src/HOL/Multivariate_Analysis/Integration.thy
author wenzelm
Thu, 04 Oct 2012 11:45:56 +0200
changeset 49698 f68e237e8c10
parent 49675 d9c2fb37d92a
child 49970 ca5ab959c0ae
permissions -rw-r--r--
tuned proofs;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
     1
header {* Kurzweil-Henstock Gauge Integration in many dimensions. *}
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
     2
(*  Author:                     John Harrison
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
     3
    Translation from HOL light: Robert Himmelmann, TU Muenchen *)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
     4
35292
e4a431b6d9b7 Replaced Integration by Multivariate-Analysis/Real_Integration
hoelzl
parents: 35291
diff changeset
     5
theory Integration
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 40513
diff changeset
     6
imports
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 40513
diff changeset
     7
  Derivative
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 40513
diff changeset
     8
  "~~/src/HOL/Library/Indicator_Function"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
     9
begin
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    10
47152
446cfc760ccf renamed "smt_fixed" to "smt_read_only_certificates"
blanchet
parents: 46905
diff changeset
    11
declare [[smt_certificates = "Integration.certs"]]
446cfc760ccf renamed "smt_fixed" to "smt_read_only_certificates"
blanchet
parents: 46905
diff changeset
    12
declare [[smt_read_only_certificates = true]]
446cfc760ccf renamed "smt_fixed" to "smt_read_only_certificates"
blanchet
parents: 46905
diff changeset
    13
declare [[smt_oracle = false]]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    14
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    15
(*declare not_less[simp] not_le[simp]*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    16
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    17
lemmas scaleR_simps = scaleR_zero_left scaleR_minus_left scaleR_left_diff_distrib
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    18
  scaleR_zero_right scaleR_minus_right scaleR_right_diff_distrib scaleR_eq_0_iff
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
    19
  scaleR_cancel_left scaleR_cancel_right scaleR_add_right scaleR_add_left real_vector_class.scaleR_one
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    20
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    21
lemma real_arch_invD:
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    22
  "0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    23
  by (subst(asm) real_arch_inv)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    24
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    25
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    26
subsection {* Sundries *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    27
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    28
lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    29
lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    30
lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    31
lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    32
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    33
declare norm_triangle_ineq4[intro] 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
    34
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    35
lemma simple_image: "{f x |x . x \<in> s} = f ` s" by blast
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    36
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    37
lemma linear_simps:  assumes "bounded_linear f"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    38
  shows "f (a + b) = f a + f b" "f (a - b) = f a - f b" "f 0 = 0" "f (- a) = - f a" "f (s *\<^sub>R v) = s *\<^sub>R (f v)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    39
  apply(rule_tac[!] additive.add additive.minus additive.diff additive.zero bounded_linear.scaleR)
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    40
  using assms unfolding bounded_linear_def additive_def
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    41
  apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    42
  done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    43
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    44
lemma bounded_linearI:
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    45
  assumes "\<And>x y. f (x + y) = f x + f y"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    46
    and "\<And>r x. f (r *\<^sub>R x) = r *\<^sub>R f x" "\<And>x. norm (f x) \<le> norm x * K"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    47
  shows "bounded_linear f"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    48
  unfolding bounded_linear_def additive_def bounded_linear_axioms_def using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    49
 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    50
lemma real_le_inf_subset:
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    51
  assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. b <=* s"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    52
  shows "Inf s <= Inf (t::real set)"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    53
  apply (rule isGlb_le_isLb)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    54
  apply (rule Inf[OF assms(1)])
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    55
  using assms apply -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    56
  apply (erule exE)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    57
  apply (rule_tac x=b in exI)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    58
  unfolding isLb_def setge_def
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    59
  apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    60
  done
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    61
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    62
lemma real_ge_sup_subset:
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    63
  assumes "t \<noteq> {}" "t \<subseteq> s" "\<exists>b. s *<= b"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    64
  shows "Sup s >= Sup (t::real set)"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    65
  apply (rule isLub_le_isUb)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    66
  apply (rule Sup[OF assms(1)])
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    67
  using assms apply -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    68
  apply (erule exE)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    69
  apply (rule_tac x=b in exI)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    70
  unfolding isUb_def setle_def
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    71
  apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    72
  done
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    73
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
    74
lemma bounded_linear_component[intro]: "bounded_linear (\<lambda>x::'a::euclidean_space. x $$ k)"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    75
  apply (rule bounded_linearI[where K=1])
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    76
  using component_le_norm[of _ k]
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    77
  unfolding real_norm_def
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    78
  apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    79
  done
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    80
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    81
lemma transitive_stepwise_lt_eq:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    82
  assumes "(\<And>x y z::nat. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
    83
  shows "((\<forall>m. \<forall>n>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n)))" (is "?l = ?r")
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    84
proof (safe)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    85
  assume ?r
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    86
  fix n m :: nat
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    87
  assume "m < n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    88
  then show "R m n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    89
  proof (induct n arbitrary: m)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    90
    case (Suc n)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    91
    show ?case 
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    92
    proof (cases "m < n")
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    93
      case True
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    94
      show ?thesis
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    95
        apply (rule assms[OF Suc(1)[OF True]])
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    96
        using `?r` apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    97
        done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    98
    next
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
    99
      case False
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   100
      hence "m = n" using Suc(2) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   101
      thus ?thesis using `?r` by auto
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   102
    qed
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   103
  qed auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   104
qed auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   105
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   106
lemma transitive_stepwise_gt:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   107
  assumes "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   108
  shows "\<forall>n>m. R m n"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   109
proof -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   110
  have "\<forall>m. \<forall>n>m. R m n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   111
    apply (subst transitive_stepwise_lt_eq)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   112
    apply (rule assms)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   113
    apply assumption
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   114
    apply assumption
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   115
    using assms(2) apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   116
    done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   117
  thus ?thesis by auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   118
qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   119
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   120
lemma transitive_stepwise_le_eq:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   121
  assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   122
  shows "(\<forall>m. \<forall>n\<ge>m. R m n) \<longleftrightarrow> (\<forall>n. R n (Suc n))" (is "?l = ?r")
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   123
proof safe
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   124
  assume ?r
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   125
  fix m n :: nat
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   126
  assume "m \<le> n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   127
  thus "R m n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   128
  proof (induct n arbitrary: m)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   129
    case (Suc n)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   130
    show ?case
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   131
    proof (cases "m \<le> n")
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   132
      case True
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   133
      show ?thesis
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   134
        apply (rule assms(2))
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   135
        apply (rule Suc(1)[OF True])
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   136
        using `?r` apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   137
        done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   138
    next
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   139
      case False
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   140
      hence "m = Suc n" using Suc(2) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   141
      thus ?thesis using assms(1) by auto
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   142
    qed
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   143
  qed (insert assms(1), auto)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   144
qed auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   145
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   146
lemma transitive_stepwise_le:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   147
  assumes "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" "\<And>n. R n (Suc n) "
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   148
  shows "\<forall>n\<ge>m. R m n"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   149
proof -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   150
  have "\<forall>m. \<forall>n\<ge>m. R m n"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   151
    apply (subst transitive_stepwise_le_eq)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   152
    apply (rule assms)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   153
    apply (rule assms,assumption,assumption)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   154
    using assms(3) apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   155
    done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   156
  thus ?thesis by auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   157
qed
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   158
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
   159
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   160
subsection {* Some useful lemmas about intervals. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   161
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   162
abbreviation One  where "One \<equiv> ((\<chi>\<chi> i. 1)::_::ordered_euclidean_space)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   163
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   164
lemma empty_as_interval: "{} = {One..0}"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   165
  apply (rule set_eqI,rule)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   166
  defer
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   167
  unfolding mem_interval
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   168
  using UNIV_witness[where 'a='n]
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   169
  apply (erule_tac exE, rule_tac x=x in allE)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   170
  apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   171
  done
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   173
lemma interior_subset_union_intervals: 
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   174
  assumes "i = {a..b::'a::ordered_euclidean_space}" "j = {c..d}"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   175
    "interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   176
  shows "interior i \<subseteq> interior s"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   177
proof -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   178
  have "{a<..<b} \<inter> {c..d} = {}"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   179
    using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   180
    unfolding assms(1,2) interior_closed_interval by auto
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   181
  moreover
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   182
    have "{a<..<b} \<subseteq> {c..d} \<union> s"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   183
      apply (rule order_trans,rule interval_open_subset_closed)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   184
      using assms(4) unfolding assms(1,2)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   185
      apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   186
      done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   187
  ultimately
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   188
  show ?thesis
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   189
    apply -
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   190
    apply (rule interior_maximal) defer
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   191
    apply (rule open_interior)
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   192
    unfolding assms(1,2) interior_closed_interval apply auto
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   193
    done
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   194
qed
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   195
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   196
lemma inter_interior_unions_intervals:
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   197
  fixes f::"('a::ordered_euclidean_space) set set"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   198
  assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
49675
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   199
  shows "s \<inter> interior(\<Union>f) = {}"
d9c2fb37d92a tuned proofs;
wenzelm
parents: 49197
diff changeset
   200
proof (rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   201
  have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule  defer apply(rule_tac Int_greatest)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   202
    unfolding open_subset_interior[OF open_ball]  using interior_subset by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   203
  have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   204
  have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   205
  thus ?case proof(induct rule:finite_induct) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   206
    case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   207
    case (insert i f) guess x using insert(5) .. note x = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   208
    then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   209
    guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   210
    show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   211
      then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] ..
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   212
      hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" unfolding ab ball_min_Int by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   213
      hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 unfolding  ball_min_Int by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   214
      hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   215
      hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   216
    case True show ?thesis proof(cases "x\<in>{a<..<b}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   217
      case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   218
      thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI)
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   219
        unfolding ab using interval_open_subset_closed[of a b] and e by fastforce+ next
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   220
    case False then obtain k where "x$$k \<le> a$$k \<or> x$$k \<ge> b$$k" and k:"k<DIM('a)" unfolding mem_interval by(auto simp add:not_less) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   221
    hence "x$$k = a$$k \<or> x$$k = b$$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   222
    hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   223
      let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$$k = a$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   224
        fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   225
        hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto
44167
e81d676d598e avoid duplicate rule warnings
huffman
parents: 44140
diff changeset
   226
        hence "y$$k < a$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   227
        hence "y \<notin> i" unfolding ab mem_interval not_all apply(rule_tac x=k in exI) using k by auto thus False using yi by auto qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   228
      moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   229
        fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)"
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   230
           apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"])
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   231
          unfolding norm_scaleR norm_basis by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   232
        also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   233
        finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   234
      ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   235
    next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$$k = b$$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   236
        fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   237
        hence "\<bar>(?z - y) $$ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding dist_norm by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   238
        hence "y$$k > b$$k" using e[THEN conjunct1] k by(auto simp add:field_simps as)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   239
        hence "y \<notin> i" unfolding ab mem_interval not_all using k by(rule_tac x=k in exI,auto) thus False using yi by auto qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   240
      moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   241
        fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)"
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   242
           apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"])
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   243
          unfolding norm_scaleR by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   244
        also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball dist_norm using e by(auto simp add:field_simps)
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   245
        finally show "y\<in>ball x e" unfolding mem_ball dist_norm using e by(auto simp add:field_simps) qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   246
      ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   247
    then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   248
    thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   249
  guess t using *[OF assms(1,3) goal1]  .. from this(2) guess x .. then guess e ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   250
  hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   251
  thus False using `t\<in>f` assms(4) by auto qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   252
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   253
subsection {* Bounds on intervals where they exist. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   254
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   255
definition "interval_upperbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Sup {a. \<exists>x\<in>s. x$$i = a})::'a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   256
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   257
definition "interval_lowerbound (s::('a::ordered_euclidean_space) set) = ((\<chi>\<chi> i. Inf {a. \<exists>x\<in>s. x$$i = a})::'a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   258
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   259
lemma interval_upperbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_upperbound {a..b} = b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   260
  using assms unfolding interval_upperbound_def apply(subst euclidean_eq[where 'a='a]) apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   261
  unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   262
  apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   263
  apply(rule,rule) apply(rule_tac x="b$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   264
  unfolding mem_interval using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   265
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   266
lemma interval_lowerbound[simp]: assumes "\<forall>i<DIM('a::ordered_euclidean_space). a$$i \<le> (b::'a)$$i" shows "interval_lowerbound {a..b} = a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   267
  using assms unfolding interval_lowerbound_def apply(subst euclidean_eq[where 'a='a]) apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   268
  unfolding euclidean_lambda_beta' apply(erule_tac x=i in allE)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   269
  apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   270
  apply(rule,rule) apply(rule_tac x="a$$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   271
  unfolding mem_interval using assms by auto 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   272
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   273
lemmas interval_bounds = interval_upperbound interval_lowerbound
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   274
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   275
lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   276
  using assms unfolding interval_ne_empty by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   277
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   278
subsection {* Content (length, area, volume...) of an interval. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   279
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   280
definition "content (s::('a::ordered_euclidean_space) set) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   281
       (if s = {} then 0 else (\<Prod>i<DIM('a). (interval_upperbound s)$$i - (interval_lowerbound s)$$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   282
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   283
lemma interval_not_empty:"\<forall>i<DIM('a). a$$i \<le> b$$i \<Longrightarrow> {a..b::'a::ordered_euclidean_space} \<noteq> {}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   284
  unfolding interval_eq_empty unfolding not_ex not_less by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   285
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   286
lemma content_closed_interval: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i \<le> b$$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   287
  shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   288
  using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   289
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   290
lemma content_closed_interval': fixes a::"'a::ordered_euclidean_space" assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i<DIM('a). b$$i - a$$i)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   291
  apply(rule content_closed_interval) using assms unfolding interval_ne_empty .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   292
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   293
lemma content_real:assumes "a\<le>b" shows "content {a..b} = b-a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   294
proof- have *:"{..<Suc 0} = {0}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   295
  show ?thesis unfolding content_def using assms by(auto simp: *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   296
qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   297
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   298
lemma content_unit[intro]: "content{0..One::'a::ordered_euclidean_space} = 1" proof-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   299
  have *:"\<forall>i<DIM('a). (0::'a)$$i \<le> (One::'a)$$i" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   300
  have "0 \<in> {0..One::'a}" unfolding mem_interval by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   301
  thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   302
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   303
lemma content_pos_le[intro]: fixes a::"'a::ordered_euclidean_space" shows "0 \<le> content {a..b}" proof(cases "{a..b}={}")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   304
  case False hence *:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by assumption
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   305
  have "(\<Prod>i<DIM('a). interval_upperbound {a..b} $$ i - interval_lowerbound {a..b} $$ i) \<ge> 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   306
    apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   307
  thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   308
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   309
lemma content_pos_lt: fixes a::"'a::ordered_euclidean_space" assumes "\<forall>i<DIM('a). a$$i < b$$i" shows "0 < content {a..b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   310
proof- have help_lemma1: "\<forall>i<DIM('a). a$$i < b$$i \<Longrightarrow> \<forall>i<DIM('a). a$$i \<le> ((b$$i)::real)" apply(rule,erule_tac x=i in allE) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   311
  show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   312
    using assms apply(erule_tac x=x in allE) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   313
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   314
lemma content_eq_0: "content{a..b::'a::ordered_euclidean_space} = 0 \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i)" proof(cases "{a..b} = {}")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   315
  case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   316
    apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   317
  case False note this[unfolded interval_eq_empty not_ex not_less]
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   318
  hence as:"\<forall>i<DIM('a). b $$ i \<ge> a $$ i" by fastforce
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   319
  show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_lessThan]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   320
    apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   321
    apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   322
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   323
lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   324
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   325
lemma content_closed_interval_cases:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   326
  "content {a..b::'a::ordered_euclidean_space} = (if \<forall>i<DIM('a). a$$i \<le> b$$i then setprod (\<lambda>i. b$$i - a$$i) {..<DIM('a)} else 0)" apply(rule cond_cases) 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   327
  apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   328
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   329
lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   330
  unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   331
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   332
(*lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   333
  unfolding content_eq_0 by auto*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   334
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   335
lemma content_pos_lt_eq: "0 < content {a..b::'a::ordered_euclidean_space} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < b$$i)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   336
  apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   337
  hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i<DIM('a). a$$i < b$$i" unfolding content_eq_0 not_ex not_le by fastforce qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   338
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   339
lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   340
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   341
lemma content_subset:
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   342
  assumes "{a..b} \<subseteq> {c..d}"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   343
  shows "content {a..b::'a::ordered_euclidean_space} \<le> content {c..d}"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   344
proof (cases "{a..b} = {}")
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   345
  case True
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   346
  thus ?thesis using content_pos_le[of c d] by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   347
next
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   348
  case False
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   349
  hence ab_ne:"\<forall>i<DIM('a). a $$ i \<le> b $$ i" unfolding interval_ne_empty by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   350
  hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   351
  have "{c..d} \<noteq> {}" using assms False by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   352
  hence cd_ne:"\<forall>i<DIM('a). c $$ i \<le> d $$ i" using assms unfolding interval_ne_empty by auto
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   353
  show ?thesis
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   354
    unfolding content_def
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   355
    unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne]
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   356
    unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`]
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   357
    apply(rule setprod_mono,rule)
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   358
  proof
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   359
    fix i
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   360
    assume i:"i\<in>{..<DIM('a)}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   361
    show "0 \<le> b $$ i - a $$ i" using ab_ne[THEN spec[where x=i]] i by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   362
    show "b $$ i - a $$ i \<le> d $$ i - c $$ i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   363
      using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i]
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   364
      using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i]
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   365
      using i by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   366
  qed
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   367
qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   368
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   369
lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   370
  unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by fastforce
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   371
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   372
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   373
subsection {* The notion of a gauge --- simply an open set containing the point. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   374
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   375
definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   376
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   377
lemma gaugeI: assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   378
  using assms unfolding gauge_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   379
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   380
lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   381
  using assms unfolding gauge_def by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   382
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   383
lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   384
  unfolding gauge_def by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   385
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
   386
lemma gauge_ball[intro]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   387
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   388
lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   389
  by (rule gauge_ball) auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   390
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
   391
lemma gauge_inter[intro]: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   392
  unfolding gauge_def by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   393
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   394
lemma gauge_inters:
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   395
  assumes "finite s" "\<forall>d\<in>s. gauge (f d)"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   396
  shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   397
proof -
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   398
  have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   399
  show ?thesis
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   400
    unfolding gauge_def unfolding * 
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   401
    using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   402
qed
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   403
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   404
lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   405
  by(meson zero_less_one)
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   406
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   407
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   408
subsection {* Divisions. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   409
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   410
definition division_of (infixl "division'_of" 40) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   411
  "s division_of i \<equiv>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   412
        finite s \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   413
        (\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   414
        (\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   415
        (\<Union>s = i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   416
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   417
lemma division_ofD[dest]:
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   418
  assumes "s division_of i"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   419
  shows "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   420
    "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   421
  using assms unfolding division_of_def by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   422
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   423
lemma division_ofI:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   424
  assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   425
    "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   426
  shows "s division_of i" using assms unfolding division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   427
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   428
lemma division_of_finite: "s division_of i \<Longrightarrow> finite s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   429
  unfolding division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   430
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   431
lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   432
  unfolding division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   433
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   434
lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   435
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   436
lemma division_of_sing[simp]:
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   437
  "s division_of {a..a::'a::ordered_euclidean_space} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r")
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   438
proof
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   439
  assume ?r
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   440
  moreover {
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   441
    assume "s = {{a}}"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   442
    moreover fix k assume "k\<in>s" 
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   443
    ultimately have"\<exists>x y. k = {x..y}"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   444
      apply (rule_tac x=a in exI)+ unfolding interval_sing by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   445
  }
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   446
  ultimately show ?l unfolding division_of_def interval_sing by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   447
next
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   448
  assume ?l
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   449
  note as=conjunctD4[OF this[unfolded division_of_def interval_sing]]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   450
  { fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   451
  moreover have "s \<noteq> {}" using as(4) by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   452
  ultimately show ?r unfolding interval_sing by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   453
qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   454
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   455
lemma elementary_empty: obtains p where "p division_of {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   456
  unfolding division_of_trivial by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   457
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   458
lemma elementary_interval: obtains p where "p division_of {a..b}"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   459
  by (metis division_of_trivial division_of_self)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   460
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   461
lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   462
  unfolding division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   463
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   464
lemma forall_in_division:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   465
 "d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   466
  unfolding division_of_def by fastforce
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   467
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   468
lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)"
49698
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   469
  apply (rule division_ofI)
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   470
proof -
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   471
  note as=division_ofD[OF assms(1)]
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   472
  show "finite q"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   473
    apply (rule finite_subset)
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   474
    using as(1) assms(2) apply auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   475
    done
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   476
  { fix k
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   477
    assume "k \<in> q"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   478
    hence kp:"k\<in>p" using assms(2) by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   479
    show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   480
    show "\<exists>a b. k = {a..b}" using as(4)[OF kp]
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   481
      by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   482
  fix k1 k2
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   483
  assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   484
  hence *: "k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   485
  show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   486
qed auto
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   487
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   488
lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)"
f68e237e8c10 tuned proofs;
wenzelm
parents: 49675
diff changeset
   489
  unfolding division_of_def by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   490
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   491
lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   492
  unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   493
  apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   494
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   495
lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::('a::ordered_euclidean_space) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   496
  shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   497
let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   498
show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   499
  moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
   500
  have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_eqI) unfolding * and Union_image_eq UN_iff
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   501
    using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   502
  { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   503
  show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   504
  guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   505
  guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   506
  show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   507
  assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   508
  assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   509
  assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   510
  have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   511
      interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   512
      interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   513
      \<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   514
  show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] interior_mono)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   515
    using division_ofD(5)[OF assms(1) k1(2) k2(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   516
    using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   517
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   518
lemma division_inter_1: assumes "d division_of i" "{a..b::'a::ordered_euclidean_space} \<subseteq> i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   519
  shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   520
  case True show ?thesis unfolding True and division_of_trivial by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   521
  have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   522
  case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   523
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   524
lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::('a::ordered_euclidean_space) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   525
  shows "\<exists>p. p division_of (s \<inter> t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   526
  by(rule,rule division_inter[OF assms])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   527
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   528
lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::('a::ordered_euclidean_space) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   529
  shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   530
case (insert x f) show ?case proof(cases "f={}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   531
  case True thus ?thesis unfolding True using insert by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   532
  case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   533
  moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   534
  show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   535
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   536
lemma division_disjoint_union:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   537
  assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   538
  shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   539
  note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   540
  show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   541
  show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   542
  { fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   543
  { assume as:"k1\<in>p1" "k2\<in>p2" have ?g using interior_mono[OF d1(2)[OF as(1)]] interior_mono[OF d2(2)[OF as(2)]]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   544
      using assms(3) by blast } moreover
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   545
  { assume as:"k1\<in>p2" "k2\<in>p1" have ?g using interior_mono[OF d1(2)[OF as(2)]] interior_mono[OF d2(2)[OF as(1)]]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   546
      using assms(3) by blast} ultimately
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   547
  show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   548
  fix k assume k:"k \<in> p1 \<union> p2"  show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   549
  show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   550
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   551
lemma partial_division_extend_1:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   552
  assumes "{c..d} \<subseteq> {a..b::'a::ordered_euclidean_space}" "{c..d} \<noteq> {}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   553
  obtains p where "p division_of {a..b}" "{c..d} \<in> p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   554
proof- def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def using DIM_positive[where 'a='a] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   555
  guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_lessThan[of "DIM('a)"]] .. note \<pi>=this
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   556
  def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   557
  have \<pi>':"bij_betw \<pi>' {..<DIM('a)} {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   558
  hence \<pi>'i:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   559
  have \<pi>i:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi> i <DIM('a)" using \<pi> unfolding bij_betw_def n_def by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   560
  have \<pi>\<pi>'[simp]:"\<And>i. i<DIM('a) \<Longrightarrow> \<pi> (\<pi>' i) = i" unfolding \<pi>'_def
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   561
    apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   562
  have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   563
    using \<pi> unfolding n_def bij_betw_def by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   564
  have "{c..d} \<noteq> {}" using assms by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   565
  let ?p1 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else if \<pi>' i = l then c$$\<pi> l else b$$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   566
  let ?p2 = "\<lambda>l. {(\<chi>\<chi> i. if \<pi>' i < l then c$$i else if \<pi>' i = l then d$$\<pi> l else a$$i)::'a .. (\<chi>\<chi> i. if \<pi>' i < l then d$$i else b$$i)}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   567
  let ?p =  "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   568
  have abcd:"\<And>i. i<DIM('a) \<Longrightarrow> a $$ i \<le> c $$ i \<and> c$$i \<le> d$$i \<and> d $$ i \<le> b $$ i" using assms
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   569
    unfolding subset_interval interval_eq_empty by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   570
  show ?thesis apply(rule that[of ?p]) apply(rule division_ofI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   571
  proof- have "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < Suc n"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   572
    proof(rule ccontr,unfold not_less) fix i assume i:"i<DIM('a)" and "Suc n \<le> \<pi>' i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   573
      hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' i unfolding bij_betw_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   574
    qed hence "c = (\<chi>\<chi> i. if \<pi>' i < Suc n then c $$ i else a $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   575
        "d = (\<chi>\<chi> i. if \<pi>' i < Suc n then d $$ i else if \<pi>' i = n + 1 then c $$ \<pi> (n + 1) else b $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   576
      unfolding euclidean_eq[where 'a='a] using \<pi>' unfolding bij_betw_def by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   577
    thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   578
    have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}"  "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   579
      unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   580
    proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   581
      then guess i unfolding mem_interval not_all not_imp .. note i=conjunctD2[OF this]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   582
      show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   583
        apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   584
    qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   585
    proof- fix x assume x:"x\<in>{a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   586
      { presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   587
      let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $$ \<pi> i \<le> x $$ \<pi> i \<and> x $$ \<pi> i \<le> d $$ \<pi> i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   588
      assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all not_imp ..
