, b), (a div b, a mod b))" |
387 |
unfolding quorem_def by simp |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
388 |
|
| 25162 | 389 |
lemma quorem_div: "[| quorem((a,b),(q,r)); b > 0 |] ==> a div b = q" |
390 |
by (simp add: quorem_div_mod [THEN unique_quotient]) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
391 |
|
| 25162 | 392 |
lemma quorem_mod: "[| quorem((a,b),(q,r)); b > 0 |] ==> a mod b = r" |
393 |
by (simp add: quorem_div_mod [THEN unique_remainder]) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
394 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
395 |
(** A dividend of zero **) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
396 |
|
| 25942 | 397 |
lemmas div_0 [simp] = semiring_div_class.div_0 [of "n\<Colon>nat", standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
398 |
|
| 25942 | 399 |
lemmas mod_0 [simp] = semiring_div_class.mod_0 [of "n\<Colon>nat", standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
400 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
401 |
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
402 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
403 |
lemma quorem_mult1_eq: |
| 25162 | 404 |
"[| quorem((b,c),(q,r)); c > 0 |] |
405 |
==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))" |
|
406 |
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
407 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
408 |
lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
409 |
apply (cases "c = 0", simp) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
410 |
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div]) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
411 |
done |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
412 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
413 |
lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
414 |
apply (cases "c = 0", simp) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
415 |
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod]) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
416 |
done |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
417 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
418 |
lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c" |
| 22718 | 419 |
apply (rule trans) |
420 |
apply (rule_tac s = "b*a mod c" in trans) |
|
421 |
apply (rule_tac [2] mod_mult1_eq) |
|
422 |
apply (simp_all add: mult_commute) |
|
423 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
424 |
|
| 25162 | 425 |
lemma mod_mult_distrib_mod: |
426 |
"(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c" |
|
427 |
apply (rule mod_mult1_eq' [THEN trans]) |
|
428 |
apply (rule mod_mult1_eq) |
|
429 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
430 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
431 |
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
432 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
433 |
lemma quorem_add1_eq: |
| 25162 | 434 |
"[| quorem((a,c),(aq,ar)); quorem((b,c),(bq,br)); c > 0 |] |
435 |
==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))" |
|
436 |
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
437 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
438 |
(*NOT suitable for rewriting: the RHS has an instance of the LHS*) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
439 |
lemma div_add1_eq: |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
440 |
"(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)" |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
441 |
apply (cases "c = 0", simp) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
442 |
apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
443 |
done |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
444 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
445 |
lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c" |
|
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
446 |
apply (cases "c = 0", simp) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
447 |
apply (blast intro: quorem_div_mod quorem_add1_eq [THEN quorem_mod]) |
|
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
448 |
done |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
449 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
450 |
|
| 25942 | 451 |
subsubsection {* Proving @{prop "a div (b*c) = (a div b) div c"} *}
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
452 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
453 |
(** first, a lemma to bound the remainder **) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
454 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
455 |
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c" |
| 22718 | 456 |
apply (cut_tac m = q and n = c in mod_less_divisor) |
457 |
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) |
|
458 |
apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst) |
|
459 |
apply (simp add: add_mult_distrib2) |
|
460 |
done |
|
|
10559
d3fd54fc659b
many new div and mod properties (borrowed from Integ/IntDiv)
paulson
parents:
10214
diff
changeset
|
461 |
|
| 22718 | 462 |
lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r)); 0 < b; 0 < c |] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
463 |
==> quorem ((a, b*c), (q div c, b*(q mod c) + r))" |
| 22718 | 464 |
by (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
465 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
466 |
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)" |
| 22718 | 467 |
apply (cases "b = 0", simp) |
468 |
apply (cases "c = 0", simp) |
|
469 |
apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div]) |
|
470 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
471 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
472 |
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)" |
| 22718 | 473 |
apply (cases "b = 0", simp) |
474 |
apply (cases "c = 0", simp) |
|
475 |
apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod]) |
|
476 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
477 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
478 |
|
| 25942 | 479 |
subsubsection{*Cancellation of Common Factors in Division*}
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
480 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
481 |