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   589
      hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   590
      hence M:"finite ?M" "?M \<noteq> {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   591
      def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   592
        Min_gr_iff[OF M,unfolded l_def[symmetric]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   593
      have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   594
        apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   595
      proof- assume as:"x $$ \<pi> l < c $$ \<pi> l"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   596
        show "x \<in> ?p1 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   597
        proof- case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal1 by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   598
          thus ?case using as x[unfolded mem_interval,rule_format,of i]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   599
            apply auto using l(3)[of "\<pi>' i"] using goal1 by(auto elim!:ballE[where x="\<pi>' i"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   600
        next case goal2 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using goal2 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   601
          thus ?case using as x[unfolded mem_interval,rule_format,of i]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   602
            apply auto using l(3)[of "\<pi>' i"] using goal2 by(auto elim!:ballE[where x="\<pi>' i"])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   603
        qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   604
      next assume as:"x $$ \<pi> l > d $$ \<pi> l"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   605
        show "x \<in> ?p2 l" unfolding mem_interval apply safe unfolding euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   606
        proof- fix i assume i:"i<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   607
          have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le using i by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   608
          thus "(if \<pi>' i < l then c $$ i else if \<pi>' i = l then d $$ \<pi> l else a $$ i) \<le> x $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   609
            "x $$ i \<le> (if \<pi>' i < l then d $$ i else b $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   610
            using as x[unfolded mem_interval,rule_format,of i]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   611
            apply auto using l(3)[of "\<pi>' i"] i by(auto elim!:ballE[where x="\<pi>' i"])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   612
        qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   613
      thus "x \<in> \<Union>?p" using l(2) by blast 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   614
    qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   615
    
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   616
    show "finite ?p" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   617
    fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   618
    show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule) 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   619
    proof fix i x assume i:"i<DIM('a)" assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   620
      ultimately show "a$$i \<le> x$$i" "x$$i \<le> b$$i" using abcd[of i] using l using i
44457
d366fa5551ef declare euclidean_simps [simp] at the point they are proved;
huffman
parents: 44282
diff changeset
   621
        by(auto elim!:allE[where x=i] simp add:eucl_le[where 'a='a]) (* FIXME: SLOW *)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   622
    qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   623
    proof- case goal1 thus ?case using abcd[of x] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   624
    next   case goal2 thus ?case using abcd[of x] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   625
    qed thus "k \<noteq> {}" using k by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   626
    show "\<exists>a b. k = {a..b}" using k by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   627
    fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   628
    { fix k k' l l'
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   629
      assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   630
      assume k':"k' \<in> ?p" "k \<noteq> k'" and  l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   631
      assume "l \<le> l'" fix x
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   632
      have "x \<notin> interior k \<inter> interior k'" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   633
      proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   634
        case True hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l'" using \<pi>'i using l' by(auto simp add:less_Suc_eq_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   635
        hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l' then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   636
        hence k':"k' = {c..d}" using l'(1) unfolding * by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   637
        have ln:"l < n + 1" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   638
        proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   639
          hence "\<And>i. i<DIM('a) \<Longrightarrow> \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   640
          hence *:"\<And> P Q. (\<chi>\<chi> i. if \<pi>' i < l then P i else Q i) = ((\<chi>\<chi> i. P i)::'a)" apply-apply(subst euclidean_eq) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   641
          hence "k = {c..d}" using l(1) \<pi>'i unfolding * by(auto)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   642
          thus False using `k\<noteq>k'` k' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   643
        qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   644
        have "x $$ \<pi> l < c $$ \<pi> l \<or> d $$ \<pi> l < x $$ \<pi> l" using l(1) apply-
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   645
        proof(erule disjE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   646
          assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   647
          show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] by(auto simp add:** not_less)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   648
        next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   649
          show ?thesis using *[of "\<pi> l"] using ln l(2) using \<pi>i[of l] unfolding ** by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   650
        qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   651
          by(auto elim!:allE[where x="\<pi> l"])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   652
      next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   653
        hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   654
        note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   655
        assume x:"x \<in> interior k \<inter> interior k'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   656
        show False using l(1) l'(1) apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   657
        proof(erule_tac[!] disjE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   658
          assume as:"k = ?p1 l" "k' = ?p1 l'"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   659
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   660
          have "l \<noteq> l'" using k'(2)[unfolded as] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   661
          thus False using *[of "\<pi> l'"] *[of "\<pi> l"] ln using \<pi>i[OF ln(1)] \<pi>i[OF ln(2)] apply(cases "l<l'")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   662
            by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   663
        next assume as:"k = ?p2 l" "k' = ?p2 l'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   664
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   665
          have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   666
          thus False using *[of "\<pi> l"] *[of "\<pi> l'"]  `l \<le> l'` ln by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   667
        next assume as:"k = ?p1 l" "k' = ?p2 l'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   668
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   669
          show False using abcd[of "\<pi> l'"] using *[of "\<pi> l"] *[of "\<pi> l'"]  `l \<le> l'` ln apply(cases "l=l'")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   670
            by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   671
        next assume as:"k = ?p2 l" "k' = ?p1 l'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   672
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   673
          show False using *[of "\<pi> l"] *[of "\<pi> l'"] ln `l \<le> l'` apply(cases "l=l'") using abcd[of "\<pi> l'"] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   674
            by(auto simp add:euclidean_lambda_beta' \<pi>l \<pi>i n_def)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   675
        qed qed } 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   676
    from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   677
      apply - apply(cases "l' \<le> l") using k'(2) by auto            
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   678
    thus "interior k \<inter> interior k' = {}" by auto        
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   679
qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   680
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   681
lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   682
  obtains q where "p \<subseteq> q" "q division_of {a..b::'a::ordered_euclidean_space}" proof(cases "p = {}")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   683
  case True guess q apply(rule elementary_interval[of a b]) .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   684
  thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   685
  case False note p = division_ofD[OF assms(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   686
  have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   687
    guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   688
    have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   689
    guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   690
  guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   691
  have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   692
    fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   693
      using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   694
  hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   695
    apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   696
  then guess d .. note d = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   697
  show ?thesis apply(rule that[of "d \<union> p"]) proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   698
    have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   699
    have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   700
      show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   701
    show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   702
      apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   703
      fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   704
      show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
41958
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   705
        defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]]
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   706
        show "finite (q k - {k})" "open (interior k)"  "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   707
        show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
5abc60a017e0 eliminated hard tabs;
wenzelm
parents: 41874
diff changeset
   708
        have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   709
          apply(rule interior_mono *)+ using k by auto qed qed qed auto qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   710
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   711
lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::('a::ordered_euclidean_space) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   712
  unfolding division_of_def by(metis bounded_Union bounded_interval) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   713
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   714
lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::'a::ordered_euclidean_space}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   715
  by(meson elementary_bounded bounded_subset_closed_interval)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   716
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   717
lemma division_union_intervals_exists: assumes "{a..b::'a::ordered_euclidean_space} \<noteq> {}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   718
  obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   719
  case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   720
  case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   721
  have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   722
  case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   723
    using false True assms using interior_subset by auto next
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   724
  case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   725
  have *:"{u..v} \<subseteq> {c..d}" using uv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   726
  guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   727
  have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   728
  show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   729
    apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   730
    unfolding interior_inter[THEN sym] proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   731
    have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   732
    have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   733
      apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   734
    also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   735
    finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   736
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   737
lemma division_of_unions: assumes "finite f"  "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   738
  "\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   739
  shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   740
  apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   741
  using division_ofD[OF assms(2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   742
  
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   743
lemma elementary_union_interval: assumes "p division_of \<Union>p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   744
  obtains q where "q division_of ({a..b::'a::ordered_euclidean_space} \<union> \<Union>p)" proof-
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   745
  note assm=division_ofD[OF assms]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   746
  have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   747
  have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   748
{ presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   749
    "p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   750
  thus thesis by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   751
next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   752
  thus thesis apply(rule_tac that[of p]) unfolding as by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   753
next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   754
next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   755
  show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   756
    unfolding finite_insert apply(rule assm(1)) unfolding Union_insert  
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   757
    using assm(2-4) as apply- by(fastforce dest: assm(5))+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   758
next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   759
  have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   760
    from assm(4)[OF this] guess c .. then guess d ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   761
    thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   762
  qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   763
  let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   764
  show thesis apply(rule that[of "?D"]) proof(rule division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   765
    have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   766
    show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   767
    show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   768
      using q(6) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   769
    fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   770
    show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   771
    fix k' assume k':"k'\<in>?D" "k\<noteq>k'"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   772
    obtain x  where x: "k \<in>insert {a..b} (q x)"  "x\<in>p"  using k  by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   773
    obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   774
    show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   775
      case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   776
    next case False 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   777
      { presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   778
        "k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   779
        thus ?thesis by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   780
      { assume as':"k  = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   781
      { assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x  k'(2) unfolding as' by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   782
      assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   783
      guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   784
      have "interior k  \<inter> interior {a..b} = {}" apply(rule q(5)) using x  k'(2) using as' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   785
      hence "interior k \<subseteq> interior x" apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   786
        apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   787
      guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   788
      have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   789
      hence "interior k' \<subseteq> interior x'" apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   790
        apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   791
      ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   792
    qed qed } qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   793
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   794
lemma elementary_unions_intervals:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   795
  assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::'a::ordered_euclidean_space}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   796
  obtains p where "p division_of (\<Union>f)" proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   797
  have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   798
    show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   799
    fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   800
    from this(3) guess p .. note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   801
    from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   802
    have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   803
    show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   804
      unfolding Union_insert ab * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   805
  qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   806
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   807
lemma elementary_union: assumes "ps division_of s" "pt division_of (t::('a::ordered_euclidean_space) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   808
  obtains p where "p division_of (s \<union> t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   809
proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   810
  hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   811
  show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   812
    unfolding * prefer 3 apply(rule_tac p=p in that)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   813
    using assms[unfolded division_of_def] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   814
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   815
lemma partial_division_extend: fixes t::"('a::ordered_euclidean_space) set"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   816
  assumes "p division_of s" "q division_of t" "s \<subseteq> t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   817
  obtains r where "p \<subseteq> r" "r division_of t" proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   818
  note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   819
  obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   820
  guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   821
    apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+  note r1 = this division_ofD[OF this(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   822
  guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   823
  then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   824
    apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   825
  { fix x assume x:"x\<in>t" "x\<notin>s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   826
    hence "x\<in>\<Union>r1" unfolding r1 using ab by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   827
    then guess r unfolding Union_iff .. note r=this moreover
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   828
    have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   829
      thus False using x by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   830
    ultimately have "x\<in>\<Union>(r1 - p)" by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   831
  hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   832
  show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   833
    unfolding divp(6) apply(rule assms r2)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   834
  proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   835
    proof(rule inter_interior_unions_intervals)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   836
      show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   837
      have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   838
      show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   839
        fix m x assume as:"m\<in>r1-p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   840
        have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   841
          show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   842
          show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   843
        qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   844
      qed qed        
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   845
    thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   846
  qed auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   847
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   848
subsection {* Tagged (partial) divisions. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   849
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   850
definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   851
  "(s tagged_partial_division_of i) \<equiv>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   852
        finite s \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   853
        (\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   854
        (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   855
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   856
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   857
lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   858
  shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   859
  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   860
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   861
  using assms unfolding tagged_partial_division_of_def  apply- by blast+ 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   862
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   863
definition tagged_division_of (infixr "tagged'_division'_of" 40) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   864
  "(s tagged_division_of i) \<equiv>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   865
        (s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   866
44167
e81d676d598e avoid duplicate rule warnings
huffman
parents: 44140
diff changeset
   867
lemma tagged_division_of_finite: "s tagged_division_of i \<Longrightarrow> finite s"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   868
  unfolding tagged_division_of_def tagged_partial_division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   869
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   870
lemma tagged_division_of:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   871
 "(s tagged_division_of i) \<longleftrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   872
        finite s \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   873
        (\<forall>x k. (x,k) \<in> s
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   874
               \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   875
        (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   876
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   877
        (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   878
  unfolding tagged_division_of_def tagged_partial_division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   879
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   880
lemma tagged_division_ofI: assumes
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   881
  "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   882
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   883
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   884
  shows "s tagged_division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   885
  unfolding tagged_division_of apply(rule) defer apply rule
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   886
  apply(rule allI impI conjI assms)+ apply assumption
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   887
  apply(rule, rule assms, assumption) apply(rule assms, assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   888
  using assms(1,5-) apply- by blast+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   889
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   890
lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   891
  shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   892
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   893
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   894
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   895
lemma division_of_tagged_division: assumes"s tagged_division_of i"  shows "(snd ` s) division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   896
proof(rule division_ofI) note assm=tagged_division_ofD[OF assms]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   897
  show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   898
  fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
   899
  thus  "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastforce+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   900
  fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   901
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   902
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   903
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   904
lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   905
  shows "(snd ` s) division_of \<Union>(snd ` s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   906
proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   907
  show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   908
  fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   909
  thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   910
  fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   911
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   912
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   913
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   914
lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   915
  shows "t tagged_partial_division_of i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   916
  using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   917
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
   918
lemma setsum_over_tagged_division_lemma: fixes d::"('m::ordered_euclidean_space) set \<Rightarrow> 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   919
  assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   920
  shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   921
proof- note assm=tagged_division_ofD[OF assms(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   922
  have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   923
  show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   924
    show "finite p" using assm by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   925
    fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   926
    obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   927
    have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   928
    hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   929
    hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   930
    hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   931
    thus "d (snd x) = 0" unfolding ab by auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   932
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   933
lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   934
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   935
lemma tagged_division_of_empty: "{} tagged_division_of {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   936
  unfolding tagged_division_of by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   937
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   938
lemma tagged_partial_division_of_trivial[simp]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   939
 "p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   940
  unfolding tagged_partial_division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   941
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   942
lemma tagged_division_of_trivial[simp]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   943
 "p tagged_division_of {} \<longleftrightarrow> p = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   944
  unfolding tagged_division_of by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   945
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   946
lemma tagged_division_of_self:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   947
 "x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   948
  apply(rule tagged_division_ofI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   949
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   950
lemma tagged_division_union:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   951
  assumes "p1 tagged_division_of s1"  "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   952
  shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   953
proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   954
  show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   955
  show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   956
  fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   957
  show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   958
  fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')"
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   959
  have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) interior_mono by blast
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   960
  show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   961
    apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   962
    using p1(3) p2(3) using xk xk' by auto qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   963
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   964
lemma tagged_division_unions:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   965
  assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   966
  "\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   967
  shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   968
proof(rule tagged_division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   969
  note assm = tagged_division_ofD[OF assms(2)[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   970
  show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   971
  have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   972
  also have "\<dots> = \<Union>iset" using assm(6) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   973
  finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" . 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   974
  fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   975
  show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   976
  fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   977
  have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
   978
    using assms(3)[rule_format] interior_mono by blast
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   979
  show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   980
    using assm(5)[OF i _ xk'(2)]  i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   981
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   982
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   983
lemma tagged_partial_division_of_union_self:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   984
  assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   985
  apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   986
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   987
lemma tagged_division_of_union_self: assumes "p tagged_division_of s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   988
  shows "p tagged_division_of (\<Union>(snd ` p))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   989
  apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   990
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   991
subsection {* Fine-ness of a partition w.r.t. a gauge. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   992
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   993
definition fine (infixr "fine" 46) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   994
  "d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   995
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   996
lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   997
  shows "d fine s" using assms unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   998
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
   999
lemma fineD[dest]: assumes "d fine s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1000
  shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1001
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1002
lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1003
  unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1004
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1005
lemma fine_inters:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1006
 "(\<lambda>x. \<Inter> {f d x | d.  d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1007
  unfolding fine_def by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1008
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1009
lemma fine_union:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1010
  "d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1011
  unfolding fine_def by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1012
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1013
lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1014
  unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1015
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1016
lemma fine_subset:  "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1017
  unfolding fine_def by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1018
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1019
subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1020
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1021
definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1022
  "(f has_integral_compact_interval y) i \<equiv>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1023
        (\<forall>e>0. \<exists>d. gauge d \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1024
          (\<forall>p. p tagged_division_of i \<and> d fine p
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1025
                        \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1026
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1027
definition has_integral (infixr "has'_integral" 46) where 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1028
"((f::('n::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv>
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1029
        if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1030
        else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1031
              \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1032
                                       norm(z - y) < e))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1033
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1034
lemma has_integral:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1035
 "(f has_integral y) ({a..b}) \<longleftrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1036
        (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1037
                        \<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1038
  unfolding has_integral_def has_integral_compact_interval_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1039
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1040
lemma has_integralD[dest]: assumes
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1041
 "(f has_integral y) ({a..b})" "e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1042
  obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1043
                        \<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1044
  using assms unfolding has_integral by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1045
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1046
lemma has_integral_alt:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1047
 "(f has_integral y) i \<longleftrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1048
      (if (\<exists>a b. i = {a..b}) then (f has_integral y) i
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1049
       else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1050
                               \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1051
                                        has_integral z) ({a..b}) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1052
                                       norm(z - y) < e)))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1053
  unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1054
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1055
lemma has_integral_altD:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1056
  assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1057
  obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1058
  using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1059
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1060
definition integrable_on (infixr "integrable'_on" 46) where
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1061
  "(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1062
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1063
definition "integral i f \<equiv> SOME y. (f has_integral y) i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1064
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1065
lemma integrable_integral[dest]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1066
 "f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1067
  unfolding integrable_on_def integral_def by(rule someI_ex)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1068
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1069
lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1070
  unfolding integrable_on_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1071
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1072
lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1073
  by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1074
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1075
lemma setsum_content_null:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1076
  assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1077
  shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1078
proof(rule setsum_0',rule) fix y assume y:"y\<in>p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1079
  obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1080
  note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1081
  from this(2) guess c .. then guess d .. note c_d=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1082
  have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1083
  also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1084
    unfolding assms(1) c_d by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1085
  finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1086
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1087
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1088
subsection {* Some basic combining lemmas. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1089
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1090
lemma tagged_division_unions_exists:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1091
  assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1092
  "\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1093
   obtains p where "p tagged_division_of i" "d fine p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1094
proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1095
  show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1096
    apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1097
    apply(rule fine_unions) using pfn by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1098
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1099
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1100
subsection {* The set we're concerned with must be closed. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1101
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1102
lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::('n::ordered_euclidean_space) set)"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1103
  unfolding division_of_def by fastforce
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1104
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1105
subsection {* General bisection principle for intervals; might be useful elsewhere. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1106
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1107
lemma interval_bisection_step:  fixes type::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1108
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::'a})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1109
  obtains c d where "~(P{c..d})"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1110
  "\<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1111
proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1112
  note ab=this[unfolded interval_eq_empty not_ex not_less]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1113
  { fix f have "finite f \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1114
        (\<forall>s\<in>f. P s) \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1115
        (\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1116
        (\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1117
    proof(induct f rule:finite_induct)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1118
      case empty show ?case using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1119
    next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1120
        apply rule defer apply rule defer apply(rule inter_interior_unions_intervals)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1121
        using insert by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1122
    qed } note * = this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1123
  let ?A = "{{c..d} | c d::'a. \<forall>i<DIM('a). (c$$i = a$$i) \<and> (d$$i = (a$$i + b$$i) / 2) \<or> (c$$i = (a$$i + b$$i) / 2) \<and> (d$$i = b$$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1124
  let ?PP = "\<lambda>c d. \<forall>i<DIM('a). a$$i \<le> c$$i \<and> c$$i \<le> d$$i \<and> d$$i \<le> b$$i \<and> 2 * (d$$i - c$$i) \<le> b$$i - a$$i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1125
  { presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1126
    thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1127
  assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1128
  have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI) 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1129
    let ?B = "(\<lambda>s.{(\<chi>\<chi> i. if i \<in> s then a$$i else (a$$i + b$$i) / 2)::'a ..