lemma div_mult_mult_lemma: |
| 22718 | 482 |
"[| (0::nat) < b; 0 < c |] ==> (c*a) div (c*b) = a div b" |
483 |
by (auto simp add: div_mult2_eq) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
484 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
485 |
lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b" |
| 22718 | 486 |
apply (cases "b = 0") |
487 |
apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma) |
|
488 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
489 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
490 |
lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b" |
| 22718 | 491 |
apply (drule div_mult_mult1) |
492 |
apply (auto simp add: mult_commute) |
|
493 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
494 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
495 |
|
| 25942 | 496 |
subsubsection{*Further Facts about Quotient and Remainder*}
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
497 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
498 |
lemma div_1 [simp]: "m div Suc 0 = m" |
| 22718 | 499 |
by (induct m) (simp_all add: div_geq) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
500 |
|
| 25942 | 501 |
lemmas div_self [simp] = semiring_div_class.div_self [of "n\<Colon>nat", standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
502 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
503 |
lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)" |
| 22718 | 504 |
apply (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n) ") |
505 |
apply (simp add: add_commute) |
|
506 |
apply (subst div_geq [symmetric], simp_all) |
|
507 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
508 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
509 |
lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)" |
| 22718 | 510 |
by (simp add: add_commute div_add_self2) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
511 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
512 |
lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n" |
| 22718 | 513 |
apply (subst div_add1_eq) |
514 |
apply (subst div_mult1_eq, simp) |
|
515 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
516 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
517 |
lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)" |
| 22718 | 518 |
by (simp add: mult_commute div_mult_self1) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
519 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
520 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
521 |
(* Monotonicity of div in first argument *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
522 |
lemma div_le_mono [rule_format (no_asm)]: |
| 22718 | 523 |
"\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)" |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
524 |
apply (case_tac "k=0", simp) |
| 15251 | 525 |
apply (induct "n" rule: nat_less_induct, clarify) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
526 |
apply (case_tac "n<k") |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
527 |
(* 1 case n<k *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
528 |
apply simp |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
529 |
(* 2 case n >= k *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
530 |
apply (case_tac "m<k") |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
531 |
(* 2.1 case m<k *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
532 |
apply simp |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
533 |
(* 2.2 case m>=k *) |
| 15439 | 534 |
apply (simp add: div_geq diff_le_mono) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
535 |
done |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
536 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
537 |
(* Antimonotonicity of div in second argument *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
538 |
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)" |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
539 |
apply (subgoal_tac "0<n") |
| 22718 | 540 |
prefer 2 apply simp |
| 15251 | 541 |
apply (induct_tac k rule: nat_less_induct) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
542 |
apply (rename_tac "k") |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
543 |
apply (case_tac "k<n", simp) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
544 |
apply (subgoal_tac "~ (k<m) ") |
| 22718 | 545 |
prefer 2 apply simp |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
546 |
apply (simp add: div_geq) |
| 15251 | 547 |
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n") |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
548 |
prefer 2 |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
549 |
apply (blast intro: div_le_mono diff_le_mono2) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
550 |
apply (rule le_trans, simp) |
| 15439 | 551 |
apply (simp) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
552 |
done |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
553 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
554 |
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)" |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
555 |
apply (case_tac "n=0", simp) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
556 |
apply (subgoal_tac "m div n \<le> m div 1", simp) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
557 |
apply (rule div_le_mono2) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
558 |
apply (simp_all (no_asm_simp)) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
559 |
done |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
560 |
|
| 22718 | 561 |
(* Similar for "less than" *) |
| 17085 | 562 |
lemma div_less_dividend [rule_format]: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
563 |
"!!n::nat. 1<n ==> 0 < m --> m div n < m" |
| 15251 | 564 |
apply (induct_tac m rule: nat_less_induct) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
565 |
apply (rename_tac "m") |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
566 |
apply (case_tac "m<n", simp) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
567 |
apply (subgoal_tac "0<n") |
| 22718 | 568 |
prefer 2 apply simp |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
569 |
apply (simp add: div_geq) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
570 |
apply (case_tac "n<m") |