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1130
      (\<chi>\<chi> i. if i \<in> s then (a$$i + b$$i) / 2 else b$$i)}) ` {s. s \<subseteq> {..<DIM('a)}}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1131
    have "?A \<subseteq> ?B" proof case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1132
      then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1133
      have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1134
      show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. i<DIM('a) \<and> c$$i = a$$i}" in bexI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1135
        unfolding c_d apply(rule * ) unfolding euclidean_eq[where 'a='a] apply safe unfolding euclidean_lambda_beta' mem_Collect_eq
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1136
      proof- fix i assume "i<DIM('a)" thus " c $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then a $$ i else (a $$ i + b $$ i) / 2)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1137
          "d $$ i = (if i < DIM('a) \<and> c $$ i = a $$ i then (a $$ i + b $$ i) / 2 else b $$ i)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1138
          using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1139
      qed qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1140
    thus "finite ?A" apply(rule finite_subset) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1141
    fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1142
    note c_d=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1143
    show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 thus ?case 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1144
        using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1145
    show "\<exists>a b. s = {a..b}" unfolding c_d by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1146
    fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1147
    note e_f=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1148
    assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1149
    then obtain i where "c$$i \<noteq> e$$i \<or> d$$i \<noteq> f$$i" and i':"i<DIM('a)" unfolding de_Morgan_conj euclidean_eq[where 'a='a] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1150
    hence i:"c$$i \<noteq> e$$i" "d$$i \<noteq> f$$i" apply- apply(erule_tac[!] disjE)
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1151
    proof- assume "c$$i \<noteq> e$$i" thus "d$$i \<noteq> f$$i" using c_d(2)[of i] e_f(2)[of i] by fastforce
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1152
    next   assume "d$$i \<noteq> f$$i" thus "c$$i \<noteq> e$$i" using c_d(2)[of i] e_f(2)[of i] by fastforce
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1153
    qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1154
    show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1155
      fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1156
      hence x:"c$$i < d$$i" "e$$i < f$$i" "c$$i < f$$i" "e$$i < d$$i" unfolding mem_interval using i'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1157
        apply-apply(erule_tac[!] x=i in allE)+ by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1158
      show False using c_d(2)[OF i'] apply- apply(erule_tac disjE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1159
      proof(erule_tac[!] conjE) assume as:"c $$ i = a $$ i" "d $$ i = (a $$ i + b $$ i) / 2"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1160
        show False using e_f(2)[of i] and i x unfolding as by(fastforce simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1161
      next assume as:"c $$ i = (a $$ i + b $$ i) / 2" "d $$ i = b $$ i"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1162
        show False using e_f(2)[of i] and i x unfolding as by(fastforce simp add:field_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1163
      qed qed qed
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  1164
  also have "\<Union> ?A = {a..b}" proof(rule set_eqI,rule)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1165
    fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1166
    from this(1) guess c unfolding mem_Collect_eq .. then guess d ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1167
    note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1168
    show "x\<in>{a..b}" unfolding mem_interval proof safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1169
      fix i assume "i<DIM('a)" thus "a $$ i \<le> x $$ i" "x $$ i \<le> b $$ i"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1170
        using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1171
  next fix x assume x:"x\<in>{a..b}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1172
    have "\<forall>i<DIM('a). \<exists>c d. (c = a$$i \<and> d = (a$$i + b$$i) / 2 \<or> c = (a$$i + b$$i) / 2 \<and> d = b$$i) \<and> c\<le>x$$i \<and> x$$i \<le> d"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1173
      (is "\<forall>i<DIM('a). \<exists>c d. ?P i c d") unfolding mem_interval proof(rule,rule) fix i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1174
      have "?P i (a$$i) ((a $$ i + b $$ i) / 2) \<or> ?P i ((a $$ i + b $$ i) / 2) (b$$i)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1175
        using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1176
    qed thus "x\<in>\<Union>?A" unfolding Union_iff unfolding lambda_skolem' unfolding Bex_def mem_Collect_eq
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1177
      apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1178
  qed finally show False using assms by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1179
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1180
lemma interval_bisection: fixes type::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1181
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::'a}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1182
  obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1183
proof-
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1184
  have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1185
    (\<forall>i<DIM('a). fst x$$i \<le> fst y$$i \<and> fst y$$i \<le> snd y$$i \<and> snd y$$i \<le> snd x$$i \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1186
                           2 * (snd y$$i - fst y$$i) \<le> snd x$$i - fst x$$i))" proof case goal1 thus ?case proof-
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1187
      presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1188
      thus ?thesis apply(cases "P {fst x..snd x}") by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1189
    next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d . 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1190
      thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1191
    qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1192
  def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1193
  have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1194
    (\<forall>i<DIM('a). A(n)$$i \<le> A(Suc n)$$i \<and> A(Suc n)$$i \<le> B(Suc n)$$i \<and> B(Suc n)$$i \<le> B(n)$$i \<and> 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1195
    2 * (B(Suc n)$$i - A(Suc n)$$i) \<le> B(n)$$i - A(n)$$i)" (is "\<And>n. ?P n")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1196
  proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1197
    case goal3 note S = ab_def funpow.simps o_def id_apply show ?case
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1198
    proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1199
    next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1200
    qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1201
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1202
  have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1203
  proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)}) / e"] .. note n=this
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1204
    show ?case apply(rule_tac x=n in exI) proof(rule,rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1205
      fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1206
      have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$$i)) {..<DIM('a)}" unfolding dist_norm by(rule norm_le_l1)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1207
      also have "\<dots> \<le> setsum (\<lambda>i. B n$$i - A n$$i) {..<DIM('a)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1208
      proof(rule setsum_mono) fix i show "\<bar>(x - y) $$ i\<bar> \<le> B n $$ i - A n $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1209
          using xy[unfolded mem_interval,THEN spec[where x=i]] by auto qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1210
      also have "\<dots> \<le> setsum (\<lambda>i. b$$i - a$$i) {..<DIM('a)} / 2^n" unfolding setsum_divide_distrib
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1211
      proof(rule setsum_mono) case goal1 thus ?case
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1212
        proof(induct n) case 0 thus ?case unfolding AB by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1213
        next case (Suc n) have "B (Suc n) $$ i - A (Suc n) $$ i \<le> (B n $$ i - A n $$ i) / 2"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1214
            using AB(4)[of i n] using goal1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1215
          also have "\<dots> \<le> (b $$ i - a $$ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case .
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1216
        qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1217
      also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1218
    qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1219
  { fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1220
    have "{A n..B n} \<subseteq> {A m..B m}" unfolding d 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1221
    proof(induct d) case 0 thus ?case by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1222
    next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1223
        apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1224
      proof- case goal1 thus ?case using AB(4)[of i "m + d"] by(auto simp add:field_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1225
      qed qed } note ABsubset = this 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1226
  have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1227
  proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1228
  then guess x0 .. note x0=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1229
  show thesis proof(rule that[rule_format,of x0])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1230
    show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1231
    fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1232
    show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1233
      apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1234
    proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1235
      show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1236
      show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1237
    qed qed qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1238
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1239
subsection {* Cousin's lemma. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1240
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1241
lemma fine_division_exists: assumes "gauge g" 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1242
  obtains p where "p tagged_division_of {a..b::'a::ordered_euclidean_space}" "g fine p"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1243
proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1244
  then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1245
next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1246
  guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1247
    apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1248
  proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1249
    fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1250
    thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1251
      apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1252
  qed note x=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1253
  obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1254
  from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1255
  have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1256
  thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1257
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1258
subsection {* Basic theorems about integrals. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1259
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1260
lemma has_integral_unique: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1261
  assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1262
proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1263
  have lem:"\<And>f::'n \<Rightarrow> 'a.  \<And> a b k1 k2.
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1264
    (f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1265
  proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1266
    guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1267
    guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1268
    guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1269
    let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)"
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  1270
      using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:algebra_simps norm_minus_commute)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1271
    also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1272
      apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1273
    finally show False by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1274
  qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1275
    thus False apply-apply(cases "\<exists>a b. i = {a..b}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1276
      using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1277
  assume as:"\<not> (\<exists>a b. i = {a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1278
  guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1279
  guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1280
  have "\<exists>a b::'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1281
    using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1282
  note ab=conjunctD2[OF this[unfolded Un_subset_iff]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1283
  guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1284
  guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1285
  have "z = w" using lem[OF w(1) z(1)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1286
  hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1287
    using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1288
  also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1289
  finally show False by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1290
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1291
lemma integral_unique[intro]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1292
  "(f has_integral y) k \<Longrightarrow> integral k f = y"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1293
  unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1294
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1295
lemma has_integral_is_0: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1296
  assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1297
proof- have lem:"\<And>a b. \<And>f::'n \<Rightarrow> 'a.
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1298
    (\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1299
  proof(rule,rule) fix a b e and f::"'n \<Rightarrow> 'a"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1300
    assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1301
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1302
      apply(rule_tac x="\<lambda>x. ball x 1" in exI)  apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1303
    proof(rule,rule,erule conjE) case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1304
      have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1305
        fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1306
        thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1307
      qed thus ?case using as by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1308
    qed auto qed  { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1309
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1310
      using assms by(auto simp add:has_integral intro:lem) }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1311
  have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1312
  assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1313
  apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1314
  proof- fix e::real and a b assume "e>0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1315
    thus "\<exists>z. ((\<lambda>x::'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1316
      apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1317
  qed auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1318
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1319
lemma has_integral_0[simp]: "((\<lambda>x::'n::ordered_euclidean_space. 0) has_integral 0) s"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1320
  apply(rule has_integral_is_0) by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1321
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1322
lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1323
  using has_integral_unique[OF has_integral_0] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1324
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1325
lemma has_integral_linear: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1326
  assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1327
proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1328
  have lem:"\<And>f::'n \<Rightarrow> 'a. \<And> y a b.
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1329
    (f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1330
  proof(subst has_integral,rule,rule) case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1331
    from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1332
    have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1333
    guess g using has_integralD[OF goal1(1) *] . note g=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1334
    show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1335
    proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1336
      have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1337
      have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1338
        unfolding o_def unfolding scaleR[THEN sym] * by simp
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1339
      also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1340
      finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1341
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1342
        apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1343
    qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1344
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1345
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1346
  proof(rule,rule) fix e::real  assume e:"0<e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1347
    have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1348
    guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1349
    show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1350
      apply(rule_tac x=M in exI) apply(rule,rule M(1))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1351
    proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1352
      have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1353
        unfolding o_def apply(rule ext) using zero by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1354
      show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1355
        apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1356
    qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1357
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1358
lemma has_integral_cmul:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1359
  shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1360
  unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption)
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  1361
  by(rule bounded_linear_scaleR_right)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1362
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1363
lemma has_integral_neg:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1364
  shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1365
  apply(drule_tac c="-1" in has_integral_cmul) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1366
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1367
lemma has_integral_add: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1368
  assumes "(f has_integral k) s" "(g has_integral l) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1369
  shows "((\<lambda>x. f x + g x) has_integral (k + l)) s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1370
proof- have lem:"\<And>f g::'n \<Rightarrow> 'a. \<And>a b k l.
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1371
    (f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1372
     ((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1373
    show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1374
      guess d1 using has_integralD[OF goal1(1) *] . note d1=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1375
      guess d2 using has_integralD[OF goal1(2) *] . note d2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1376
      show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1377
        apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1378
      proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1379
        have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1380
          unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1381
          by(rule setsum_cong2,auto)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1382
        have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))"
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  1383
          unfolding * by(auto simp add:algebra_simps) also let ?res = "\<dots>"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1384
        from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1385
        have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1386
          apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1387
        finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1388
      qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1389
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1390
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1391
  proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1392
    from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1393
    from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1394
    show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1395
    proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::'n}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1396
      hence *:"ball 0 B1 \<subseteq> {a..b::'n}" "ball 0 B2 \<subseteq> {a..b::'n}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1397
      guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1398
      guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1399
      have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1400
      show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1401
        apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1402
        using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1403
    qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1404
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1405
lemma has_integral_sub:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1406
  shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s"
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  1407
  using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding algebra_simps by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1408
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1409
lemma integral_0: "integral s (\<lambda>x::'n::ordered_euclidean_space. 0::'m::real_normed_vector) = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1410
  by(rule integral_unique has_integral_0)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1411
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1412
lemma integral_add:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1413
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1414
   integral s (\<lambda>x. f x + g x) = integral s f + integral s g"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1415
  apply(rule integral_unique) apply(drule integrable_integral)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1416
  apply(rule has_integral_add) by assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1417
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1418
lemma integral_cmul:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1419
  shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1420
  apply(rule integral_unique) apply(drule integrable_integral)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1421
  apply(rule has_integral_cmul) by assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1422
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1423
lemma integral_neg:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1424
  shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1425
  apply(rule integral_unique) apply(drule integrable_integral)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1426
  apply(rule has_integral_neg) by assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1427
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1428
lemma integral_sub:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1429
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1430
  apply(rule integral_unique) apply(drule integrable_integral)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1431
  apply(rule has_integral_sub) by assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1432
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1433
lemma integrable_0: "(\<lambda>x. 0) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1434
  unfolding integrable_on_def using has_integral_0 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1435
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1436
lemma integrable_add:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1437
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1438
  unfolding integrable_on_def by(auto intro: has_integral_add)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1439
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1440
lemma integrable_cmul:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1441
  shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1442
  unfolding integrable_on_def by(auto intro: has_integral_cmul)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1443
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1444
lemma integrable_neg:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1445
  shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1446
  unfolding integrable_on_def by(auto intro: has_integral_neg)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1447
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1448
lemma integrable_sub:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1449
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1450
  unfolding integrable_on_def by(auto intro: has_integral_sub)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1451
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1452
lemma integrable_linear:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1453
  shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1454
  unfolding integrable_on_def by(auto intro: has_integral_linear)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1455
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1456
lemma integral_linear:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1457
  shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1458
  apply(rule has_integral_unique) defer unfolding has_integral_integral 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1459
  apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1460
  apply(rule integrable_linear) by assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1461
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1462
lemma integral_component_eq[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1463
  assumes "f integrable_on s" shows "integral s (\<lambda>x. f x $$ k) = integral s f $$ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1464
  unfolding integral_linear[OF assms(1) bounded_linear_component,unfolded o_def] ..
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  1465
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1466
lemma has_integral_setsum:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1467
  assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1468
  shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1469
proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1470
  case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1471
    apply(rule has_integral_add) using insert assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1472
qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1473
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1474
lemma integral_setsum:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1475
  shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1476
  integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1477
  apply(rule integral_unique) apply(rule has_integral_setsum)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1478
  using integrable_integral by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1479
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1480
lemma integrable_setsum:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1481
  shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1482
  unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1483
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1484
lemma has_integral_eq:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1485
  assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1486
  using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1487
  using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1488
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1489
lemma integrable_eq:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1490
  shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1491
  unfolding integrable_on_def using has_integral_eq[of s f g] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1492
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1493
lemma has_integral_eq_eq:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1494
  shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)"
36362
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  1495
  using has_integral_eq[of s f g] has_integral_eq[of s g f] by rule auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1496
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1497
lemma has_integral_null[dest]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1498
  assumes "content({a..b}) = 0" shows  "(f has_integral 0) ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1499
  unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1500
proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1501
  fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1502
  have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1503
    using setsum_content_null[OF assms(1) p, of f] . 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1504
  thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1505
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1506
lemma has_integral_null_eq[simp]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1507
  shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1508
  apply rule apply(rule has_integral_unique,assumption) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1509
  apply(drule has_integral_null,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1510
  apply(drule has_integral_null) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1511
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1512
lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1513
  by(rule integral_unique,drule has_integral_null)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1514
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1515
lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1516
  unfolding integrable_on_def apply(drule has_integral_null) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1517
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1518
lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1519
  unfolding empty_as_interval apply(rule has_integral_null) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1520
  using content_empty unfolding empty_as_interval .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1521
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1522
lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1523
  apply(rule,rule has_integral_unique,assumption) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1524
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1525
lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1526
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1527
lemma integral_empty[simp]: shows "integral {} f = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1528
  apply(rule integral_unique) using has_integral_empty .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1529
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1530
lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}" "(f has_integral 0) {a::'a::ordered_euclidean_space}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  1531
proof- have *:"{a} = {a..a}" apply(rule set_eqI) unfolding mem_interval singleton_iff euclidean_eq[where 'a='a]
35540
3d073a3e1c61 the ordering on real^1 is linear
himmelma
parents: 35292
diff changeset
  1532
    apply safe prefer 3 apply(erule_tac x=i in allE) by(auto simp add: field_simps)
3d073a3e1c61 the ordering on real^1 is linear
himmelma
parents: 35292
diff changeset
  1533
  show "(f has_integral 0) {a..a}" "(f has_integral 0) {a}" unfolding *
3d073a3e1c61 the ordering on real^1 is linear
himmelma
parents: 35292
diff changeset
  1534
    apply(rule_tac[!] has_integral_null) unfolding content_eq_0_interior
3d073a3e1c61 the ordering on real^1 is linear
himmelma
parents: 35292
diff changeset
  1535
    unfolding interior_closed_interval using interval_sing by auto qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1536
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1537
lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1538
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1539
lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1540
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1541
subsection {* Cauchy-type criterion for integrability. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1542
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1543
(* XXXXXXX *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1544
lemma integrable_cauchy: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::{real_normed_vector,complete_space}" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1545
  shows "f integrable_on {a..b} \<longleftrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1546
  (\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1547
                            p2 tagged_division_of {a..b} \<and> d fine p2
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1548
                            \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 -
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1549
                                     setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1550
proof assume ?l
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1551
  then guess y unfolding integrable_on_def has_integral .. note y=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1552
  show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1553
    then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1554
    show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1555
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1556
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  1557
        apply(rule dist_triangle_half_l[where y=y,unfolded dist_norm])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1558
        using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1559
    qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1560
next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1561
  from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1562
  have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1563
  hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1564
  proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1565
  from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1566
  have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1567
  have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1568
  proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1569
    show ?case apply(rule_tac x=N in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1570
    proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1571
      show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1572
        apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1573
        using dp p(1) using mn by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1574
    qed qed
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  1575
  then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[THEN LIMSEQ_D]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1576
  show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1577
  proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1578
    then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1579
    guess N2 using y[OF *] .. note N2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1580
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1581
      apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1582
    proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1583
      fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1584
      have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1585
      show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1586
        apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  1587
        using N2[rule_format,of "N1+N2"]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1588
        using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1589
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1590
subsection {* Additivity of integral on abutting intervals. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1591
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1592
lemma interval_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1593
  "{a..b} \<inter> {x. x$$k \<le> c} = {a .. (\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1594
  "{a..b} \<inter> {x. x$$k \<ge> c} = {(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i) .. b}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  1595
  apply(rule_tac[!] set_eqI) unfolding Int_iff mem_interval mem_Collect_eq using assms by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1596
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1597
lemma content_split: fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)" shows
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1598
  "content {a..b} = content({a..b} \<inter> {x. x$$k \<le> c}) + content({a..b} \<inter> {x. x$$k >= c})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1599
proof- note simps = interval_split[OF assms] content_closed_interval_cases eucl_le[where 'a='a]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1600
  { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps using assms by auto }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1601
  have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" "\<And>x. finite ({..<DIM('a)}-{x})" "\<And>x. x\<notin>{..<DIM('a)}-{x}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1602
    using assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1603
  have *:"\<And>X Y Z. (\<Prod>i\<in>{..<DIM('a)}. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>{..<DIM('a)}-{k}. Z i (Y i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1604
    "(\<Prod>i\<in>{..<DIM('a)}. b$$i - a$$i) = (\<Prod>i\<in>{..<DIM('a)}-{k}. b$$i - a$$i) * (b$$k - a$$k)" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1605
    apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1606
  assume as:"a\<le>b" moreover have "\<And>x. min (b $$ k) c = max (a $$ k) c
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1607
    \<Longrightarrow> x* (b$$k - a$$k) = x*(max (a $$ k) c - a $$ k) + x*(b $$ k - max (a $$ k) c)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1608
    by  (auto simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1609
  moreover have **:"(\<Prod>i<DIM('a). ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i - a $$ i) = 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1610
    (\<Prod>i<DIM('a). (if i = k then min (b $$ k) c else b $$ i) - a $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1611
    "(\<Prod>i<DIM('a). b $$ i - ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1612
    (\<Prod>i<DIM('a). b $$ i - (if i = k then max (a $$ k) c else a $$ i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1613
    apply(rule_tac[!] setprod.cong) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1614
  have "\<not> a $$ k \<le> c \<Longrightarrow> \<not> c \<le> b $$ k \<Longrightarrow> False"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1615
    unfolding not_le using as[unfolded eucl_le[where 'a='a],rule_format,of k] assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1616
  ultimately show ?thesis using assms unfolding simps **
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1617
    unfolding *(1)[of "\<lambda>i x. b$$i - x"] *(1)[of "\<lambda>i x. x - a$$i"] unfolding  *(2) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1618
    apply(subst(2) euclidean_lambda_beta''[where 'a='a])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1619
    apply(subst(3) euclidean_lambda_beta''[where 'a='a]) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1620
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1621
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1622
lemma division_split_left_inj: fixes type::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1623
  assumes "d division_of i" "k1 \<in> d" "k2 \<in> d"  "k1 \<noteq> k2" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1624
  "k1 \<inter> {x::'a. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}"and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1625
  shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1626
proof- note d=division_ofD[OF assms(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1627
  have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k \<le> c}) = {})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1628
    unfolding  interval_split[OF k] content_eq_0_interior by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1629
  guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1630
  guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1631
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1632
  show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1633
    defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1634
 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1635
lemma division_split_right_inj: fixes type::"'a::ordered_euclidean_space"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1636
  assumes "d division_of i" "k1 \<in> d" "k2 \<in> d"  "k1 \<noteq> k2"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1637
  "k1 \<inter> {x::'a. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1638
  shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1639
proof- note d=division_ofD[OF assms(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1640
  have *:"\<And>a b::'a. \<And> c. (content({a..b} \<inter> {x. x$$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$$k >= c}) = {})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1641
    unfolding interval_split[OF k] content_eq_0_interior by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1642
  guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1643
  guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1644
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1645
  show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1646
    defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1647
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1648
lemma tagged_division_split_left_inj: fixes x1::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1649
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<le> c} = k2 \<inter> {x. x$$k \<le> c}" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1650
  and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1651
  shows "content(k1 \<inter> {x. x$$k \<le> c}) = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1652
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1653
  show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1654
    apply(rule_tac[1-2] *) using assms(2-) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1655
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1656
lemma tagged_division_split_right_inj: fixes x1::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1657
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$$k \<ge> c} = k2 \<inter> {x. x$$k \<ge> c}" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1658
  and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1659
  shows "content(k1 \<inter> {x. x$$k \<ge> c}) = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1660
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1661
  show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1662
    apply(rule_tac[1-2] *) using assms(2-) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1663
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1664
lemma division_split: fixes a::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1665
  assumes "p division_of {a..b}" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1666
  shows "{l \<inter> {x. x$$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<le> c} = {})} division_of({a..b} \<inter> {x. x$$k \<le> c})" (is "?p1 division_of ?I1") and 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1667
        "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$$k \<ge> c})" (is "?p2 division_of ?I2")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1668
proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms(1)]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1669
  show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1670
  { fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1671
    guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1672
    show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1673
      using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1674
    fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1675
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1676
  { fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1677
    guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1678
    show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1679
      using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split[OF k]) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1680
    fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1681
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1682
qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1683
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1684
lemma has_integral_split: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1685
  assumes "(f has_integral i) ({a..b} \<inter> {x. x$$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$$k \<ge> c})" and k:"k<DIM('a)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1686
  shows "(f has_integral (i + j)) ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1687
proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1688
  guess d1 using has_integralD[OF assms(1)[unfolded interval_split[OF k]] e] . note d1=this[unfolded interval_split[THEN sym,OF k]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1689
  guess d2 using has_integralD[OF assms(2)[unfolded interval_split[OF k]] e] . note d2=this[unfolded interval_split[THEN sym,OF k]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1690
  let ?d = "\<lambda>x. if x$$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$$k - c)) \<inter> d1 x \<inter> d2 x"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1691
  show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1692
  proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1693
    fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1694
    have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1695
         "\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1696
    proof- fix x kk assume as:"(x,kk)\<in>p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1697
      show "~(kk \<inter> {x. x$$k \<le> c} = {}) \<Longrightarrow> x$$k \<le> c"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1698
      proof(rule ccontr) case goal1
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1699
        from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1700
          using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1701
        hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<le> c}" using goal1(1) by blast 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1702
        then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<le> c" apply-apply(rule le_less_trans)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1703
          using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1704
        thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1705
      qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1706
      show "~(kk \<inter> {x. x$$k \<ge> c} = {}) \<Longrightarrow> x$$k \<ge> c"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1707
      proof(rule ccontr) case goal1
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1708
        from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $$ k - c\<bar>"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1709
          using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1710
        hence "\<exists>y. y \<in> ball x \<bar>x $$ k - c\<bar> \<inter> {x. x $$ k \<ge> c}" using goal1(1) by blast 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1711
        then guess y .. hence "\<bar>x $$ k - y $$ k\<bar> < \<bar>x $$ k - c\<bar>" "y$$k \<ge> c" apply-apply(rule le_less_trans)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1712
          using component_le_norm[of "x - y" k] by(auto simp add:dist_norm)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1713
        thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1714
      qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1715
    qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1716
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1717
    have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1718
    have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1719
    proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44167
diff changeset
  1720
    have lem3: "\<And>g::'a set \<Rightarrow> 'a set. finite p \<Longrightarrow>
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1721
      setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1722
               = setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1723
      apply(rule setsum_mono_zero_left) prefer 3
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44167
diff changeset
  1724
    proof fix g::"'a set \<Rightarrow> 'a set" and i::"('a) \<times> (('a) set)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1725
      assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1726
      then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1727
      have "content (g k) = 0" using xk using content_empty by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1728
      thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1729
    qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1730
    have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1731
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1732
    let ?M1 = "{(x,kk \<inter> {x. x$$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<le> c} \<noteq> {}}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1733
    have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1734
      apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1735
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$$k \<le> c}" unfolding p(8)[THEN sym] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1736
      fix x l assume xl:"(x,l)\<in>?M1"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1737
      then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note xl'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1738
      have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1739
      thus "l \<subseteq> d1 x" unfolding xl' by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1740
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1741
        using lem0(1)[OF xl'(3-4)] by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1742
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastforce simp add: interval_split[OF k,where c=c])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1743
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1744
      then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note yr'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1745
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1746
      proof(cases "l' = r' \<longrightarrow> x' = y'")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1747
        case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1748
      next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1749
        thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1750
      qed qed moreover
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1751
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1752
    let ?M2 = "{(x,kk \<inter> {x. x$$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$$k \<ge> c} \<noteq> {}}" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1753
    have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1754
      apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1755
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$$k \<ge> c}" unfolding p(8)[THEN sym] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1756
      fix x l assume xl:"(x,l)\<in>?M2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1757
      then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note xl'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1758
      have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1759
      thus "l \<subseteq> d2 x" unfolding xl' by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1760
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $$ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1761
        using lem0(2)[OF xl'(3-4)] by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1762
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastforce simp add: interval_split[OF k, where c=c])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1763
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1764
      then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note yr'=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1765
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1766
      proof(cases "l' = r' \<longrightarrow> x' = y'")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1767
        case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1768
      next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1769
        thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1770
      qed qed ultimately
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1771
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1772
    have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1773
      apply- apply(rule norm_triangle_lt) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1774
    also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'b) = 0" using scaleR_zero_left by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1775
      have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1776
       = (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1777
      also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) +
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1778
        (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) - (i + j)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1779
        unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1780
        defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1781
      proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) using k by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1782
      next case   goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) using k by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1783
      qed also note setsum_addf[THEN sym]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1784
      also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $$ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $$ k}) *\<^sub>R f x) x
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1785
        = (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1786
      proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1787
        thus "content (b \<inter> {x. x $$ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $$ k}) *\<^sub>R f a = content b *\<^sub>R f a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1788
          unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[OF k,of u v c] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1789
      qed note setsum_cong2[OF this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1790
      finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $$ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $$ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1791
        ((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $$ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $$ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1792
        (\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1793
    finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1794
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1795
(*lemma has_integral_split_cart: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1796
  assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1797
  shows "(f has_integral (i + j)) ({a..b})" *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1798
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1799
subsection {* A sort of converse, integrability on subintervals. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1800
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1801
lemma tagged_division_union_interval: fixes a::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1802
  assumes "p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> (c::real)})"  "p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1803
  and k:"k<DIM('a)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1804
  shows "(p1 \<union> p2) tagged_division_of ({a..b})"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1805
proof- have *:"{a..b} = ({a..b} \<inter> {x. x$$k \<le> c}) \<union> ({a..b} \<inter> {x. x$$k \<ge> c})" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1806
  show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms(1-2)])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1807
    unfolding interval_split[OF k] interior_closed_interval using k
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1808
    by(auto simp add: eucl_less[where 'a='a] elim!:allE[where x=k]) qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1809
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1810
lemma has_integral_separate_sides: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1811
  assumes "(f has_integral i) ({a..b})" "e>0" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1812
  obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$$k \<le> c}) \<and> d fine p1 \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1813
                                p2 tagged_division_of ({a..b} \<inter> {x. x$$k \<ge> c}) \<and> d fine p2
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1814
                                \<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 +
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1815
                                          setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1816
proof- guess d using has_integralD[OF assms(1-2)] . note d=this
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1817
  show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1818
  proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1819
                   assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $$ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1820
    note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1821
    have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1822
      apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1823
    proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1824
      have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1825
      have "b \<subseteq> {x. x$$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastforce
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1826
      moreover have "interior {x::'a. x $$ k = c} = {}" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1827
      proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x::'a. x$$k = c}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1828
        then guess e unfolding mem_interior .. note e=this
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1829
        have x:"x$$k = c" using x interior_subset by fastforce
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1830
        have *:"\<And>i. i<DIM('a) \<Longrightarrow> \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1831
          = (if i = k then e/2 else 0)" using e by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1832
        have "(\<Sum>i<DIM('a). \<bar>(x - (x + (\<chi>\<chi> i. if i = k then e / 2 else 0))) $$ i\<bar>) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1833
          (\<Sum>i<DIM('a). (if i = k then e / 2 else 0))" apply(rule setsum_cong2) apply(subst *) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1834
        also have "... < e" apply(subst setsum_delta) using e by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1835
        finally have "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball dist_norm
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1836
          by(rule le_less_trans[OF norm_le_l1])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1837
        hence "x + (\<chi>\<chi> i. if i = k then e/2 else 0) \<in> {x. x$$k = c}" using e by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1838
        thus False unfolding mem_Collect_eq using e x k by auto
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  1839
      qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule interior_mono) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1840
      thus "content b *\<^sub>R f a = 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1841
    qed auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1842
    also have "\<dots> < e" by(rule k d(2) p12 fine_union p1 p2)+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1843
    finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1844
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1845
lemma integrable_split[intro]: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::{real_normed_vector,complete_space}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1846
  assumes "f integrable_on {a..b}" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1847
  shows "f integrable_on ({a..b} \<inter> {x. x$$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$$k \<ge> c})" (is ?t2) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1848
proof- guess y using assms(1) unfolding integrable_on_def .. note y=this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1849
  def b' \<equiv> "(\<chi>\<chi> i. if i = k then min (b$$k) c else b$$i)::'a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1850
  and a' \<equiv> "(\<chi>\<chi> i. if i = k then max (a$$k) c else a$$i)::'a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1851
  show ?t1 ?t2 unfolding interval_split[OF k] integrable_cauchy unfolding interval_split[THEN sym,OF k]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1852
  proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1853
    from has_integral_separate_sides[OF y this k,of c] guess d . note d=this[rule_format]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1854
    let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1855
      \<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1856
      norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1857
    show "?P {x. x $$ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1858
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1859
        \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<le> c} \<and> d fine p2"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1860
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1861
      proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1862
        show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1863
          using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  1864
          using p using assms by(auto simp add:algebra_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1865
      qed qed  
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1866
    show "?P {x. x $$ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1867
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p1
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1868
        \<and> p2 tagged_division_of {a..b} \<inter> {x. x $$ k \<ge> c} \<and> d fine p2"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1869
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1870
      proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1871
        show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1872
          using as unfolding interval_split[OF k] b'_def[symmetric] a'_def[symmetric]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  1873
          using p using assms by(auto simp add:algebra_simps) qed qed qed qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1874
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1875
subsection {* Generalized notion of additivity. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1876
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1877
definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1878
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1879
definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> (('b::ordered_euclidean_space) set \<Rightarrow> 'a) \<Rightarrow> bool" where
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1880
  "operative opp f \<equiv> 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1881
    (\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1882
    (\<forall>a b c. \<forall>k<DIM('b). f({a..b}) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1883
                   opp (f({a..b} \<inter> {x. x$$k \<le> c}))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1884
                       (f({a..b} \<inter> {x. x$$k \<ge> c})))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1885
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1886
lemma operativeD[dest]: fixes type::"'a::ordered_euclidean_space"  assumes "operative opp f"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1887
  shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b::'a} = neutral(opp)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  1888
  "\<And>a b c k. k<DIM('a) \<Longrightarrow> f({a..b}) = opp (f({a..b} \<inter> {x. x$$k \<le> c})) (f({a..b} \<inter> {x. x$$k \<ge> c}))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1889
  using assms unfolding operative_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1890
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1891
lemma operative_trivial:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1892
 "operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1893
  unfolding operative_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1894
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1895
lemma property_empty_interval:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1896
 "(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1897
  using content_empty unfolding empty_as_interval by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1898
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1899
lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1900
  unfolding operative_def apply(rule property_empty_interval) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1901
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1902
subsection {* Using additivity of lifted function to encode definedness. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1903
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1904
lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))"
36362
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  1905
  by (metis option.nchotomy)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1906
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1907
lemma exists_option: "(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))"
36362
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  1908
  by (metis option.nchotomy)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1909
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1910
fun lifted
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1911
where
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1912
  "lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some (opp x y)"
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1913
| "lifted opp None _ = (None::'b option)"
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1914
| "lifted opp _ None = None"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1915
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1916
lemma lifted_simp_1[simp]: "lifted opp v None = None"
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1917
  by (induct v) auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1918
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1919
definition "monoidal opp \<equiv>  (\<forall>x y. opp x y = opp y x) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1920
                   (\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1921
                   (\<forall>x. opp (neutral opp) x = x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1922
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1923
lemma monoidalI:
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1924
  assumes "\<And>x y. opp x y = opp y x"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1925
  "\<And>x y z. opp x (opp y z) = opp (opp x y) z"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1926
  "\<And>x. opp (neutral opp) x = x" shows "monoidal opp"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  1927
  unfolding monoidal_def using assms by fastforce
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1928
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1929
lemma monoidal_ac:
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1930
  assumes "monoidal opp"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1931
  shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1932
  "opp (opp a b) c = opp a (opp b c)"  "opp a (opp b c) = opp b (opp a c)"
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1933
  using assms unfolding monoidal_def by metis+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1934
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1935
lemma monoidal_simps[simp]: assumes "monoidal opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1936
  shows "opp (neutral opp) a = a" "opp a (neutral opp) = a"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1937
  using monoidal_ac[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1938
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1939
lemma neutral_lifted[cong]: assumes "monoidal opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1940
  shows "neutral (lifted opp) = Some(neutral opp)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1941
  apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1942
proof -
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1943
  fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y"
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1944
  thus "x = Some (neutral opp)"
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1945
    apply(induct x) defer
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1946
    apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality)
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1947
    apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE)
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1948
    apply auto
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1949
    done
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1950
qed(auto simp add:monoidal_ac[OF assms])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1951
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1952
lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1953
  unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1954
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1955
definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
45994
38a46e029784 be explicit about Finite_Set.fold
haftmann
parents: 44906
diff changeset
  1956
definition "fold' opp e s \<equiv> (if finite s then Finite_Set.fold opp e s else e)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1957
definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1958
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1959
lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1960
lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1961
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42869
diff changeset
  1962
lemma comp_fun_commute_monoidal[intro]: assumes "monoidal opp" shows "comp_fun_commute opp"
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42869
diff changeset
  1963
  unfolding comp_fun_commute_def using monoidal_ac[OF assms] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1964
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1965
lemma support_clauses:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1966
  "\<And>f g s. support opp f {} = {}"
49197
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1967
  "\<And>f g s. support opp f (insert x s) =
e5224d887e12 tuned proofs;
wenzelm
parents: 49194
diff changeset
  1968
    (if f(x) = neutral opp then support opp f s else insert x (support opp f s))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1969
  "\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1970
  "\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1971
  "\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1972
  "\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1973
  "\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1974
unfolding support_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1975
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1976
lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1977
  unfolding support_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1978
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1979
lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1980
  unfolding iterate_def fold'_def by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1981
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1982
lemma iterate_insert[simp]: assumes "monoidal opp" "finite s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1983
  shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1984
proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1985
  show ?thesis unfolding iterate_def if_P[OF True] * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1986
next case False note x=this
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42869
diff changeset
  1987
  note * = comp_fun_commute.comp_comp_fun_commute [OF comp_fun_commute_monoidal[OF assms(1)]]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1988
  show ?thesis proof(cases "f x = neutral opp")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1989
    case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1990
      unfolding True monoidal_simps[OF assms(1)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1991
  next case False show ?thesis unfolding iterate_def fold'_def  if_not_P[OF x] support_clauses if_not_P[OF False]
42871
1c0b99f950d9 names of fold_set locales resemble name of characteristic property more closely
haftmann
parents: 42869
diff changeset
  1992
      apply(subst comp_fun_commute.fold_insert[OF * finite_support, simplified comp_def])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1993
      using `finite s` unfolding support_def using False x by auto qed qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1994
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1995
lemma iterate_some:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1996
  assumes "monoidal opp"  "finite s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1997
  shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1998
proof(induct s) case empty thus ?case using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  1999
next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2000
    defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2001
subsection {* Two key instances of additivity. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2002
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2003
lemma neutral_add[simp]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2004
  "neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2005
  apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2006
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2007
lemma operative_content[intro]: "operative (op +) content" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2008
  unfolding operative_def neutral_add apply safe 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2009
  unfolding content_split[THEN sym] ..