| 15251 | 571 |
apply (subgoal_tac "(m-n) div n < (m-n) ") |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
572 |
apply (rule impI less_trans_Suc)+ |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
573 |
apply assumption |
| 15439 | 574 |
apply (simp_all) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
575 |
done |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
576 |
|
| 17085 | 577 |
declare div_less_dividend [simp] |
578 |
||
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
579 |
text{*A fact for the mutilated chess board*}
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
580 |
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))" |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
581 |
apply (case_tac "n=0", simp) |
| 15251 | 582 |
apply (induct "m" rule: nat_less_induct) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
583 |
apply (case_tac "Suc (na) <n") |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
584 |
(* case Suc(na) < n *) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
585 |
apply (frule lessI [THEN less_trans], simp add: less_not_refl3) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
586 |
(* case n \<le> Suc(na) *) |
| 16796 | 587 |
apply (simp add: linorder_not_less le_Suc_eq mod_geq) |
| 15439 | 588 |
apply (auto simp add: Suc_diff_le le_mod_geq) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
589 |
done |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
590 |
|
| 14437 | 591 |
lemma nat_mod_div_trivial [simp]: "m mod n div n = (0 :: nat)" |
| 22718 | 592 |
by (cases "n = 0") auto |
| 14437 | 593 |
|
594 |
lemma nat_mod_mod_trivial [simp]: "m mod n mod n = (m mod n :: nat)" |
|
| 22718 | 595 |
by (cases "n = 0") auto |
| 14437 | 596 |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
597 |
|
| 25942 | 598 |
subsubsection{*The Divides Relation*}
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
599 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
600 |
lemma dvdI [intro?]: "n = m * k ==> m dvd n" |
| 22718 | 601 |
unfolding dvd_def by blast |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
602 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
603 |
lemma dvdE [elim?]: "!!P. [|m dvd n; !!k. n = m*k ==> P|] ==> P" |
| 22718 | 604 |
unfolding dvd_def by blast |
| 13152 | 605 |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
606 |
lemma dvd_0_right [iff]: "m dvd (0::nat)" |
| 22718 | 607 |
unfolding dvd_def by (blast intro: mult_0_right [symmetric]) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
608 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
609 |
lemma dvd_0_left: "0 dvd m ==> m = (0::nat)" |
| 22718 | 610 |
by (force simp add: dvd_def) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
611 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
612 |
lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)" |
| 22718 | 613 |
by (blast intro: dvd_0_left) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
614 |
|
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24268
diff
changeset
|
615 |
declare dvd_0_left_iff [noatp] |
|
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24268
diff
changeset
|
616 |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
617 |
lemma dvd_1_left [iff]: "Suc 0 dvd k" |
| 22718 | 618 |
unfolding dvd_def by simp |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
619 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
620 |
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)" |
| 22718 | 621 |
by (simp add: dvd_def) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
622 |
|
| 25942 | 623 |
lemmas dvd_refl [simp] = semiring_div_class.dvd_refl [of "m\<Colon>nat", standard] |
624 |
lemmas dvd_trans [trans] = semiring_div_class.dvd_trans [of "m\<Colon>nat" n p, standard] |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
625 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
626 |
lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)" |
| 22718 | 627 |
unfolding dvd_def |
628 |
by (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
629 |
|
|
23684
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
haftmann
parents:
23162
diff
changeset
|
630 |
text {* @{term "op dvd"} is a partial order *}
|
|
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
haftmann
parents:
23162
diff
changeset
|
631 |
|
| 25942 | 632 |
interpretation dvd: order ["op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> n \<noteq> m"] |
|
23684
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
haftmann
parents:
23162
diff
changeset
|
633 |
by unfold_locales (auto intro: dvd_trans dvd_anti_sym) |
|
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
haftmann
parents:
23162
diff
changeset
|
634 |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
635 |
lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)" |
| 22718 | 636 |
unfolding dvd_def |
637 |
by (blast intro: add_mult_distrib2 [symmetric]) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
638 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
639 |
lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)" |
| 22718 | 640 |
unfolding dvd_def |
641 |
by (blast intro: diff_mult_distrib2 [symmetric]) |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
642 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
643 |
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)" |
| 22718 | 644 |
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst]) |
645 |
apply (blast intro: dvd_add) |
|
646 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
647 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
648 |
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)" |
| 22718 | 649 |
by (drule_tac m = m in dvd_diff, auto) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
650 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
651 |
lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)" |
| 22718 | 652 |
unfolding dvd_def by (blast intro: mult_left_commute) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
653 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
654 |
lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)" |
| 22718 | 655 |
apply (subst mult_commute) |
656 |
apply (erule dvd_mult) |
|
657 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
658 |
|
|
17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16796
diff
changeset
|
659 |
lemma dvd_triv_right [iff]: "k dvd (m*k :: nat)" |
| 22718 | 660 |
by (rule dvd_refl [THEN dvd_mult]) |
|
17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16796
diff
changeset
|
661 |
|
|
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16796
diff
changeset
|
662 |
lemma dvd_triv_left [iff]: "k dvd (k*m :: nat)" |
| 22718 | 663 |
by (rule dvd_refl [THEN dvd_mult2]) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
664 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
665 |
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))" |
| 22718 | 666 |
apply (rule iffI) |
667 |
apply (erule_tac [2] dvd_add) |
|
668 |
apply (rule_tac [2] dvd_refl) |
|
669 |
apply (subgoal_tac "n = (n+k) -k") |
|
670 |
prefer 2 apply simp |
|
671 |
apply (erule ssubst) |
|
672 |
apply (erule dvd_diff) |
|
673 |
apply (rule dvd_refl) |
|
674 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
675 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
676 |
lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n" |
| 22718 | 677 |
unfolding dvd_def |
678 |
apply (case_tac "n = 0", auto) |
|
679 |
apply (blast intro: mod_mult_distrib2 [symmetric]) |
|
680 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
681 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
682 |
lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n; k dvd n |] ==> k dvd m" |
| 22718 | 683 |
apply (subgoal_tac "k dvd (m div n) *n + m mod n") |
684 |
apply (simp add: mod_div_equality) |
|
685 |
apply (simp only: dvd_add dvd_mult) |
|
686 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
687 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
688 |
lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)" |
| 22718 | 689 |
by (blast intro: dvd_mod_imp_dvd dvd_mod) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
690 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
691 |
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n" |
| 22718 | 692 |
unfolding dvd_def |
693 |
apply (erule exE) |
|
694 |
apply (simp add: mult_ac) |
|
695 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
696 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
697 |
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))" |
| 22718 | 698 |
apply auto |
699 |
apply (subgoal_tac "m*n dvd m*1") |
|
700 |
apply (drule dvd_mult_cancel, auto) |
|
701 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
702 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
703 |
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))" |
| 22718 | 704 |
apply (subst mult_commute) |
705 |
apply (erule dvd_mult_cancel1) |
|
706 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
707 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
708 |
lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)" |
| 22718 | 709 |
apply (unfold dvd_def, clarify) |
710 |
apply (rule_tac x = "k*ka" in exI) |
|
711 |
apply (simp add: mult_ac) |
|
712 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
713 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
714 |
lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k" |
| 22718 | 715 |
by (simp add: dvd_def mult_assoc, blast) |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
716 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
717 |
lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k" |
| 22718 | 718 |
apply (unfold dvd_def, clarify) |
719 |
apply (rule_tac x = "i*k" in exI) |
|
720 |
apply (simp add: mult_ac) |
|
721 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
722 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
723 |
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)" |
| 22718 | 724 |
apply (unfold dvd_def, clarify) |
725 |
apply (simp_all (no_asm_use) add: zero_less_mult_iff) |
|
726 |
apply (erule conjE) |
|
727 |
apply (rule le_trans) |
|
728 |
apply (rule_tac [2] le_refl [THEN mult_le_mono]) |
|
729 |
apply (erule_tac [2] Suc_leI, simp) |
|
730 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
731 |
|
| 25942 | 732 |
lemmas dvd_eq_mod_eq_0 = dvd_def_mod [of "k\<Colon>nat" n, standard] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
733 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
734 |
lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)" |
| 22718 | 735 |
apply (subgoal_tac "m mod n = 0") |
736 |
apply (simp add: mult_div_cancel) |
|
737 |
apply (simp only: dvd_eq_mod_eq_0) |
|
738 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
739 |
|
| 21408 | 740 |
lemma le_imp_power_dvd: "!!i::nat. m \<le> n ==> i^m dvd i^n" |
| 22718 | 741 |
apply (unfold dvd_def) |
742 |
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst]) |
|
743 |
apply (simp add: power_add) |
|
744 |
done |
|
| 21408 | 745 |
|
| 25162 | 746 |
lemma nat_zero_less_power_iff [simp]: "(x^n > 0) = (x > (0::nat) | n=0)" |
| 22718 | 747 |
by (induct n) auto |
| 21408 | 748 |
|
749 |
lemma power_le_dvd [rule_format]: "k^j dvd n --> i\<le>j --> k^i dvd (n::nat)" |
|
| 22718 | 750 |
apply (induct j) |
751 |
apply (simp_all add: le_Suc_eq) |
|
752 |
apply (blast dest!: dvd_mult_right) |
|
753 |
done |
|
| 21408 | 754 |
|
755 |
lemma power_dvd_imp_le: "[|i^m dvd i^n; (1::nat) < i|] ==> m \<le> n" |
|
| 22718 | 756 |
apply (rule power_le_imp_le_exp, assumption) |
757 |
apply (erule dvd_imp_le, simp) |
|
758 |
done |
|
| 21408 | 759 |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
760 |
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)" |
| 22718 | 761 |
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def) |
|
17084
fb0a80aef0be
classical rules must have names for ATP integration
paulson
parents:
16796
diff
changeset
|
762 |
|
| 22718 | 763 |
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1] |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
764 |
|
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
765 |
(*Loses information, namely we also have r<d provided d is nonzero*) |
|
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
766 |
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d" |
| 22718 | 767 |
apply (cut_tac m = m in mod_div_equality) |
768 |
apply (simp only: add_ac) |
|
769 |
apply (blast intro: sym) |
|
770 |
done |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
771 |
|
| 14131 | 772 |
|
| 13152 | 773 |
lemma split_div: |