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2010
36362
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  2011
lemma neutral_monoid: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  2012
  by (rule neutral_add) (* FIXME: duplicate *)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2013
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2014
lemma monoidal_monoid[intro]:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2015
  shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2016
  unfolding monoidal_def neutral_monoid by(auto simp add: algebra_simps) 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2017
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2018
lemma operative_integral: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2019
  shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2020
  unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2021
  apply(rule,rule,rule,rule) defer apply(rule allI impI)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2022
proof- fix a b c k assume k:"k<DIM('a)" show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2023
    lifted op + (if f integrable_on {a..b} \<inter> {x. x $$ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $$ k \<le> c}) f) else None)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2024
    (if f integrable_on {a..b} \<inter> {x. c \<le> x $$ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $$ k}) f) else None)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2025
  proof(cases "f integrable_on {a..b}") 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2026
    case True show ?thesis unfolding if_P[OF True] using k apply-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2027
      unfolding if_P[OF integrable_split(1)[OF True]] unfolding if_P[OF integrable_split(2)[OF True]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2028
      unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split[OF _ _ k]) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2029
      apply(rule_tac[!] integrable_integral integrable_split)+ using True k by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2030
  next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $$ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $$ k}))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2031
    proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2032
        apply(rule_tac x="integral ({a..b} \<inter> {x. x $$ k \<le> c}) f + integral ({a..b} \<inter> {x. x $$ k \<ge> c}) f" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2033
        apply(rule has_integral_split[OF _ _ k]) apply(rule_tac[!] integrable_integral) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2034
      thus False using False by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2035
    qed thus ?thesis using False by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2036
  qed next 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2037
  fix a b assume as:"content {a..b::'a} = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2038
  thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2039
    unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2040
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2041
subsection {* Points of division of a partition. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2042
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2043
definition "division_points (k::('a::ordered_euclidean_space) set) d = 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2044
    {(j,x). j<DIM('a) \<and> (interval_lowerbound k)$$j < x \<and> x < (interval_upperbound k)$$j \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2045
           (\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2046
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2047
lemma division_points_finite: fixes i::"('a::ordered_euclidean_space) set"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2048
  assumes "d division_of i" shows "finite (division_points i d)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2049
proof- note assm = division_ofD[OF assms]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2050
  let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$$j < x \<and> x < (interval_upperbound i)$$j \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2051
           (\<exists>i\<in>d. (interval_lowerbound i)$$j = x \<or> (interval_upperbound i)$$j = x)}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2052
  have *:"division_points i d = \<Union>(?M ` {..<DIM('a)})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2053
    unfolding division_points_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2054
  show ?thesis unfolding * using assm by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2055
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2056
lemma division_points_subset: fixes a::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2057
  assumes "d division_of {a..b}" "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2058
  shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<le> c} = {})}
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2059
                  \<subseteq> division_points ({a..b}) d" (is ?t1) and
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2060
        "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$$k \<ge> c} = {})}
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2061
                  \<subseteq> division_points ({a..b}) d" (is ?t2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2062
proof- note assm = division_ofD[OF assms(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2063
  have *:"\<forall>i<DIM('a). a$$i \<le> b$$i"   "\<forall>i<DIM('a). a$$i \<le> ((\<chi>\<chi> i. if i = k then min (b $$ k) c else b $$ i)::'a) $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2064
    "\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (a $$ k) c else a $$ i)::'a) $$ i \<le> b$$i"  "min (b $$ k) c = c" "max (a $$ k) c = c"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2065
    using assms using less_imp_le by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2066
  show ?t1 unfolding division_points_def interval_split[OF k, of a b]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2067
    unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2068
    unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2069
    unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2070
  proof- fix i l x assume as:"a $$ fst x < snd x" "snd x < (if fst x = k then c else b $$ fst x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2071
      "interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2072
      "i = l \<inter> {x. x $$ k \<le> c}" "l \<in> d" "l \<inter> {x. x $$ k \<le> c} \<noteq> {}" and fstx:"fst x <DIM('a)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2073
    from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2074
    have *:"\<forall>i<DIM('a). u $$ i \<le> ((\<chi>\<chi> i. if i = k then min (v $$ k) c else v $$ i)::'a) $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2075
      using as(6) unfolding l interval_split[OF k] interval_ne_empty as .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2076
    have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2077
    show "fst x <DIM('a) \<and> a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2078
      \<or> interval_upperbound i $$ fst x = snd x)" apply(rule,rule fstx)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2079
      using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2080
      apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2081
      apply(case_tac[!] "fst x = k") using assms fstx apply- unfolding euclidean_lambda_beta by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2082
  qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2083
  show ?t2 unfolding division_points_def interval_split[OF k, of a b]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2084
    unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] unfolding *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2085
    unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2086
    unfolding mem_Collect_eq apply(erule exE conjE)+ unfolding euclidean_lambda_beta' apply(rule,assumption)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2087
  proof- fix i l x assume as:"(if fst x = k then c else a $$ fst x) < snd x" "snd x < b $$ fst x"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2088
      "interval_lowerbound i $$ fst x = snd x \<or> interval_upperbound i $$ fst x = snd x" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2089
      "i = l \<inter> {x. c \<le> x $$ k}" "l \<in> d" "l \<inter> {x. c \<le> x $$ k} \<noteq> {}" and fstx:"fst x < DIM('a)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2090
    from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2091
    have *:"\<forall>i<DIM('a). ((\<chi>\<chi> i. if i = k then max (u $$ k) c else u $$ i)::'a) $$ i \<le> v $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2092
      using as(6) unfolding l interval_split[OF k] interval_ne_empty as .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2093
    have **:"\<forall>i<DIM('a). u$$i \<le> v$$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2094
    show "a $$ fst x < snd x \<and> snd x < b $$ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $$ fst x = snd x \<or>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2095
      interval_upperbound i $$ fst x = snd x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2096
      using as(1-3,5) unfolding l interval_split[OF k] interval_ne_empty as interval_bounds[OF *] apply-
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2097
      apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2098
      apply(case_tac[!] "fst x = k") using assms fstx apply-  by(auto simp add:euclidean_lambda_beta'[OF k]) qed qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2099
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2100
lemma division_points_psubset: fixes a::"'a::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2101
  assumes "d division_of {a..b}"  "\<forall>i<DIM('a). a$$i < b$$i"  "a$$k < c" "c < b$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2102
  "l \<in> d" "interval_lowerbound l$$k = c \<or> interval_upperbound l$$k = c" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2103
  shows "division_points ({a..b} \<inter> {x. x$$k \<le> c}) {l \<inter> {x. x$$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2104
              \<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D") 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2105
        "division_points ({a..b} \<inter> {x. x$$k \<ge> c}) {l \<inter> {x. x$$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2106
              \<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D") 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2107
proof- have ab:"\<forall>i<DIM('a). a$$i \<le> b$$i" using assms(2) by(auto intro!:less_imp_le)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2108
  guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2109
  have uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "\<forall>i<DIM('a). a$$i \<le> u$$i \<and> v$$i \<le> b$$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2110
    using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2111
    unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2112
  have *:"interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2113
         "interval_upperbound ({a..b} \<inter> {x. x $$ k \<le> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2114
    unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2115
    unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2116
  have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2117
    apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2118
    apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2119
    unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2120
  thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) using k by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2121
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2122
  have *:"interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_lowerbound l $$ k}) $$ k = interval_lowerbound l $$ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2123
         "interval_lowerbound ({a..b} \<inter> {x. x $$ k \<ge> interval_upperbound l $$ k}) $$ k = interval_upperbound l $$ k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2124
    unfolding interval_split[OF k] apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2125
    unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab k by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2126
  have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2127
    apply(rule_tac x="(k,(interval_lowerbound l)$$k)" in exI) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2128
    apply(rule_tac x="(k,(interval_upperbound l)$$k)" in exI)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2129
    unfolding division_points_def unfolding interval_bounds[OF ab] by(auto simp add:*) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2130
  thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4) k]) by auto qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2131
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2132
subsection {* Preservation by divisions and tagged divisions. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2133
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2134
lemma support_support[simp]:"support opp f (support opp f s) = support opp f s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2135
  unfolding support_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2136
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2137
lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2138
  unfolding iterate_def support_support by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2139
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2140
lemma iterate_expand_cases:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2141
  "iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2142
  apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2143
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2144
lemma iterate_image: assumes "monoidal opp"  "inj_on f s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2145
  shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2146
proof- have *:"\<And>s. finite s \<Longrightarrow>  \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2147
     iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2148
  proof- case goal1 show ?case using goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2149
    proof(induct s) case empty thus ?case using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2150
    next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2151
        unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2152
        unfolding image_insert defer apply(subst iterate_insert[OF assms(1)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2153
        apply(rule finite_imageI insert)+ apply(subst if_not_P)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2154
        unfolding image_iff o_def using insert(2,4) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2155
    qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2156
  show ?thesis 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2157
    apply(cases "finite (support opp g (f ` s))")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2158
    apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2159
    unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2160
    apply(rule subset_inj_on[OF assms(2) support_subset])+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2161
    apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2162
    apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2163
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2164
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2165
(* This lemma about iterations comes up in a few places.                     *)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2166
lemma iterate_nonzero_image_lemma:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2167
  assumes "monoidal opp" "finite s" "g(a) = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2168
  "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2169
  shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2170
proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2171
  have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2172
    unfolding support_def using assms(3) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2173
  show ?thesis unfolding *
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2174
    apply(subst iterate_support[THEN sym]) unfolding support_clauses
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2175
    apply(subst iterate_image[OF assms(1)]) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2176
    apply(subst(2) iterate_support[THEN sym]) apply(subst **)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2177
    unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2178
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2179
lemma iterate_eq_neutral:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2180
  assumes "monoidal opp"  "\<forall>x \<in> s. (f(x) = neutral opp)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2181
  shows "(iterate opp s f = neutral opp)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2182
proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2183
  show ?thesis apply(subst iterate_support[THEN sym]) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2184
    unfolding * using assms(1) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2185
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2186
lemma iterate_op: assumes "monoidal opp" "finite s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2187
  shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2188
proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2189
next case (insert x F) show ?case unfolding iterate_insert[OF assms(1) insert(1)] if_not_P[OF insert(2)] insert(3)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2190
    unfolding monoidal_ac[OF assms(1)] by(rule refl) qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2191
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2192
lemma iterate_eq: assumes "monoidal opp" "\<And>x. x \<in> s \<Longrightarrow> f x = g x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2193
  shows "iterate opp s f = iterate opp s g"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2194
proof- have *:"support opp g s = support opp f s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2195
    unfolding support_def using assms(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2196
  show ?thesis
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2197
  proof(cases "finite (support opp f s)")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2198
    case False thus ?thesis apply(subst iterate_expand_cases,subst(2) iterate_expand_cases)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2199
      unfolding * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2200
  next def su \<equiv> "support opp f s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2201
    case True note support_subset[of opp f s] 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2202
    thus ?thesis apply- apply(subst iterate_support[THEN sym],subst(2) iterate_support[THEN sym]) unfolding * using True
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2203
      unfolding su_def[symmetric]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2204
    proof(induct su) case empty show ?case by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2205
    next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2206
        unfolding if_not_P[OF insert(2)] apply(subst insert(3))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2207
        defer apply(subst assms(2)[of x]) using insert by auto qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2208
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2209
lemma nonempty_witness: assumes "s \<noteq> {}" obtains x where "x \<in> s" using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2210
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2211
lemma operative_division: fixes f::"('a::ordered_euclidean_space) set \<Rightarrow> 'b"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2212
  assumes "monoidal opp" "operative opp f" "d division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2213
  shows "iterate opp d f = f {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2214
proof- def C \<equiv> "card (division_points {a..b} d)" thus ?thesis using assms
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2215
  proof(induct C arbitrary:a b d rule:full_nat_induct)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2216
    case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2217
    { presume *:"content {a..b} \<noteq> 0 \<Longrightarrow> ?case"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2218
      thus ?case apply-apply(cases) defer apply assumption
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2219
      proof- assume as:"content {a..b} = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2220
        show ?case unfolding operativeD(1)[OF assms(2) as] apply(rule iterate_eq_neutral[OF goal1(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2221
        proof fix x assume x:"x\<in>d"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2222
          then guess u v apply(drule_tac division_ofD(4)[OF goal1(4)]) by(erule exE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2223
          thus "f x = neutral opp" using division_of_content_0[OF as goal1(4)] 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2224
            using operativeD(1)[OF assms(2)] x by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2225
        qed qed }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2226
    assume "content {a..b} \<noteq> 0" note ab = this[unfolded content_lt_nz[THEN sym] content_pos_lt_eq]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2227
    hence ab':"\<forall>i<DIM('a). a$$i \<le> b$$i" by (auto intro!: less_imp_le) show ?case 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2228
    proof(cases "division_points {a..b} d = {}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2229
      case True have d':"\<forall>i\<in>d. \<exists>u v. i = {u..v} \<and>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2230
        (\<forall>j<DIM('a). u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2231
        unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2232
        apply(rule_tac x=a in exI,rule_tac x=b in exI) apply(rule,rule refl) apply(rule,rule)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2233
      proof- fix u v j assume j:"j<DIM('a)" assume as:"{u..v} \<in> d" note division_ofD(3)[OF goal1(4) this]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2234
        hence uv:"\<forall>i<DIM('a). u$$i \<le> v$$i" "u$$j \<le> v$$j" using j unfolding interval_ne_empty by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2235
        have *:"\<And>p r Q. \<not> j<DIM('a) \<or> p \<or> r \<or> (\<forall>x\<in>d. Q x) \<Longrightarrow> p \<or> r \<or> (Q {u..v})" using as j by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2236
        have "(j, u$$j) \<notin> division_points {a..b} d"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2237
          "(j, v$$j) \<notin> division_points {a..b} d" using True by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2238
        note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq split_conv interval_bounds[OF ab'] bex_simps]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2239
        note *[OF this(1)] *[OF this(2)] note this[unfolded interval_bounds[OF uv(1)]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2240
        moreover have "a$$j \<le> u$$j" "v$$j \<le> b$$j" using division_ofD(2,2,3)[OF goal1(4) as] 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2241
          unfolding subset_eq apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2242
          unfolding interval_ne_empty mem_interval using j by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2243
        ultimately show "u$$j = a$$j \<and> v$$j = a$$j \<or> u$$j = b$$j \<and> v$$j = b$$j \<or> u$$j = a$$j \<and> v$$j = b$$j"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2244
          unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) j by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2245
      qed have "(1/2) *\<^sub>R (a+b) \<in> {a..b}" unfolding mem_interval using ab by(auto intro!:less_imp_le)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2246
      note this[unfolded division_ofD(6)[OF goal1(4),THEN sym] Union_iff]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2247
      then guess i .. note i=this guess u v using d'[rule_format,OF i(1)] apply-by(erule exE conjE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2248
      have "{a..b} \<in> d"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2249
      proof- { presume "i = {a..b}" thus ?thesis using i by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2250
        { presume "u = a" "v = b" thus "i = {a..b}" using uv by auto }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2251
        show "u = a" "v = b" unfolding euclidean_eq[where 'a='a]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2252
        proof(safe) fix j assume j:"j<DIM('a)" note i(2)[unfolded uv mem_interval,rule_format,of j]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2253
          thus "u $$ j = a $$ j" "v $$ j = b $$ j" using uv(2)[rule_format,of j] j by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2254
        qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2255
      hence *:"d = insert {a..b} (d - {{a..b}})" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2256
      have "iterate opp (d - {{a..b}}) f = neutral opp" apply(rule iterate_eq_neutral[OF goal1(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2257
      proof fix x assume x:"x \<in> d - {{a..b}}" hence "x\<in>d" by auto note d'[rule_format,OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2258
        then guess u v apply-by(erule exE conjE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2259
        have "u\<noteq>a \<or> v\<noteq>b" using x[unfolded uv] by auto  
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2260
        then obtain j where "u$$j \<noteq> a$$j \<or> v$$j \<noteq> b$$j" and j:"j<DIM('a)" unfolding euclidean_eq[where 'a='a] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2261
        hence "u$$j = v$$j" using uv(2)[rule_format,OF j] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2262
        hence "content {u..v} = 0"  unfolding content_eq_0 apply(rule_tac x=j in exI) using j by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2263
        thus "f x = neutral opp" unfolding uv(1) by(rule operativeD(1)[OF goal1(3)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2264
      qed thus "iterate opp d f = f {a..b}" apply-apply(subst *) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2265
        apply(subst iterate_insert[OF goal1(2)]) using goal1(2,4) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2266
    next case False hence "\<exists>x. x\<in>division_points {a..b} d" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2267
      then guess k c unfolding split_paired_Ex apply- unfolding division_points_def mem_Collect_eq split_conv
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2268
        by(erule exE conjE)+ note this(2-4,1) note kc=this[unfolded interval_bounds[OF ab']]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2269
      from this(3) guess j .. note j=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2270
      def d1 \<equiv> "{l \<inter> {x. x$$k \<le> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<le> c} \<noteq> {}}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2271
      def d2 \<equiv> "{l \<inter> {x. x$$k \<ge> c} | l. l \<in> d \<and> l \<inter> {x. x$$k \<ge> c} \<noteq> {}}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2272
      def cb \<equiv> "(\<chi>\<chi> i. if i = k then c else b$$i)::'a" and ca \<equiv> "(\<chi>\<chi> i. if i = k then c else a$$i)::'a"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2273
      note division_points_psubset[OF goal1(4) ab kc(1-2) j]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2274
      note psubset_card_mono[OF _ this(1)] psubset_card_mono[OF _ this(2)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2275
      hence *:"(iterate opp d1 f) = f ({a..b} \<inter> {x. x$$k \<le> c})" "(iterate opp d2 f) = f ({a..b} \<inter> {x. x$$k \<ge> c})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2276
        apply- unfolding interval_split[OF kc(4)] apply(rule_tac[!] goal1(1)[rule_format])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2277
        using division_split[OF goal1(4), where k=k and c=c]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2278
        unfolding interval_split[OF kc(4)] d1_def[symmetric] d2_def[symmetric] unfolding goal1(2) Suc_le_mono
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2279
        using goal1(2-3) using division_points_finite[OF goal1(4)] using kc(4) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2280
      have "f {a..b} = opp (iterate opp d1 f) (iterate opp d2 f)" (is "_ = ?prev")
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2281
        unfolding * apply(rule operativeD(2)) using goal1(3) using kc(4) by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2282
      also have "iterate opp d1 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<le> c}))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2283
        unfolding d1_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2284
        unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2285
        unfolding empty_as_interval[THEN sym] apply(rule content_empty)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2286
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. x $$ k \<le> c} = y \<inter> {x. x $$ k \<le> c}" "l \<noteq> y" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2287
        from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2288
        show "f (l \<inter> {x. x $$ k \<le> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2289
          apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_left_inj)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2290
          apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule kc(4) as)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2291
      qed also have "iterate opp d2 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$$k \<ge> c}))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2292
        unfolding d2_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2293
        unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2294
        unfolding empty_as_interval[THEN sym] apply(rule content_empty)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2295
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. c \<le> x $$ k} = y \<inter> {x. c \<le> x $$ k}" "l \<noteq> y" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2296
        from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2297
        show "f (l \<inter> {x. x $$ k \<ge> c}) = neutral opp" unfolding l interval_split[OF kc(4)] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2298
          apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym,OF kc(4)] apply(rule division_split_right_inj)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2299
          apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as kc(4))+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2300
      qed also have *:"\<forall>x\<in>d. f x = opp (f (x \<inter> {x. x $$ k \<le> c})) (f (x \<inter> {x. c \<le> x $$ k}))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2301
        unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule,rule operativeD(2)) using goal1(3) kc by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2302
      have "opp (iterate opp d (\<lambda>l. f (l \<inter> {x. x $$ k \<le> c}))) (iterate opp d (\<lambda>l. f (l \<inter> {x. c \<le> x $$ k})))
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2303
        = iterate opp d f" apply(subst(3) iterate_eq[OF _ *[rule_format]]) prefer 3
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2304
        apply(rule iterate_op[THEN sym]) using goal1 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2305
      finally show ?thesis by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2306
    qed qed qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2307
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2308
lemma iterate_image_nonzero: assumes "monoidal opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2309
  "finite s" "\<forall>x\<in>s. \<forall>y\<in>s. ~(x = y) \<and> f x = f y \<longrightarrow> g(f x) = neutral opp"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2310
  shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" using assms
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2311
proof(induct rule:finite_subset_induct[OF assms(2) subset_refl])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2312
  case goal1 show ?case using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2313
next case goal2 have *:"\<And>x y. y = neutral opp \<Longrightarrow> x = opp y x" using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2314
  show ?case unfolding image_insert apply(subst iterate_insert[OF assms(1)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2315
    apply(rule finite_imageI goal2)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2316
    apply(cases "f a \<in> f ` F") unfolding if_P if_not_P apply(subst goal2(4)[OF assms(1) goal2(1)]) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2317
    apply(subst iterate_insert[OF assms(1) goal2(1)]) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2318
    apply(subst iterate_insert[OF assms(1) goal2(1)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2319
    unfolding if_not_P[OF goal2(3)] defer unfolding image_iff defer apply(erule bexE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2320
    apply(rule *) unfolding o_def apply(rule_tac y=x in goal2(7)[rule_format])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2321
    using goal2 unfolding o_def by auto qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2322
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2323
lemma operative_tagged_division: assumes "monoidal opp" "operative opp f" "d tagged_division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2324
  shows "iterate(opp) d (\<lambda>(x,l). f l) = f {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2325
proof- have *:"(\<lambda>(x,l). f l) = (f o snd)" unfolding o_def by(rule,auto) note assm = tagged_division_ofD[OF assms(3)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2326
  have "iterate(opp) d (\<lambda>(x,l). f l) = iterate opp (snd ` d) f" unfolding *
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2327
    apply(rule iterate_image_nonzero[THEN sym,OF assms(1)]) apply(rule tagged_division_of_finite assms)+ 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2328
    unfolding Ball_def split_paired_All snd_conv apply(rule,rule,rule,rule,rule,rule,rule,erule conjE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2329
  proof- fix a b aa ba assume as:"(a, b) \<in> d" "(aa, ba) \<in> d" "(a, b) \<noteq> (aa, ba)" "b = ba"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2330
    guess u v using assm(4)[OF as(1)] apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2331
    show "f b = neutral opp" unfolding uv apply(rule operativeD(1)[OF assms(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2332
      unfolding content_eq_0_interior using tagged_division_ofD(5)[OF assms(3) as(1-3)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2333
      unfolding as(4)[THEN sym] uv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2334
  qed also have "\<dots> = f {a..b}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2335
    using operative_division[OF assms(1-2) division_of_tagged_division[OF assms(3)]] .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2336
  finally show ?thesis . qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2337
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2338
subsection {* Additivity of content. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2339
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2340
lemma setsum_iterate:assumes "finite s" shows "setsum f s = iterate op + s f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2341
proof- have *:"setsum f s = setsum f (support op + f s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2342
    apply(rule setsum_mono_zero_right)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2343
    unfolding support_def neutral_monoid using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2344
  thus ?thesis unfolding * setsum_def iterate_def fold_image_def fold'_def
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2345
    unfolding neutral_monoid . qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2346
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2347
lemma additive_content_division: assumes "d division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2348
  shows "setsum content d = content({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2349
  unfolding operative_division[OF monoidal_monoid operative_content assms,THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2350
  apply(subst setsum_iterate) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2351
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2352
lemma additive_content_tagged_division:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2353
  assumes "d tagged_division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2354
  shows "setsum (\<lambda>(x,l). content l) d = content({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2355
  unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2356
  apply(subst setsum_iterate) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2357
36334
068a01b4bc56 document generation for Multivariate_Analysis
huffman
parents: 36318
diff changeset
  2358
subsection {* Finally, the integral of a constant *}
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2359
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2360
lemma has_integral_const[intro]:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2361
  "((\<lambda>x. c) has_integral (content({a..b::'a::ordered_euclidean_space}) *\<^sub>R c)) ({a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2362
  unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2363
  apply(rule,rule gauge_trivial)apply(rule,rule,erule conjE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2364
  unfolding split_def apply(subst scaleR_left.setsum[THEN sym, unfolded o_def])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2365
  defer apply(subst additive_content_tagged_division[unfolded split_def]) apply assumption by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2366
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2367
subsection {* Bounds on the norm of Riemann sums and the integral itself. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2368
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2369
lemma dsum_bound: assumes "p division_of {a..b}" "norm(c) \<le> e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2370
  shows "norm(setsum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content({a..b})" (is "?l \<le> ?r")
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  2371
  apply(rule order_trans,rule norm_setsum) unfolding norm_scaleR setsum_left_distrib[THEN sym]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2372
  apply(rule order_trans[OF mult_left_mono],rule assms,rule setsum_abs_ge_zero)
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  2373
  apply(subst mult_commute) apply(rule mult_left_mono)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2374
  apply(rule order_trans[of _ "setsum content p"]) apply(rule eq_refl,rule setsum_cong2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2375
  apply(subst abs_of_nonneg) unfolding additive_content_division[OF assms(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2376
proof- from order_trans[OF norm_ge_zero[of c] assms(2)] show "0 \<le> e" .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2377
  fix x assume "x\<in>p" from division_ofD(4)[OF assms(1) this] guess u v apply-by(erule exE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2378
  thus "0 \<le> content x" using content_pos_le by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2379
qed(insert assms,auto)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2380
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2381
lemma rsum_bound: assumes "p tagged_division_of {a..b}" "\<forall>x\<in>{a..b}. norm(f x) \<le> e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2382
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2383
proof(cases "{a..b} = {}") case True
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2384
  show ?thesis using assms(1) unfolding True tagged_division_of_trivial by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2385
next case False show ?thesis
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  2386
    apply(rule order_trans,rule norm_setsum) unfolding split_def norm_scaleR
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2387
    apply(rule order_trans[OF setsum_mono]) apply(rule mult_left_mono[OF _ abs_ge_zero, of _ e]) defer
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  2388
    unfolding setsum_left_distrib[THEN sym] apply(subst mult_commute) apply(rule mult_left_mono)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2389
    apply(rule order_trans[of _ "setsum (content \<circ> snd) p"]) apply(rule eq_refl,rule setsum_cong2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2390
    apply(subst o_def, rule abs_of_nonneg)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2391
  proof- show "setsum (content \<circ> snd) p \<le> content {a..b}" apply(rule eq_refl)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2392
      unfolding additive_content_tagged_division[OF assms(1),THEN sym] split_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2393
    guess w using nonempty_witness[OF False] .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2394
    thus "e\<ge>0" apply-apply(rule order_trans) defer apply(rule assms(2)[rule_format],assumption) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2395
    fix xk assume *:"xk\<in>p" guess x k  using surj_pair[of xk] apply-by(erule exE)+ note xk = this *[unfolded this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2396
    from tagged_division_ofD(4)[OF assms(1) xk(2)] guess u v apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2397
    show "0\<le> content (snd xk)" unfolding xk snd_conv uv by(rule content_pos_le)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2398
    show "norm (f (fst xk)) \<le> e" unfolding xk fst_conv using tagged_division_ofD(2,3)[OF assms(1) xk(2)] assms(2) by auto
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  2399
  qed qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2400
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2401
lemma rsum_diff_bound:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2402
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2403
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - setsum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2404
  apply(rule order_trans[OF _ rsum_bound[OF assms]]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  2405
  unfolding setsum_subtractf[THEN sym] apply(rule setsum_cong2) unfolding scaleR_diff_right by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2406
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2407
lemma has_integral_bound: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2408
  assumes "0 \<le> B" "(f has_integral i) ({a..b})" "\<forall>x\<in>{a..b}. norm(f x) \<le> B"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2409
  shows "norm i \<le> B * content {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2410
proof- let ?P = "content {a..b} > 0" { presume "?P \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2411
    thus ?thesis proof(cases ?P) case False
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2412
      hence *:"content {a..b} = 0" using content_lt_nz by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2413
      hence **:"i = 0" using assms(2) apply(subst has_integral_null_eq[THEN sym]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2414
      show ?thesis unfolding * ** using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2415
    qed auto } assume ab:?P
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2416
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2417
  assume "\<not> ?thesis" hence *:"norm i - B * content {a..b} > 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2418
  from assms(2)[unfolded has_integral,rule_format,OF *] guess d apply-by(erule exE conjE)+ note d=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2419
  from fine_division_exists[OF this(1), of a b] guess p . note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2420
  have *:"\<And>s B. norm s \<le> B \<Longrightarrow> \<not> (norm (s - i) < norm i - B)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2421
  proof- case goal1 thus ?case unfolding not_less
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2422
    using norm_triangle_sub[of i s] unfolding norm_minus_commute by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2423
  qed show False using d(2)[OF conjI[OF p]] *[OF rsum_bound[OF p(1) assms(3)]] by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2424
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2425
subsection {* Similar theorems about relationship among components. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2426
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2427
lemma rsum_component_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2428
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. (f x)$$i \<le> (g x)$$i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2429
  shows "(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p)$$i \<le> (setsum (\<lambda>(x,k). content k *\<^sub>R g x) p)$$i"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  2430
  unfolding  euclidean_component_setsum apply(rule setsum_mono) apply safe
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2431
proof- fix a b assume ab:"(a,b) \<in> p" note assm = tagged_division_ofD(2-4)[OF assms(1) ab]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2432
  from this(3) guess u v apply-by(erule exE)+ note b=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2433
  show "(content b *\<^sub>R f a) $$ i \<le> (content b *\<^sub>R g a) $$ i" unfolding b
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2434
    unfolding euclidean_simps real_scaleR_def apply(rule mult_left_mono)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2435
    defer apply(rule content_pos_le,rule assms(2)[rule_format]) using assm by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2436
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2437
lemma has_integral_component_le: fixes f g::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2438
  assumes "(f has_integral i) s" "(g has_integral j) s"  "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2439
  shows "i$$k \<le> j$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2440
proof- have lem:"\<And>a b i (j::'b). \<And>g f::'a \<Rightarrow> 'b. (f has_integral i) ({a..b}) \<Longrightarrow> 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2441
    (g has_integral j) ({a..b}) \<Longrightarrow> \<forall>x\<in>{a..b}. (f x)$$k \<le> (g x)$$k \<Longrightarrow> i$$k \<le> j$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2442
  proof(rule ccontr) case goal1 hence *:"0 < (i$$k - j$$k) / 3" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2443
    guess d1 using goal1(1)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d1=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2444
    guess d2 using goal1(2)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d2=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2445
    guess p using fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] unfolding fine_inter .