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
774 |
"P(n div k :: nat) = |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
775 |
((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
776 |
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))") |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
777 |
proof |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
778 |
assume P: ?P |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
779 |
show ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
780 |
proof (cases) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
781 |
assume "k = 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
782 |
with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
783 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
784 |
assume not0: "k \<noteq> 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
785 |
thus ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
786 |
proof (simp, intro allI impI) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
787 |
fix i j |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
788 |
assume n: "n = k*i + j" and j: "j < k" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
789 |
show "P i" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
790 |
proof (cases) |
| 22718 | 791 |
assume "i = 0" |
792 |
with n j P show "P i" by simp |
|
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
793 |
next |
| 22718 | 794 |
assume "i \<noteq> 0" |
795 |
with not0 n j P show "P i" by(simp add:add_ac) |
|
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
796 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
797 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
798 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
799 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
800 |
assume Q: ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
801 |
show ?P |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
802 |
proof (cases) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
803 |
assume "k = 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
804 |
with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
805 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
806 |
assume not0: "k \<noteq> 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
807 |
with Q have R: ?R by simp |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
808 |
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] |
| 13517 | 809 |
show ?P by simp |
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
810 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
811 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
812 |
|
| 13882 | 813 |
lemma split_div_lemma: |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
814 |
"0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))" |
| 25162 | 815 |
apply (rule iffI) |
816 |
apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient) |
|
817 |
prefer 3; apply assumption |
|
818 |
apply (simp_all add: quorem_def) |
|
819 |
apply arith |
|
820 |
apply (rule conjI) |
|
821 |
apply (rule_tac P="%x. n * (m div n) \<le> x" in |
|
| 13882 | 822 |
subst [OF mod_div_equality [of _ n]]) |
| 25162 | 823 |
apply (simp only: add: mult_ac) |
824 |
apply (rule_tac P="%x. x < n + n * (m div n)" in |
|
| 13882 | 825 |
subst [OF mod_div_equality [of _ n]]) |
| 25162 | 826 |
apply (simp only: add: mult_ac add_ac) |
827 |
apply (rule add_less_mono1, simp) |
|
828 |
done |
|
| 13882 | 829 |
|
830 |
theorem split_div': |
|
831 |
"P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or> |
|
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
832 |
(\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))" |
| 13882 | 833 |
apply (case_tac "0 < n") |
834 |
apply (simp only: add: split_div_lemma) |
|
835 |
apply (simp_all add: DIVISION_BY_ZERO_DIV) |
|
836 |
done |
|
837 |
||
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
838 |
lemma split_mod: |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
839 |
"P(n mod k :: nat) = |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
840 |
((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
841 |
(is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))") |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
842 |
proof |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
843 |
assume P: ?P |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
844 |
show ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
845 |
proof (cases) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
846 |
assume "k = 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
847 |
with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
848 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
849 |
assume not0: "k \<noteq> 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
850 |
thus ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
851 |
proof (simp, intro allI impI) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
852 |
fix i j |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
853 |
assume "n = k*i + j" "j < k" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
854 |
thus "P j" using not0 P by(simp add:add_ac mult_ac) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
855 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
856 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
857 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
858 |
assume Q: ?Q |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
859 |
show ?P |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
860 |
proof (cases) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
861 |
assume "k = 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
862 |
with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD) |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
863 |
next |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
864 |
assume not0: "k \<noteq> 0" |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
865 |
with Q have R: ?R by simp |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
866 |
from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"] |
| 13517 | 867 |
show ?P by simp |
|
13189
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
868 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
869 |
qed |
|
81ed5c6de890
Now arith can deal with div/mod arbitrary nat numerals.