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2446
    note p = this(1) conjunctD2[OF this(2)]  note le_less_trans[OF component_le_norm, of _ _ k] term g
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2447
    note this[OF d1(2)[OF conjI[OF p(1,2)]]] this[OF d2(2)[OF conjI[OF p(1,3)]]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2448
    thus False unfolding euclidean_simps using rsum_component_le[OF p(1) goal1(3)] apply simp by smt
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2449
  qed let ?P = "\<exists>a b. s = {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2450
  { presume "\<not> ?P \<Longrightarrow> ?thesis" thus ?thesis proof(cases ?P)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2451
      case True then guess a b apply-by(erule exE)+ note s=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2452
      show ?thesis apply(rule lem) using assms[unfolded s] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2453
    qed auto } assume as:"\<not> ?P"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2454
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2455
  assume "\<not> i$$k \<le> j$$k" hence ij:"(i$$k - j$$k) / 3 > 0" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2456
  note has_integral_altD[OF _ as this] from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2457
  have "bounded (ball 0 B1 \<union> ball (0::'a) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2458
  from bounded_subset_closed_interval[OF this] guess a b apply- by(erule exE)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2459
  note ab = conjunctD2[OF this[unfolded Un_subset_iff]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2460
  guess w1 using B(2)[OF ab(1)] .. note w1=conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2461
  guess w2 using B(4)[OF ab(2)] .. note w2=conjunctD2[OF this]
48069
e9b2782c4f99 restricted Z3 by default to a fragment where proof reconstruction should not fail (for better integration with Sledgehammer) -- the full set of supported Z3 features can still be used by enabling the configuration option "z3_with_extensions"
boehmes
parents: 47317
diff changeset
  2462
  have *:"\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" using [[z3_with_extensions]] by smt
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2463
  note le_less_trans[OF component_le_norm[of _ k]] note this[OF w1(2)] this[OF w2(2)] moreover
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2464
  have "w1$$k \<le> w2$$k" apply(rule lem[OF w1(1) w2(1)]) using assms by auto ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2465
  show False unfolding euclidean_simps by(rule *) qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2466
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2467
lemma integral_component_le: fixes g f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2468
  assumes "f integrable_on s" "g integrable_on s"  "\<forall>x\<in>s. (f x)$$k \<le> (g x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2469
  shows "(integral s f)$$k \<le> (integral s g)$$k"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2470
  apply(rule has_integral_component_le) using integrable_integral assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2471
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2472
(*lemma has_integral_dest_vec1_le: fixes f::"'a::ordered_euclidean_space \<Rightarrow> real^1"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2473
  assumes "(f has_integral i) s"  "(g has_integral j) s" "\<forall>x\<in>s. f x \<le> g x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2474
  shows "dest_vec1 i \<le> dest_vec1 j" apply(rule has_integral_component_le[OF assms(1-2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2475
  using assms(3) unfolding vector_le_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2476
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2477
lemma integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2478
  assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2479
  shows "dest_vec1(integral s f) \<le> dest_vec1(integral s g)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2480
  apply(rule has_integral_dest_vec1_le) apply(rule_tac[1-2] integrable_integral) using assms by auto*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2481
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2482
lemma has_integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2483
  assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> i$$k" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2484
  using has_integral_component_le[OF has_integral_0 assms(1)] using assms(2-) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2485
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2486
lemma integral_component_nonneg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2487
  assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> (f x)$$k" shows "0 \<le> (integral s f)$$k"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  2488
  apply(rule has_integral_component_nonneg) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  2489
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2490
(*lemma has_integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2491
  assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  2492
  using has_integral_component_nonneg[OF assms(1), of 1]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2493
  using assms(2) unfolding vector_le_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2494
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  2495
lemma integral_dest_vec1_nonneg: fixes f::"real^'n \<Rightarrow> real^1"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2496
  assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2497
  apply(rule has_integral_dest_vec1_nonneg) using assms by auto*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2498
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2499
lemma has_integral_component_neg: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2500
  assumes "(f has_integral i) s" "\<forall>x\<in>s. (f x)$$k \<le> 0"shows "i$$k \<le> 0" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2501
  using has_integral_component_le[OF assms(1) has_integral_0] assms(2-) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2502
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2503
(*lemma has_integral_dest_vec1_neg: fixes f::"real^'n \<Rightarrow> real^1"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2504
  assumes "(f has_integral i) s" "\<forall>x\<in>s. f x \<le> 0" shows "i \<le> 0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2505
  using has_integral_component_neg[OF assms(1),of 1] using assms(2) by auto*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2506
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2507
lemma has_integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2508
  assumes "(f has_integral i) {a..b}"  "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)" shows "B * content {a..b} \<le> i$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2509
  using has_integral_component_le[OF has_integral_const assms(1),of "(\<chi>\<chi> i. B)::'b" k] assms(2-)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2510
  unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] by(auto simp add:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2511
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2512
lemma has_integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2513
  assumes "(f has_integral i) {a..b}" "\<forall>x\<in>{a..b}. f x$$k \<le> B" "k<DIM('b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2514
  shows "i$$k \<le> B * content({a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2515
  using has_integral_component_le[OF assms(1) has_integral_const, of k "\<chi>\<chi> i. B"]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2516
  unfolding euclidean_simps euclidean_lambda_beta'[OF assms(3)] using assms(2) by(auto simp add:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2517
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2518
lemma integral_component_lbound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2519
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. B \<le> f(x)$$k" "k<DIM('b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2520
  shows "B * content({a..b}) \<le> (integral({a..b}) f)$$k"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2521
  apply(rule has_integral_component_lbound) using assms unfolding has_integral_integral by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2522
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2523
lemma integral_component_ubound: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2524
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. f(x)$$k \<le> B" "k<DIM('b)" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2525
  shows "(integral({a..b}) f)$$k \<le> B * content({a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2526
  apply(rule has_integral_component_ubound) using assms unfolding has_integral_integral by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2527
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2528
subsection {* Uniform limit of integrable functions is integrable. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2529
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2530
lemma integrable_uniform_limit: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2531
  assumes "\<forall>e>0. \<exists>g. (\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e) \<and> g integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2532
  shows "f integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2533
proof- { presume *:"content {a..b} > 0 \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2534
    show ?thesis apply cases apply(rule *,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2535
      unfolding content_lt_nz integrable_on_def using has_integral_null by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2536
  assume as:"content {a..b} > 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2537
  have *:"\<And>P. \<forall>e>(0::real). P e \<Longrightarrow> \<forall>n::nat. P (inverse (real n+1))" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2538
  from choice[OF *[OF assms]] guess g .. note g=conjunctD2[OF this[rule_format],rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2539
  from choice[OF allI[OF g(2)[unfolded integrable_on_def], of "\<lambda>x. x"]] guess i .. note i=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2540
  
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2541
  have "Cauchy i" unfolding Cauchy_def
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2542
  proof(rule,rule) fix e::real assume "e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2543
    hence "e / 4 / content {a..b} > 0" using as by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2544
    then guess M apply-apply(subst(asm) real_arch_inv) by(erule exE conjE)+ note M=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2545
    show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (i m) (i n) < e" apply(rule_tac x=M in exI,rule,rule,rule,rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2546
    proof- case goal1 have "e/4>0" using `e>0` by auto note * = i[unfolded has_integral,rule_format,OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2547
      from *[of m] guess gm apply-by(erule conjE exE)+ note gm=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2548
      from *[of n] guess gn apply-by(erule conjE exE)+ note gn=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2549
      from fine_division_exists[OF gauge_inter[OF gm(1) gn(1)], of a b] guess p . note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2550
      have lem2:"\<And>s1 s2 i1 i2. norm(s2 - s1) \<le> e/2 \<Longrightarrow> norm(s1 - i1) < e / 4 \<Longrightarrow> norm(s2 - i2) < e / 4 \<Longrightarrow>norm(i1 - i2) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2551
      proof- case goal1 have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2552
          using norm_triangle_ineq[of "i1 - s1" "s1 - i2"]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2553
          using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by(auto simp add:algebra_simps)
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2554
        also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2555
        finally show ?case .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2556
      qed
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  2557
      show ?case unfolding dist_norm apply(rule lem2) defer
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2558
        apply(rule gm(2)[OF conjI[OF p(1)]],rule_tac[2] gn(2)[OF conjI[OF p(1)]])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2559
        using conjunctD2[OF p(2)[unfolded fine_inter]] apply- apply assumption+ apply(rule order_trans)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2560
        apply(rule rsum_diff_bound[OF p(1), where e="2 / real M"])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2561
      proof show "2 / real M * content {a..b} \<le> e / 2" unfolding divide_inverse 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2562
          using M as by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2563
        fix x assume x:"x \<in> {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2564
        have "norm (f x - g n x) + norm (f x - g m x) \<le> inverse (real n + 1) + inverse (real m + 1)" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2565
            using g(1)[OF x, of n] g(1)[OF x, of m] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2566
        also have "\<dots> \<le> inverse (real M) + inverse (real M)" apply(rule add_mono)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2567
          apply(rule_tac[!] le_imp_inverse_le) using goal1 M by auto
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  2568
        also have "\<dots> = 2 / real M" unfolding divide_inverse by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2569
        finally show "norm (g n x - g m x) \<le> 2 / real M"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2570
          using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2571
          by(auto simp add:algebra_simps simp add:norm_minus_commute)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2572
      qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2573
  from this[unfolded convergent_eq_cauchy[THEN sym]] guess s .. note s=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2574
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2575
  show ?thesis unfolding integrable_on_def apply(rule_tac x=s in exI) unfolding has_integral
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2576
  proof(rule,rule)  
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2577
    case goal1 hence *:"e/3 > 0" by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  2578
    from LIMSEQ_D [OF s this] guess N1 .. note N1=this
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2579
    from goal1 as have "e / 3 / content {a..b} > 0" by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2580
    from real_arch_invD[OF this] guess N2 apply-by(erule exE conjE)+ note N2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2581
    from i[of "N1 + N2",unfolded has_integral,rule_format,OF *] guess g' .. note g'=conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2582
    have lem:"\<And>sf sg i. norm(sf - sg) \<le> e / 3 \<Longrightarrow> norm(i - s) < e / 3 \<Longrightarrow> norm(sg - i) < e / 3 \<Longrightarrow> norm(sf - s) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2583
    proof- case goal1 have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - i) + norm (i - s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2584
        using norm_triangle_ineq[of "sf - sg" "sg - s"]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2585
        using norm_triangle_ineq[of "sg -  i" " i - s"] by(auto simp add:algebra_simps)
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  2586
      also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:algebra_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2587
      finally show ?case .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2588
    qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2589
    show ?case apply(rule_tac x=g' in exI) apply(rule,rule g')
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2590
    proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> g' fine p" note * = g'(2)[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2591
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - s) < e" apply-apply(rule lem[OF _ _ *])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2592
        apply(rule order_trans,rule rsum_diff_bound[OF p[THEN conjunct1]]) apply(rule,rule g,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2593
      proof- have "content {a..b} < e / 3 * (real N2)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2594
          using N2 unfolding inverse_eq_divide using as by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2595
        hence "content {a..b} < e / 3 * (real (N1 + N2) + 1)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2596
          apply-apply(rule less_le_trans,assumption) using `e>0` by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2597
        thus "inverse (real (N1 + N2) + 1) * content {a..b} \<le> e / 3"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2598
          unfolding inverse_eq_divide by(auto simp add:field_simps)
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  2599
        show "norm (i (N1 + N2) - s) < e / 3" by(rule N1[rule_format],auto)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2600
      qed qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2601
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2602
subsection {* Negligible sets. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2603
37665
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2604
definition "negligible (s::('a::ordered_euclidean_space) set) \<equiv> (\<forall>a b. ((indicator s :: 'a\<Rightarrow>real) has_integral 0) {a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2605
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2606
subsection {* Negligibility of hyperplane. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2607
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2608
lemma vsum_nonzero_image_lemma: 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2609
  assumes "finite s" "g(a) = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2610
  "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2611
  shows "setsum g {f x |x. x \<in> s \<and> f x \<noteq> a} = setsum (g o f) s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2612
  unfolding setsum_iterate[OF assms(1)] apply(subst setsum_iterate) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2613
  apply(rule iterate_nonzero_image_lemma) apply(rule assms monoidal_monoid)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2614
  unfolding assms using neutral_add unfolding neutral_add using assms by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2615
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2616
lemma interval_doublesplit:  fixes a::"'a::ordered_euclidean_space" assumes "k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2617
  shows "{a..b} \<inter> {x . abs(x$$k - c) \<le> (e::real)} = 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2618
  {(\<chi>\<chi> i. if i = k then max (a$$k) (c - e) else a$$i) .. (\<chi>\<chi> i. if i = k then min (b$$k) (c + e) else b$$i)}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2619
proof- have *:"\<And>x c e::real. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2620
  have **:"\<And>s P Q. s \<inter> {x. P x \<and> Q x} = (s \<inter> {x. Q x}) \<inter> {x. P x}" by blast
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2621
  show ?thesis unfolding * ** interval_split[OF assms] by(rule refl) qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2622
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2623
lemma division_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "p division_of {a..b}" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2624
  shows "{l \<inter> {x. abs(x$$k - c) \<le> e} |l. l \<in> p \<and> l \<inter> {x. abs(x$$k - c) \<le> e} \<noteq> {}} division_of ({a..b} \<inter> {x. abs(x$$k - c) \<le> e})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2625
proof- have *:"\<And>x c. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2626
  have **:"\<And>p q p' q'. p division_of q \<Longrightarrow> p = p' \<Longrightarrow> q = q' \<Longrightarrow> p' division_of q'" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2627
  note division_split(1)[OF assms, where c="c+e",unfolded interval_split[OF k]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2628
  note division_split(2)[OF this, where c="c-e" and k=k,OF k] 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2629
  thus ?thesis apply(rule **) using k apply- unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  2630
    apply(rule set_eqI) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2631
    apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $$ k}" in exI) apply rule defer apply rule
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2632
    apply(rule_tac x=l in exI) by blast+ qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2633
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2634
lemma content_doublesplit: fixes a::"'a::ordered_euclidean_space" assumes "0 < e" and k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2635
  obtains d where "0 < d" "content({a..b} \<inter> {x. abs(x$$k - c) \<le> d}) < e"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2636
proof(cases "content {a..b} = 0")
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2637
  case True show ?thesis apply(rule that[of 1]) defer unfolding interval_doublesplit[OF k]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2638
    apply(rule le_less_trans[OF content_subset]) defer apply(subst True)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2639
    unfolding interval_doublesplit[THEN sym,OF k] using assms by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2640
next case False def d \<equiv> "e / 3 / setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2641
  note False[unfolded content_eq_0 not_ex not_le, rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2642
  hence "\<And>x. x<DIM('a) \<Longrightarrow> b$$x > a$$x" by(auto simp add:not_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2643
  hence prod0:"0 < setprod (\<lambda>i. b$$i - a$$i) ({..<DIM('a)} - {k})" apply-apply(rule setprod_pos) by(auto simp add:field_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2644
  hence "d > 0" unfolding d_def using assms by(auto simp add:field_simps) thus ?thesis
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2645
  proof(rule that[of d]) have *:"{..<DIM('a)} = insert k ({..<DIM('a)} - {k})" using k by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2646
    have **:"{a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {} \<Longrightarrow> 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2647
      (\<Prod>i\<in>{..<DIM('a)} - {k}. interval_upperbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2648
      - interval_lowerbound ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) $$ i)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2649
      = (\<Prod>i\<in>{..<DIM('a)} - {k}. b$$i - a$$i)" apply(rule setprod_cong,rule refl) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2650
      unfolding interval_doublesplit[OF k] apply(subst interval_bounds) defer apply(subst interval_bounds)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2651
      unfolding interval_eq_empty not_ex not_less by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2652
    show "content ({a..b} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) < e" apply(cases) unfolding content_def apply(subst if_P,assumption,rule assms)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2653
      unfolding if_not_P apply(subst *) apply(subst setprod_insert) unfolding **
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2654
      unfolding interval_doublesplit[OF k] interval_eq_empty not_ex not_less prefer 3
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2655
      apply(subst interval_bounds) defer apply(subst interval_bounds) unfolding euclidean_lambda_beta'[OF k] if_P[OF refl]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2656
    proof- have "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) \<le> 2 * d" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2657
      also have "... < e / (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i)" unfolding d_def using assms prod0 by(auto simp add:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2658
      finally show "(min (b $$ k) (c + d) - max (a $$ k) (c - d)) * (\<Prod>i\<in>{..<DIM('a)} - {k}. b $$ i - a $$ i) < e"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2659
        unfolding pos_less_divide_eq[OF prod0] . qed auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2660
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2661
lemma negligible_standard_hyperplane[intro]: fixes type::"'a::ordered_euclidean_space" assumes k:"k<DIM('a)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2662
  shows "negligible {x::'a. x$$k = (c::real)}" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2663
  unfolding negligible_def has_integral apply(rule,rule,rule,rule)
37665
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2664
proof-
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2665
  case goal1 from content_doublesplit[OF this k,of a b c] guess d . note d=this
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2666
  let ?i = "indicator {x::'a. x$$k = c} :: 'a\<Rightarrow>real"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2667
  show ?case apply(rule_tac x="\<lambda>x. ball x d" in exI) apply(rule,rule gauge_ball,rule d)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2668
  proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> (\<lambda>x. ball x d) fine p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2669
    have *:"(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. abs(x$$k - c) \<le> d}) *\<^sub>R ?i x)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2670
      apply(rule setsum_cong2) unfolding split_paired_all real_scaleR_def mult_cancel_right split_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2671
      apply(cases,rule disjI1,assumption,rule disjI2)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2672
    proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$$k = c" unfolding indicator_def apply-by(rule ccontr,auto)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2673
      show "content l = content (l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  2674
        apply(rule set_eqI,rule,rule) unfolding mem_Collect_eq
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2675
      proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv]
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  2676
        note this[unfolded subset_eq mem_ball dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2677
        thus "\<bar>y $$ k - c\<bar> \<le> d" unfolding euclidean_simps xk by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2678
      qed auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2679
    note p'= tagged_division_ofD[OF p[THEN conjunct1]] and p''=division_of_tagged_division[OF p[THEN conjunct1]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2680
    show "norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) - 0) < e" unfolding diff_0_right * unfolding real_scaleR_def real_norm_def
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2681
      apply(subst abs_of_nonneg) apply(rule setsum_nonneg,rule) unfolding split_paired_all split_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2682
      apply(rule mult_nonneg_nonneg) apply(drule p'(4)) apply(erule exE)+ apply(rule_tac b=b in back_subst)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2683
      prefer 2 apply(subst(asm) eq_commute) apply assumption
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2684
      apply(subst interval_doublesplit[OF k]) apply(rule content_pos_le) apply(rule indicator_pos_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2685
    proof- have "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2686
        apply(rule setsum_mono) unfolding split_paired_all split_conv 
44457
d366fa5551ef declare euclidean_simps [simp] at the point they are proved;
huffman
parents: 44282
diff changeset
  2687
        apply(rule mult_right_le_one_le) apply(drule p'(4)) by(auto simp add:interval_doublesplit[OF k])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2688
      also have "... < e" apply(subst setsum_over_tagged_division_lemma[OF p[THEN conjunct1]])
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2689
      proof- case goal1 have "content ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<le> content {u..v}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2690
          unfolding interval_doublesplit[OF k] apply(rule content_subset) unfolding interval_doublesplit[THEN sym,OF k] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2691
        thus ?case unfolding goal1 unfolding interval_doublesplit[OF k] using content_pos_le by smt
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2692
      next have *:"setsum content {l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} |l. l \<in> snd ` p \<and> l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} \<noteq> {}} \<ge> 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2693
          apply(rule setsum_nonneg,rule) unfolding mem_Collect_eq image_iff apply(erule exE bexE conjE)+ unfolding split_paired_all 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2694
        proof- fix x l a b assume as:"x = l \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}" "(a, b) \<in> p" "l = snd (a, b)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2695
          guess u v using p'(4)[OF as(2)] apply-by(erule exE)+ note * = this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2696
          show "content x \<ge> 0" unfolding as snd_conv * interval_doublesplit[OF k] by(rule content_pos_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2697
        qed have **:"norm (1::real) \<le> 1" by auto note division_doublesplit[OF p'' k,unfolded interval_doublesplit[OF k]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2698
        note dsum_bound[OF this **,unfolded interval_doublesplit[THEN sym,OF k]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2699
        note this[unfolded real_scaleR_def real_norm_def mult_1_right mult_1, of c d] note le_less_trans[OF this d(2)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2700
        from this[unfolded abs_of_nonneg[OF *]] show "(\<Sum>ka\<in>snd ` p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d})) < e"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2701
          apply(subst vsum_nonzero_image_lemma[of "snd ` p" content "{}", unfolded o_def,THEN sym])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2702
          apply(rule finite_imageI p' content_empty)+ unfolding forall_in_division[OF p'']
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2703
        proof(rule,rule,rule,rule,rule,rule,rule,erule conjE) fix m n u v
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2704
          assume as:"{m..n} \<in> snd ` p" "{u..v} \<in> snd ` p" "{m..n} \<noteq> {u..v}"  "{m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d} = {u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2705
          have "({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<inter> ({u..v} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) \<subseteq> {m..n} \<inter> {u..v}" by blast
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  2706
          note interior_mono[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "{m..n}"]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2707
          hence "interior ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = {}" unfolding as Int_absorb by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2708
          thus "content ({m..n} \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) = 0" unfolding interval_doublesplit[OF k] content_eq_0_interior[THEN sym] .