nipkow
parents:
13152
diff
changeset
|
870 |
|
| 13882 | 871 |
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n" |
872 |
apply (rule_tac P="%x. m mod n = x - (m div n) * n" in |
|
873 |
subst [OF mod_div_equality [of _ n]]) |
|
874 |
apply arith |
|
875 |
done |
|
876 |
||
| 22800 | 877 |
lemma div_mod_equality': |
878 |
fixes m n :: nat |
|
879 |
shows "m div n * n = m - m mod n" |
|
880 |
proof - |
|
881 |
have "m mod n \<le> m mod n" .. |
|
882 |
from div_mod_equality have |
|
883 |
"m div n * n + m mod n - m mod n = m - m mod n" by simp |
|
884 |
with diff_add_assoc [OF `m mod n \<le> m mod n`, of "m div n * n"] have |
|
885 |
"m div n * n + (m mod n - m mod n) = m - m mod n" |
|
886 |
by simp |
|
887 |
then show ?thesis by simp |
|
888 |
qed |
|
889 |
||
890 |
||
| 25942 | 891 |
subsubsection {*An ``induction'' law for modulus arithmetic.*}
|
| 14640 | 892 |
|
893 |
lemma mod_induct_0: |
|
894 |
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)" |
|
895 |
and base: "P i" and i: "i<p" |
|
896 |
shows "P 0" |
|
897 |
proof (rule ccontr) |
|
898 |
assume contra: "\<not>(P 0)" |
|
899 |
from i have p: "0<p" by simp |
|
900 |
have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k") |
|
901 |
proof |
|
902 |
fix k |
|
903 |
show "?A k" |
|
904 |
proof (induct k) |
|
905 |
show "?A 0" by simp -- "by contradiction" |
|
906 |
next |
|
907 |
fix n |
|
908 |
assume ih: "?A n" |
|
909 |
show "?A (Suc n)" |
|
910 |
proof (clarsimp) |
|
| 22718 | 911 |
assume y: "P (p - Suc n)" |
912 |
have n: "Suc n < p" |
|
913 |
proof (rule ccontr) |
|
914 |
assume "\<not>(Suc n < p)" |
|
915 |
hence "p - Suc n = 0" |
|
916 |
by simp |
|
917 |
with y contra show "False" |
|
918 |
by simp |
|
919 |
qed |
|
920 |
hence n2: "Suc (p - Suc n) = p-n" by arith |
|
921 |
from p have "p - Suc n < p" by arith |
|
922 |
with y step have z: "P ((Suc (p - Suc n)) mod p)" |
|
923 |
by blast |
|
924 |
show "False" |
|
925 |
proof (cases "n=0") |
|
926 |
case True |
|
927 |
with z n2 contra show ?thesis by simp |
|
928 |
next |
|
929 |
case False |
|
930 |
with p have "p-n < p" by arith |
|
931 |
with z n2 False ih show ?thesis by simp |
|
932 |
qed |
|
| 14640 | 933 |
qed |
934 |
qed |
|
935 |
qed |
|
936 |
moreover |
|
937 |
from i obtain k where "0<k \<and> i+k=p" |
|
938 |
by (blast dest: less_imp_add_positive) |
|
939 |
hence "0<k \<and> i=p-k" by auto |
|
940 |
moreover |
|
941 |
note base |
|
942 |
ultimately |
|
943 |
show "False" by blast |
|
944 |
qed |
|
945 |
||
946 |
lemma mod_induct: |
|
947 |
assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)" |
|
948 |
and base: "P i" and i: "i<p" and j: "j<p" |
|
949 |
shows "P j" |
|
950 |
proof - |
|
951 |
have "\<forall>j<p. P j" |
|
952 |
proof |
|
953 |
fix j |
|
954 |
show "j<p \<longrightarrow> P j" (is "?A j") |
|
955 |
proof (induct j) |
|
956 |
from step base i show "?A 0" |
|
| 22718 | 957 |
by (auto elim: mod_induct_0) |
| 14640 | 958 |
next |
959 |
fix k |
|
960 |
assume ih: "?A k" |
|
961 |
show "?A (Suc k)" |
|
962 |
proof |
|
| 22718 | 963 |
assume suc: "Suc k < p" |
964 |
hence k: "k<p" by simp |
|
965 |
with ih have "P k" .. |
|
966 |
with step k have "P (Suc k mod p)" |
|
967 |
by blast |
|
968 |
moreover |
|
969 |
from suc have "Suc k mod p = Suc k" |