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2709
        qed qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2710
      finally show "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $$ k - c\<bar> \<le> d}) * ?i x) < e" .
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2711
    qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2712
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2713
subsection {* A technical lemma about "refinement" of division. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2714
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2715
lemma tagged_division_finer: fixes p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2716
  assumes "p tagged_division_of {a..b}" "gauge d"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2717
  obtains q where "q tagged_division_of {a..b}" "d fine q" "\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2718
proof-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2719
  let ?P = "\<lambda>p. p tagged_partial_division_of {a..b} \<longrightarrow> gauge d \<longrightarrow>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2720
    (\<exists>q. q tagged_division_of (\<Union>{k. \<exists>x. (x,k) \<in> p}) \<and> d fine q \<and>
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2721
                   (\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2722
  { have *:"finite p" "p tagged_partial_division_of {a..b}" using assms(1) unfolding tagged_division_of_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2723
    presume "\<And>p. finite p \<Longrightarrow> ?P p" from this[rule_format,OF * assms(2)] guess q .. note q=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2724
    thus ?thesis apply-apply(rule that[of q]) unfolding tagged_division_ofD[OF assms(1)] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2725
  } fix p::"(('a::ordered_euclidean_space) \<times> (('a::ordered_euclidean_space) set)) set" assume as:"finite p"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2726
  show "?P p" apply(rule,rule) using as proof(induct p) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2727
    case empty show ?case apply(rule_tac x="{}" in exI) unfolding fine_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2728
  next case (insert xk p) guess x k using surj_pair[of xk] apply- by(erule exE)+ note xk=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2729
    note tagged_partial_division_subset[OF insert(4) subset_insertI]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2730
    from insert(3)[OF this insert(5)] guess q1 .. note q1 = conjunctD3[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2731
    have *:"\<Union>{l. \<exists>y. (y,l) \<in> insert xk p} = k \<union> \<Union>{l. \<exists>y. (y,l) \<in> p}" unfolding xk by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2732
    note p = tagged_partial_division_ofD[OF insert(4)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2733
    from p(4)[unfolded xk, OF insertI1] guess u v apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2734
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2735
    have "finite {k. \<exists>x. (x, k) \<in> p}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2736
      apply(rule finite_subset[of _ "snd ` p"],rule) unfolding subset_eq image_iff mem_Collect_eq
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2737
      apply(erule exE,rule_tac x="(xa,x)" in bexI) using p by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2738
    hence int:"interior {u..v} \<inter> interior (\<Union>{k. \<exists>x. (x, k) \<in> p}) = {}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2739
      apply(rule inter_interior_unions_intervals) apply(rule open_interior) apply(rule_tac[!] ballI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2740
      unfolding mem_Collect_eq apply(erule_tac[!] exE) apply(drule p(4)[OF insertI2],assumption)      
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2741
      apply(rule p(5))  unfolding uv xk apply(rule insertI1,rule insertI2) apply assumption
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2742
      using insert(2) unfolding uv xk by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2743
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2744
    show ?case proof(cases "{u..v} \<subseteq> d x")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2745
      case True thus ?thesis apply(rule_tac x="{(x,{u..v})} \<union> q1" in exI) apply rule
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2746
        unfolding * uv apply(rule tagged_division_union,rule tagged_division_of_self)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2747
        apply(rule p[unfolded xk uv] insertI1)+  apply(rule q1,rule int) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2748
        apply(rule,rule fine_union,subst fine_def) defer apply(rule q1)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2749
        unfolding Ball_def split_paired_All split_conv apply(rule,rule,rule,rule)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2750
        apply(erule insertE) defer apply(rule UnI2) apply(drule q1(3)[rule_format]) unfolding xk uv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2751
    next case False from fine_division_exists[OF assms(2), of u v] guess q2 . note q2=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2752
      show ?thesis apply(rule_tac x="q2 \<union> q1" in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2753
        apply rule unfolding * uv apply(rule tagged_division_union q2 q1 int fine_union)+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2754
        unfolding Ball_def split_paired_All split_conv apply rule apply(rule fine_union)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2755
        apply(rule q1 q2)+ apply(rule,rule,rule,rule) apply(erule insertE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2756
        apply(rule UnI2) defer apply(drule q1(3)[rule_format])using False unfolding xk uv by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2757
    qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2758
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2759
subsection {* Hence the main theorem about negligible sets. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2760
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2761
lemma finite_product_dependent: assumes "finite s" "\<And>x. x\<in>s\<Longrightarrow> finite (t x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2762
  shows "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" using assms
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2763
proof(induct) case (insert x s) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2764
  have *:"{(i, j) |i j. i \<in> insert x s \<and> j \<in> t i} = (\<lambda>y. (x,y)) ` (t x) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2765
  show ?case unfolding * apply(rule finite_UnI) using insert by auto qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2766
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2767
lemma sum_sum_product: assumes "finite s" "\<forall>i\<in>s. finite (t i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2768
  shows "setsum (\<lambda>i. setsum (x i) (t i)::real) s = setsum (\<lambda>(i,j). x i j) {(i,j) | i j. i \<in> s \<and> j \<in> t i}" using assms
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2769
proof(induct) case (insert a s)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2770
  have *:"{(i, j) |i j. i \<in> insert a s \<and> j \<in> t i} = (\<lambda>y. (a,y)) ` (t a) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2771
  show ?case unfolding * apply(subst setsum_Un_disjoint) unfolding setsum_insert[OF insert(1-2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2772
    prefer 4 apply(subst insert(3)) unfolding add_right_cancel
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2773
  proof- show "setsum (x a) (t a) = (\<Sum>(xa, y)\<in>Pair a ` t a. x xa y)" apply(subst setsum_reindex) unfolding inj_on_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2774
    show "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" apply(rule finite_product_dependent) using insert by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2775
  qed(insert insert, auto) qed auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2776
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2777
lemma has_integral_negligible: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2778
  assumes "negligible s" "\<forall>x\<in>(t - s). f x = 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2779
  shows "(f has_integral 0) t"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2780
proof- presume P:"\<And>f::'b::ordered_euclidean_space \<Rightarrow> 'a. \<And>a b. (\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0) \<Longrightarrow> (f has_integral 0) ({a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2781
  let ?f = "(\<lambda>x. if x \<in> t then f x else 0)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2782
  show ?thesis apply(rule_tac f="?f" in has_integral_eq) apply(rule) unfolding if_P apply(rule refl)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2783
    apply(subst has_integral_alt) apply(cases,subst if_P,assumption) unfolding if_not_P
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2784
  proof- assume "\<exists>a b. t = {a..b}" then guess a b apply-by(erule exE)+ note t = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2785
    show "(?f has_integral 0) t" unfolding t apply(rule P) using assms(2) unfolding t by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2786
  next show "\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> t then ?f x else 0) has_integral z) {a..b} \<and> norm (z - 0) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2787
      apply(safe,rule_tac x=1 in exI,rule) apply(rule zero_less_one,safe) apply(rule_tac x=0 in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2788
      apply(rule,rule P) using assms(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2789
  qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2790
next fix f::"'b \<Rightarrow> 'a" and a b::"'b" assume assm:"\<forall>x. x \<notin> s \<longrightarrow> f x = 0" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2791
  show "(f has_integral 0) {a..b}" unfolding has_integral
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2792
  proof(safe) case goal1
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2793
    hence "\<And>n. e / 2 / ((real n+1) * (2 ^ n)) > 0" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2794
      apply-apply(rule divide_pos_pos) defer apply(rule mult_pos_pos) by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2795
    note assms(1)[unfolded negligible_def has_integral,rule_format,OF this,of a b] note allI[OF this,of "\<lambda>x. x"] 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2796
    from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2797
    show ?case apply(rule_tac x="\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x" in exI) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2798
    proof safe show "gauge (\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x)" using d(1) unfolding gauge_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2799
      fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x) fine p" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2800
      let ?goal = "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2801
      { presume "p\<noteq>{} \<Longrightarrow> ?goal" thus ?goal apply(cases "p={}") using goal1 by auto  }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2802
      assume as':"p \<noteq> {}" from real_arch_simple[of "Sup((\<lambda>(x,k). norm(f x)) ` p)"] guess N ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2803
      hence N:"\<forall>x\<in>(\<lambda>(x, k). norm (f x)) ` p. x \<le> real N" apply(subst(asm) Sup_finite_le_iff) using as as' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2804
      have "\<forall>i. \<exists>q. q tagged_division_of {a..b} \<and> (d i) fine q \<and> (\<forall>(x, k)\<in>p. k \<subseteq> (d i) x \<longrightarrow> (x, k) \<in> q)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2805
        apply(rule,rule tagged_division_finer[OF as(1) d(1)]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2806
      from choice[OF this] guess q .. note q=conjunctD3[OF this[rule_format]]
37665
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2807
      have *:"\<And>i. (\<Sum>(x, k)\<in>q i. content k *\<^sub>R indicator s x) \<ge> (0::real)" apply(rule setsum_nonneg,safe) 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2808
        unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) apply(drule tagged_division_ofD(4)[OF q(1)]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2809
      have **:"\<And>f g s t. finite s \<Longrightarrow> finite t \<Longrightarrow> (\<forall>(x,y) \<in> t. (0::real) \<le> g(x,y)) \<Longrightarrow> (\<forall>y\<in>s. \<exists>x. (x,y) \<in> t \<and> f(y) \<le> g(x,y)) \<Longrightarrow> setsum f s \<le> setsum g t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2810
      proof- case goal1 thus ?case apply-apply(rule setsum_le_included[of s t g snd f]) prefer 4
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2811
          apply safe apply(erule_tac x=x in ballE) apply(erule exE) apply(rule_tac x="(xa,x)" in bexI) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2812
      have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) \<le> setsum (\<lambda>i. (real i + 1) *
37665
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2813
                     norm(setsum (\<lambda>(x,k). content k *\<^sub>R indicator s x :: real) (q i))) {0..N+1}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2814
        unfolding real_norm_def setsum_right_distrib abs_of_nonneg[OF *] diff_0_right
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  2815
        apply(rule order_trans,rule norm_setsum) apply(subst sum_sum_product) prefer 3 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2816
      proof(rule **,safe) show "finite {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i}" apply(rule finite_product_dependent) using q by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2817
        fix i a b assume as'':"(a,b) \<in> q i" show "0 \<le> (real i + 1) * (content b *\<^sub>R indicator s a)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2818
          unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) defer apply(rule mult_nonneg_nonneg)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2819
          using tagged_division_ofD(4)[OF q(1) as''] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2820
      next fix i::nat show "finite (q i)" using q by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2821
      next fix x k assume xk:"(x,k) \<in> p" def n \<equiv> "nat \<lfloor>norm (f x)\<rfloor>"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2822
        have *:"norm (f x) \<in> (\<lambda>(x, k). norm (f x)) ` p" using xk by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2823
        have nfx:"real n \<le> norm(f x)" "norm(f x) \<le> real n + 1" unfolding n_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2824
        hence "n \<in> {0..N + 1}" using N[rule_format,OF *] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2825
        moreover  note as(2)[unfolded fine_def,rule_format,OF xk,unfolded split_conv]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2826
        note q(3)[rule_format,OF xk,unfolded split_conv,rule_format,OF this] note this[unfolded n_def[symmetric]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2827
        moreover have "norm (content k *\<^sub>R f x) \<le> (real n + 1) * (content k * indicator s x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2828
        proof(cases "x\<in>s") case False thus ?thesis using assm by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2829
        next case True have *:"content k \<ge> 0" using tagged_division_ofD(4)[OF as(1) xk] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2830
          moreover have "content k * norm (f x) \<le> content k * (real n + 1)" apply(rule mult_mono) using nfx * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2831
          ultimately show ?thesis unfolding abs_mult using nfx True by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2832
        qed ultimately show "\<exists>y. (y, x, k) \<in> {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i} \<and> norm (content k *\<^sub>R f x) \<le> (real y + 1) * (content k *\<^sub>R indicator s x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2833
          apply(rule_tac x=n in exI,safe) apply(rule_tac x=n in exI,rule_tac x="(x,k)" in exI,safe) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2834
      qed(insert as, auto)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2835
      also have "... \<le> setsum (\<lambda>i. e / 2 / 2 ^ i) {0..N+1}" apply(rule setsum_mono) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2836
      proof- case goal1 thus ?case apply(subst mult_commute, subst pos_le_divide_eq[THEN sym])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2837
          using d(2)[rule_format,of "q i" i] using q[rule_format] by(auto simp add:field_simps)
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  2838
      qed also have "... < e * inverse 2 * 2" unfolding divide_inverse setsum_right_distrib[THEN sym]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2839
        apply(rule mult_strict_left_mono) unfolding power_inverse atLeastLessThanSuc_atLeastAtMost[THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2840
        apply(subst sumr_geometric) using goal1 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2841
      finally show "?goal" by auto qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2842
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2843
lemma has_integral_spike: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2844
  assumes "negligible s" "(\<forall>x\<in>(t - s). g x = f x)" "(f has_integral y) t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2845
  shows "(g has_integral y) t"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2846
proof- { fix a b::"'b" and f g ::"'b \<Rightarrow> 'a" and y::'a
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2847
    assume as:"\<forall>x \<in> {a..b} - s. g x = f x" "(f has_integral y) {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2848
    have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) {a..b}" apply(rule has_integral_add[OF as(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2849
      apply(rule has_integral_negligible[OF assms(1)]) using as by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2850
    hence "(g has_integral y) {a..b}" by auto } note * = this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2851
  show ?thesis apply(subst has_integral_alt) using assms(2-) apply-apply(rule cond_cases,safe)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2852
    apply(rule *, assumption+) apply(subst(asm) has_integral_alt) unfolding if_not_P
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2853
    apply(erule_tac x=e in allE,safe,rule_tac x=B in exI,safe) apply(erule_tac x=a in allE,erule_tac x=b in allE,safe)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2854
    apply(rule_tac x=z in exI,safe) apply(rule *[where fa2="\<lambda>x. if x\<in>t then f x else 0"]) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2855
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2856
lemma has_integral_spike_eq:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2857
  assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2858
  shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2859
  apply rule apply(rule_tac[!] has_integral_spike[OF assms(1)]) using assms(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2860
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2861
lemma integrable_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" "f integrable_on t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2862
  shows "g integrable_on  t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2863
  using assms unfolding integrable_on_def apply-apply(erule exE)
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  2864
  apply(rule,rule has_integral_spike) by fastforce+
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2865
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2866
lemma integral_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2867
  shows "integral t f = integral t g"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2868
  unfolding integral_def using has_integral_spike_eq[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2869
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2870
subsection {* Some other trivialities about negligible sets. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2871
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2872
lemma negligible_subset[intro]: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2873
proof(safe) case goal1 show ?case using assms(1)[unfolded negligible_def,rule_format,of a b]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2874
    apply-apply(rule has_integral_spike[OF assms(1)]) defer apply assumption
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2875
    using assms(2) unfolding indicator_def by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2876
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2877
lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible(s - t)" using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2878
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2879
lemma negligible_inter: assumes "negligible s \<or> negligible t" shows "negligible(s \<inter> t)" using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2880
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2881
lemma negligible_union: assumes "negligible s" "negligible t" shows "negligible (s \<union> t)" unfolding negligible_def 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2882
proof safe case goal1 note assm = assms[unfolded negligible_def,rule_format,of a b]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2883
  thus ?case apply(subst has_integral_spike_eq[OF assms(2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2884
    defer apply assumption unfolding indicator_def by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2885
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2886
lemma negligible_union_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> (negligible s \<and> negligible t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2887
  using negligible_union by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2888
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2889
lemma negligible_sing[intro]: "negligible {a::_::ordered_euclidean_space}" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2890
  using negligible_standard_hyperplane[of 0 "a$$0"] by auto 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2891
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2892
lemma negligible_insert[simp]: "negligible(insert a s) \<longleftrightarrow> negligible s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2893
  apply(subst insert_is_Un) unfolding negligible_union_eq by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2894
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2895
lemma negligible_empty[intro]: "negligible {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2896
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2897
lemma negligible_finite[intro]: assumes "finite s" shows "negligible s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2898
  using assms apply(induct s) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2899
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2900
lemma negligible_unions[intro]: assumes "finite s" "\<forall>t\<in>s. negligible t" shows "negligible(\<Union>s)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2901
  using assms by(induct,auto) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2902
37665
579258a77fec Add theory for indicator function.