|
970 |
by simp |
|
971 |
ultimately |
|
972 |
show "P (Suc k)" by simp |
|
| 14640 | 973 |
qed |
974 |
qed |
|
975 |
qed |
|
976 |
with j show ?thesis by blast |
|
977 |
qed |
|
978 |
||
979 |
||
|
18202
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
980 |
lemma mod_add_left_eq: "((a::nat) + b) mod c = (a mod c + b) mod c" |
|
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
981 |
apply (rule trans [symmetric]) |
| 22718 | 982 |
apply (rule mod_add1_eq, simp) |
|
18202
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
983 |
apply (rule mod_add1_eq [symmetric]) |
|
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
984 |
done |
|
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
985 |
|
|
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
986 |
lemma mod_add_right_eq: "(a+b) mod (c::nat) = (a + (b mod c)) mod c" |
| 22718 | 987 |
apply (rule trans [symmetric]) |
988 |
apply (rule mod_add1_eq, simp) |
|
989 |
apply (rule mod_add1_eq [symmetric]) |
|
990 |
done |
|
|
18202
46af82efd311
presburger method updated to deal better with mod and div, tweo lemmas added to Divides.thy
chaieb
parents:
18154
diff
changeset
|
991 |
|
| 22800 | 992 |
lemma mod_div_decomp: |
993 |
fixes n k :: nat |
|
994 |
obtains m q where "m = n div k" and "q = n mod k" |
|
995 |
and "n = m * k + q" |
|
996 |
proof - |
|
997 |
from mod_div_equality have "n = n div k * k + n mod k" by auto |
|
998 |
moreover have "n div k = n div k" .. |
|
999 |
moreover have "n mod k = n mod k" .. |
|
1000 |
note that ultimately show thesis by blast |
|
1001 |
qed |
|
1002 |
||
| 20589 | 1003 |
|
| 25942 | 1004 |
subsubsection {* Code generation for div, mod and dvd on nat *}
|
| 20589 | 1005 |
|
| 22845 | 1006 |
definition [code func del]: |
| 20589 | 1007 |
"divmod (m\<Colon>nat) n = (m div n, m mod n)" |
1008 |
||
| 22718 | 1009 |
lemma divmod_zero [code]: "divmod m 0 = (0, m)" |
| 20589 | 1010 |
unfolding divmod_def by simp |
1011 |
||
1012 |
lemma divmod_succ [code]: |
|
1013 |
"divmod m (Suc k) = (if m < Suc k then (0, m) else |
|
1014 |
let |
|
1015 |
(p, q) = divmod (m - Suc k) (Suc k) |
|
| 22718 | 1016 |
in (Suc p, q))" |
| 20589 | 1017 |
unfolding divmod_def Let_def split_def |
1018 |
by (auto intro: div_geq mod_geq) |
|
1019 |
||
| 22718 | 1020 |
lemma div_divmod [code]: "m div n = fst (divmod m n)" |
| 20589 | 1021 |
unfolding divmod_def by simp |
1022 |
||
| 22718 | 1023 |
lemma mod_divmod [code]: "m mod n = snd (divmod m n)" |
| 20589 | 1024 |
unfolding divmod_def by simp |
1025 |
||
| 21191 | 1026 |
code_modulename SML |
| 23017 | 1027 |
Divides Nat |
| 20640 | 1028 |
|
|
21911
e29bcab0c81c
added OCaml code generation (without dictionaries)
haftmann
parents:
21408
diff
changeset
|
1029 |
code_modulename OCaml |
| 23017 | 1030 |
Divides Nat |
1031 |
||
1032 |
code_modulename Haskell |
|
1033 |
Divides Nat |
|
|
21911
e29bcab0c81c
added OCaml code generation (without dictionaries)
haftmann
parents:
21408
diff
changeset
|
1034 |
|
|
23684
8c508c4dc53b
introduced (auxiliary) class dvd_mod for more convenient code generation
haftmann
parents:
23162
diff
changeset
|
1035 |
hide (open) const divmod |
|
14267
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents:
14208
diff
changeset
|
1036 |
|
| 3366 | 1037 |
end |