hoelzl
parents: 37489
diff changeset
  2903
lemma negligible:  "negligible s \<longleftrightarrow> (\<forall>t::('a::ordered_euclidean_space) set. ((indicator s::'a\<Rightarrow>real) has_integral 0) t)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2904
  apply safe defer apply(subst negligible_def)
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2905
proof -
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2906
  fix t::"'a set" assume as:"negligible s"
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2907
  have *:"(\<lambda>x. if x \<in> s \<inter> t then 1 else 0) = (\<lambda>x. if x\<in>t then if x\<in>s then 1 else 0 else 0)"
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2908
    by auto
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2909
  show "((indicator s::'a\<Rightarrow>real) has_integral 0) t"
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2910
    apply(subst has_integral_alt)
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2911
    apply(cases,subst if_P,assumption)
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2912
    unfolding if_not_P
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2913
    apply(safe,rule as[unfolded negligible_def,rule_format])
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2914
    apply(rule_tac x=1 in exI)
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2915
    apply(safe,rule zero_less_one)
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2916
    apply(rule_tac x=0 in exI)
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2917
    using negligible_subset[OF as,of "s \<inter> t"]
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2918
    unfolding negligible_def indicator_def [abs_def]
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2919
    unfolding *
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2920
    apply auto
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2921
    done
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 45994
diff changeset
  2922
qed auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2923
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2924
subsection {* Finite case of the spike theorem is quite commonly needed. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2925
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2926
lemma has_integral_spike_finite: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2927
  "(f has_integral y) t" shows "(g has_integral y) t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2928
  apply(rule has_integral_spike) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2929
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2930
lemma has_integral_spike_finite_eq: assumes "finite s" "\<forall>x\<in>t-s. g x = f x"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2931
  shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2932
  apply rule apply(rule_tac[!] has_integral_spike_finite) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2933
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2934
lemma integrable_spike_finite:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2935
  assumes "finite s" "\<forall>x\<in>t-s. g x = f x" "f integrable_on t" shows "g integrable_on  t"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2936
  using assms unfolding integrable_on_def apply safe apply(rule_tac x=y in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2937
  apply(rule has_integral_spike_finite) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2938
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2939
subsection {* In particular, the boundary of an interval is negligible. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2940
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2941
lemma negligible_frontier_interval: "negligible({a::'a::ordered_euclidean_space..b} - {a<..<b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2942
proof- let ?A = "\<Union>((\<lambda>k. {x. x$$k = a$$k} \<union> {x::'a. x$$k = b$$k}) ` {..<DIM('a)})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2943
  have "{a..b} - {a<..<b} \<subseteq> ?A" apply rule unfolding Diff_iff mem_interval not_all
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2944
    apply(erule conjE exE)+ apply(rule_tac X="{x. x $$ xa = a $$ xa} \<union> {x. x $$ xa = b $$ xa}" in UnionI)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2945
    apply(erule_tac[!] x=xa in allE) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2946
  thus ?thesis apply-apply(rule negligible_subset[of ?A]) apply(rule negligible_unions[OF finite_imageI]) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2947
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2948
lemma has_integral_spike_interior:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2949
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" "(f has_integral y) ({a..b})" shows "(g has_integral y) ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2950
  apply(rule has_integral_spike[OF negligible_frontier_interval _ assms(2)]) using assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2951
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2952
lemma has_integral_spike_interior_eq:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2953
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" shows "((f has_integral y) ({a..b}) \<longleftrightarrow> (g has_integral y) ({a..b}))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2954
  apply rule apply(rule_tac[!] has_integral_spike_interior) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2955
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2956
lemma integrable_spike_interior: assumes "\<forall>x\<in>{a<..<b}. g x = f x" "f integrable_on {a..b}" shows "g integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2957
  using  assms unfolding integrable_on_def using has_integral_spike_interior[OF assms(1)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2958
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2959
subsection {* Integrability of continuous functions. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2960
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2961
lemma neutral_and[simp]: "neutral op \<and> = True"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2962
  unfolding neutral_def apply(rule some_equality) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2963
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2964
lemma monoidal_and[intro]: "monoidal op \<and>" unfolding monoidal_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2965
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2966
lemma iterate_and[simp]: assumes "finite s" shows "(iterate op \<and>) s p \<longleftrightarrow> (\<forall>x\<in>s. p x)" using assms
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2967
apply induct unfolding iterate_insert[OF monoidal_and] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2968
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2969
lemma operative_division_and: assumes "operative op \<and> P" "d division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2970
  shows "(\<forall>i\<in>d. P i) \<longleftrightarrow> P {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2971
  using operative_division[OF monoidal_and assms] division_of_finite[OF assms(2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2972
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2973
lemma operative_approximable: assumes "0 \<le> e" fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2974
  shows "operative op \<and> (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::'b)) \<le> e) \<and> g integrable_on i)" unfolding operative_def neutral_and
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2975
proof safe fix a b::"'b" { assume "content {a..b} = 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2976
    thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2977
      apply(rule_tac x=f in exI) using assms by(auto intro!:integrable_on_null) }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2978
  { fix c k g assume as:"\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}" and k:"k<DIM('b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2979
    show "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2980
      "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2981
      apply(rule_tac[!] x=g in exI) using as(1) integrable_split[OF as(2) k] by auto }
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2982
  fix c k g1 g2 assume as:"\<forall>x\<in>{a..b} \<inter> {x. x $$ k \<le> c}. norm (f x - g1 x) \<le> e" "g1 integrable_on {a..b} \<inter> {x. x $$ k \<le> c}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2983
                          "\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $$ k}. norm (f x - g2 x) \<le> e" "g2 integrable_on {a..b} \<inter> {x. c \<le> x $$ k}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2984
  assume k:"k<DIM('b)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2985
  let ?g = "\<lambda>x. if x$$k = c then f x else if x$$k \<le> c then g1 x else g2 x"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2986
  show "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" apply(rule_tac x="?g" in exI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2987
  proof safe case goal1 thus ?case apply- apply(cases "x$$k=c", case_tac "x$$k < c") using as assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2988
  next case goal2 presume "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2989
    then guess h1 h2 unfolding integrable_on_def by auto from has_integral_split[OF this k] 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2990
    show ?case unfolding integrable_on_def by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2991
  next show "?g integrable_on {a..b} \<inter> {x. x $$ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $$ k \<ge> c}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2992
      apply(rule_tac[!] integrable_spike[OF negligible_standard_hyperplane[of k c]]) using k as(2,4) by auto qed qed
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2993
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  2994
lemma approximable_on_division: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2995
  assumes "0 \<le> e" "d division_of {a..b}" "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2996
  obtains g where "\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2997
proof- note * = operative_division[OF monoidal_and operative_approximable[OF assms(1)] assms(2)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2998
  note this[unfolded iterate_and[OF division_of_finite[OF assms(2)]]] from assms(3)[unfolded this[of f]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  2999
  guess g .. thus thesis apply-apply(rule that[of g]) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3000
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3001
lemma integrable_continuous: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3002
  assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3003
proof(rule integrable_uniform_limit,safe) fix e::real assume e:"0 < e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3004
  from compact_uniformly_continuous[OF assms compact_interval,unfolded uniformly_continuous_on_def,rule_format,OF e] guess d ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3005
  note d=conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3006
  from fine_division_exists[OF gauge_ball[OF d(1)], of a b] guess p . note p=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3007
  note p' = tagged_division_ofD[OF p(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3008
  have *:"\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3009
  proof(safe,unfold snd_conv) fix x l assume as:"(x,l) \<in> p" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3010
    from p'(4)[OF this] guess a b apply-by(erule exE)+ note l=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3011
    show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" apply(rule_tac x="\<lambda>y. f x" in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3012
    proof safe show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by(rule,rule has_integral_const)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3013
      fix y assume y:"y\<in>l" note fineD[OF p(2) as,unfolded subset_eq,rule_format,OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3014
      note d(2)[OF _ _ this[unfolded mem_ball]]
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  3015
      thus "norm (f y - f x) \<le> e" using y p'(2-3)[OF as] unfolding dist_norm l norm_minus_commute by fastforce qed qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3016
  from e have "0 \<le> e" by auto from approximable_on_division[OF this division_of_tagged_division[OF p(1)] *] guess g .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3017
  thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" by auto qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3018
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3019
subsection {* Specialization of additivity to one dimension. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3020
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3021
lemma operative_1_lt: assumes "monoidal opp"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3022
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3023
                (\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
41863
e5104b436ea1 removed dependency on Dense_Linear_Order
boehmes
parents: 41851
diff changeset
  3024
  unfolding operative_def content_eq_0 DIM_real less_one simp_thms(39,41) Eucl_real_simps
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3025
    (* The dnf_simps simplify "\<exists> x. x= _ \<and> _" and "\<forall>k. k = _ \<longrightarrow> _" *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3026
proof safe fix a b c::"real" assume as:"\<forall>a b c. f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c}))
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3027
    (f ({a..b} \<inter> {x. c \<le> x}))" "a < c" "c < b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3028
    from this(2-) have "{a..b} \<inter> {x. x \<le> c} = {a..c}" "{a..b} \<inter> {x. x \<ge> c} = {c..b}" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3029
    thus "opp (f {a..c}) (f {c..b}) = f {a..b}" unfolding as(1)[rule_format,of a b "c"] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3030
next fix a b c::real
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3031
  assume as:"\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3032
  show "f {a..b} = opp (f ({a..b} \<inter> {x. x \<le> c})) (f ({a..b} \<inter> {x. c \<le> x}))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3033
  proof(cases "c \<in> {a .. b}")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3034
    case False hence "c<a \<or> c>b" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3035
    thus ?thesis apply-apply(erule disjE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3036
    proof- assume "c<a" hence *:"{a..b} \<inter> {x. x \<le> c} = {1..0}"  "{a..b} \<inter> {x. c \<le> x} = {a..b}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3037
      show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3038
    next   assume "b<c" hence *:"{a..b} \<inter> {x. x \<le> c} = {a..b}"  "{a..b} \<inter> {x. c \<le> x} = {1..0}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3039
      show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3040
    qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3041
  next case True hence *:"min (b) c = c" "max a c = c" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3042
    have **:"0 < DIM(real)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3043
    have ***:"\<And>P Q. (\<chi>\<chi> i. if i = 0 then P i else Q i) = (P 0::real)" apply(subst euclidean_eq)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3044
      apply safe unfolding euclidean_lambda_beta' by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3045
    show ?thesis unfolding interval_split[OF **,unfolded Eucl_real_simps(1,3)] unfolding *** *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3046
    proof(cases "c = a \<or> c = b")
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3047
      case False thus "f {a..b} = opp (f {a..c}) (f {c..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3048
        apply-apply(subst as(2)[rule_format]) using True by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3049
    next case True thus "f {a..b} = opp (f {a..c}) (f {c..b})" apply-
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3050
      proof(erule disjE) assume *:"c=a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3051
        hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3052
        thus ?thesis using assms unfolding * by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3053
      next assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3054
        thus ?thesis using assms unfolding * by auto qed qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3055
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3056
lemma operative_1_le: assumes "monoidal opp"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3057
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real} = neutral opp) \<and>
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3058
                (\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3059
unfolding operative_1_lt[OF assms]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3060
proof safe fix a b c::"real" assume as:"\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a < c" "c < b"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3061
  show "opp (f {a..c}) (f {c..b}) = f {a..b}" apply(rule as(1)[rule_format]) using as(2-) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3062
next fix a b c ::"real" assume "\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3063
    "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a \<le> c" "c \<le> b"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3064
  note as = this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3065
  show "opp (f {a..c}) (f {c..b}) = f {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3066
  proof(cases "c = a \<or> c = b")
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3067
    case False thus ?thesis apply-apply(subst as(2)) using as(3-) by(auto)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3068
    next case True thus ?thesis apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3069
      proof(erule disjE) assume *:"c=a" hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3070
        thus ?thesis using assms unfolding * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3071
      next               assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3072
        thus ?thesis using assms unfolding * by auto qed qed qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3073
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3074
subsection {* Special case of additivity we need for the FCT. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3075
35540
3d073a3e1c61 the ordering on real^1 is linear
himmelma
parents: 35292
diff changeset
  3076
lemma interval_bound_sing[simp]: "interval_upperbound {a} = a"  "interval_lowerbound {a} = a"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3077
  unfolding interval_upperbound_def interval_lowerbound_def  by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3078
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3079
lemma additive_tagged_division_1: fixes f::"real \<Rightarrow> 'a::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3080
  assumes "a \<le> b" "p tagged_division_of {a..b}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3081
  shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3082
proof- let ?f = "(\<lambda>k::(real) set. if k = {} then 0 else f(interval_upperbound k) - f(interval_lowerbound k))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3083
  have ***:"\<forall>i<DIM(real). a $$ i \<le> b $$ i" using assms by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3084
  have *:"operative op + ?f" unfolding operative_1_lt[OF monoidal_monoid] interval_eq_empty by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3085
  have **:"{a..b} \<noteq> {}" using assms(1) by auto note operative_tagged_division[OF monoidal_monoid * assms(2)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3086
  note * = this[unfolded if_not_P[OF **] interval_bounds[OF ***],THEN sym]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3087
  show ?thesis unfolding * apply(subst setsum_iterate[THEN sym]) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3088
    apply(rule setsum_cong2) unfolding split_paired_all split_conv using assms(2) by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3089
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3090
subsection {* A useful lemma allowing us to factor out the content size. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3091
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3092
lemma has_integral_factor_content:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3093
  "(f has_integral i) {a..b} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3094
    \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b}))"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3095
proof(cases "content {a..b} = 0")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3096
  case True show ?thesis unfolding has_integral_null_eq[OF True] apply safe
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3097
    apply(rule,rule,rule gauge_trivial,safe) unfolding setsum_content_null[OF True] True defer 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3098
    apply(erule_tac x=1 in allE,safe) defer apply(rule fine_division_exists[of _ a b],assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3099
    apply(erule_tac x=p in allE) unfolding setsum_content_null[OF True] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3100
next case False note F = this[unfolded content_lt_nz[THEN sym]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3101
  let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3102
  show ?thesis apply(subst has_integral)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3103
  proof safe fix e::real assume e:"e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3104
    { assume "\<forall>e>0. ?P e op <" thus "?P (e * content {a..b}) op \<le>" apply(erule_tac x="e * content {a..b}" in allE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3105
        apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3106
        using F e by(auto simp add:field_simps intro:mult_pos_pos) }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3107
    {  assume "\<forall>e>0. ?P (e * content {a..b}) op \<le>" thus "?P e op <" apply(erule_tac x="e / 2 / content {a..b}" in allE)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3108
        apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3109
        using F e by(auto simp add:field_simps intro:mult_pos_pos) } qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3110
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3111
subsection {* Fundamental theorem of calculus. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3112
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3113
lemma interval_bounds_real: assumes "a\<le>(b::real)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3114
  shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3115
  apply(rule_tac[!] interval_bounds) using assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3116
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3117
lemma fundamental_theorem_of_calculus: fixes f::"real \<Rightarrow> 'a::banach"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3118
  assumes "a \<le> b"  "\<forall>x\<in>{a..b}. (f has_vector_derivative f' x) (at x within {a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3119
  shows "(f' has_integral (f b - f a)) ({a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3120
unfolding has_integral_factor_content
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3121
proof safe fix e::real assume e:"e>0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3122
  note assm = assms(2)[unfolded has_vector_derivative_def has_derivative_within_alt]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3123
  have *:"\<And>P Q. \<forall>x\<in>{a..b}. P x \<and> (\<forall>e>0. \<exists>d>0. Q x e d) \<Longrightarrow> \<forall>x. \<exists>(d::real)>0. x\<in>{a..b} \<longrightarrow> Q x e d" using e by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3124
  note this[OF assm,unfolded gauge_existence_lemma] from choice[OF this,unfolded Ball_def[symmetric]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3125
  guess d .. note d=conjunctD2[OF this[rule_format],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3126
  show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3127
                 norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3128
    apply(rule_tac x="\<lambda>x. ball x (d x)" in exI,safe)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3129
    apply(rule gauge_ball_dependent,rule,rule d(1))
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3130
  proof- fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. ball x (d x)) fine p"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3131
    show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b}" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3132
      unfolding content_real[OF assms(1)] additive_tagged_division_1[OF assms(1) as(1),of f,THEN sym]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3133
      unfolding additive_tagged_division_1[OF assms(1) as(1),of "\<lambda>x. x",THEN sym]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3134
      unfolding setsum_right_distrib defer unfolding setsum_subtractf[THEN sym] 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3135
    proof(rule setsum_norm_le,safe) fix x k assume "(x,k)\<in>p"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3136
      note xk = tagged_division_ofD(2-4)[OF as(1) this] from this(3) guess u v apply-by(erule exE)+ note k=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3137
      have *:"u \<le> v" using xk unfolding k by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3138
      have ball:"\<forall>xa\<in>k. xa \<in> ball x (d x)" using as(2)[unfolded fine_def,rule_format,OF `(x,k)\<in>p`,
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3139
        unfolded split_conv subset_eq] .
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3140
      have "norm ((v - u) *\<^sub>R f' x - (f v - f u)) \<le>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3141
        norm (f u - f x - (u - x) *\<^sub>R f' x) + norm (f v - f x - (v - x) *\<^sub>R f' x)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3142
        apply(rule order_trans[OF _ norm_triangle_ineq4]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3143
        unfolding scaleR_diff_left by(auto simp add:algebra_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3144
      also have "... \<le> e * norm (u - x) + e * norm (v - x)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3145
        apply(rule add_mono) apply(rule d(2)[of "x" "u",unfolded o_def]) prefer 4
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3146
        apply(rule d(2)[of "x" "v",unfolded o_def])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3147
        using ball[rule_format,of u] ball[rule_format,of v] 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3148
        using xk(1-2) unfolding k subset_eq by(auto simp add:dist_real_def) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3149
      also have "... \<le> e * (interval_upperbound k - interval_lowerbound k)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3150
        unfolding k interval_bounds_real[OF *] using xk(1) unfolding k by(auto simp add:dist_real_def field_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3151
      finally show "norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k))) \<le>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3152
        e * (interval_upperbound k - interval_lowerbound k)" unfolding k interval_bounds_real[OF *] content_real[OF *] .
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  3153
    qed qed qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3154
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3155
subsection {* Attempt a systematic general set of "offset" results for components. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3156
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3157
lemma gauge_modify:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3158
  assumes "(\<forall>s. open s \<longrightarrow> open {x. f(x) \<in> s})" "gauge d"
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44167
diff changeset
  3159
  shows "gauge (\<lambda>x. {y. f y \<in> d (f x)})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3160
  using assms unfolding gauge_def apply safe defer apply(erule_tac x="f x" in allE)
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44167
diff changeset
  3161
  apply(erule_tac x="d (f x)" in allE) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3162
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3163
subsection {* Only need trivial subintervals if the interval itself is trivial. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3164
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3165
lemma division_of_nontrivial: fixes s::"('a::ordered_euclidean_space) set set"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3166
  assumes "s division_of {a..b}" "content({a..b}) \<noteq> 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3167
  shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of {a..b}" using assms(1) apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3168
proof(induct "card s" arbitrary:s rule:nat_less_induct)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3169
  fix s::"'a set set" assume assm:"s division_of {a..b}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3170
    "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow> x division_of {a..b} \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of {a..b}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3171
  note s = division_ofD[OF assm(1)] let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3172
  { presume *:"{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3173
    show ?thesis apply cases defer apply(rule *,assumption) using assm(1) by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3174
  assume noteq:"{k \<in> s. content k \<noteq> 0} \<noteq> s"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3175
  then obtain k where k:"k\<in>s" "content k = 0" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3176
  from s(4)[OF k(1)] guess c d apply-by(erule exE)+ note k=k this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3177
  from k have "card s > 0" unfolding card_gt_0_iff using assm(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3178
  hence card:"card (s - {k}) < card s" using assm(1) k(1) apply(subst card_Diff_singleton_if) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3179
  have *:"closed (\<Union>(s - {k}))" apply(rule closed_Union) defer apply rule apply(drule DiffD1,drule s(4))
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3180
    apply safe apply(rule closed_interval) using assm(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3181
  have "k \<subseteq> \<Union>(s - {k})" apply safe apply(rule *[unfolded closed_limpt,rule_format]) unfolding islimpt_approachable
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3182
  proof safe fix x and e::real assume as:"x\<in>k" "e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3183
    from k(2)[unfolded k content_eq_0] guess i .. 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3184
    hence i:"c$$i = d$$i" "i<DIM('a)" using s(3)[OF k(1),unfolded k] unfolding interval_ne_empty by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3185
    hence xi:"x$$i = d$$i" using as unfolding k mem_interval by smt
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3186
    def y \<equiv> "(\<chi>\<chi> j. if j = i then if c$$i \<le> (a$$i + b$$i) / 2 then c$$i +
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3187
      min e (b$$i - c$$i) / 2 else c$$i - min e (c$$i - a$$i) / 2 else x$$j)::'a"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3188
    show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x=y in bexI) 
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  3189
    proof have "d \<in> {c..d}" using s(3)[OF k(1)] unfolding k interval_eq_empty mem_interval by(fastforce simp add: not_less)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3190
      hence "d \<in> {a..b}" using s(2)[OF k(1)] unfolding k by auto note di = this[unfolded mem_interval,THEN spec[where x=i]]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3191
      hence xyi:"y$$i \<noteq> x$$i" unfolding y_def unfolding i xi euclidean_lambda_beta'[OF i(2)] if_P[OF refl]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3192
        apply(cases) apply(subst if_P,assumption) unfolding if_not_P not_le using as(2)
48069
e9b2782c4f99 restricted Z3 by default to a fragment where proof reconstruction should not fail (for better integration with Sledgehammer) -- the full set of supported Z3 features can still be used by enabling the configuration option "z3_with_extensions"
boehmes
parents: 47317
diff changeset
  3193
        using assms(2)[unfolded content_eq_0] using i(2) using [[z3_with_extensions]] by smt+
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3194
      thus "y \<noteq> x" unfolding euclidean_eq[where 'a='a] using i by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3195
      have *:"{..<DIM('a)} = insert i ({..<DIM('a)} - {i})" using i by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3196
      have "norm (y - x) < e + setsum (\<lambda>i. 0) {..<DIM('a)}" apply(rule le_less_trans[OF norm_le_l1])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3197
        apply(subst *,subst setsum_insert) prefer 3 apply(rule add_less_le_mono)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3198
      proof- show "\<bar>(y - x) $$ i\<bar> < e" unfolding y_def euclidean_simps euclidean_lambda_beta'[OF i(2)] if_P[OF refl]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3199
          apply(cases) apply(subst if_P,assumption) unfolding if_not_P unfolding i xi using di as(2) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3200
        show "(\<Sum>i\<in>{..<DIM('a)} - {i}. \<bar>(y - x) $$ i\<bar>) \<le> (\<Sum>i\<in>{..<DIM('a)}. 0)" unfolding y_def by auto 
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3201
      qed auto thus "dist y x < e" unfolding dist_norm by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3202
      have "y\<notin>k" unfolding k mem_interval apply rule apply(erule_tac x=i in allE) using xyi unfolding k i xi by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3203
      moreover have "y \<in> \<Union>s" unfolding s mem_interval
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3204
      proof(rule,rule) note simps = y_def euclidean_lambda_beta' if_not_P
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3205
        fix j assume j:"j<DIM('a)" show "a $$ j \<le> y $$ j \<and> y $$ j \<le> b $$ j" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3206
        proof(cases "j = i") case False have "x \<in> {a..b}" using s(2)[OF k(1)] as(1) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3207
          thus ?thesis using j apply- unfolding simps if_not_P[OF False] unfolding mem_interval by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3208
        next case True note T = this show ?thesis
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3209
          proof(cases "c $$ i \<le> (a $$ i + b $$ i) / 2")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3210
            case True show ?thesis unfolding simps if_P[OF T] if_P[OF True] unfolding i
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3211
              using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3212
          next case False thus ?thesis unfolding simps if_P[OF T] if_not_P[OF False] unfolding i
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3213
              using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3214
          qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3215
      ultimately show "y \<in> \<Union>(s - {k})" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3216
    qed qed hence "\<Union>(s - {k}) = {a..b}" unfolding s(6)[THEN sym] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3217
  hence  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of {a..b}" apply-apply(rule assm(2)[rule_format,OF card refl])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3218
    apply(rule division_ofI) defer apply(rule_tac[1-4] s) using assm(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3219
  moreover have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}" using k by auto ultimately show ?thesis by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3220
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  3221
subsection {* Integrability on subintervals. *}
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3222
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3223
lemma operative_integrable: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" shows
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3224
  "operative op \<and> (\<lambda>i. f integrable_on i)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3225
  unfolding operative_def neutral_and apply safe apply(subst integrable_on_def)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3226
  unfolding has_integral_null_eq apply(rule,rule refl) apply(rule,assumption,assumption)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3227
  unfolding integrable_on_def by(auto intro!: has_integral_split)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3228
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3229
lemma integrable_subinterval: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3230
  assumes "f integrable_on {a..b}" "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3231
  apply(cases "{c..d} = {}") defer apply(rule partial_division_extend_1[OF assms(2)],assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3232
  using operative_division_and[OF operative_integrable,THEN sym,of _ _ _ f] assms(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3233
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3234
subsection {* Combining adjacent intervals in 1 dimension. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3235
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3236
lemma has_integral_combine: assumes "(a::real) \<le> c" "c \<le> b"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3237
  "(f has_integral i) {a..c}" "(f has_integral (j::'a::banach)) {c..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3238
  shows "(f has_integral (i + j)) {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3239
proof- note operative_integral[of f, unfolded operative_1_le[OF monoidal_lifted[OF monoidal_monoid]]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3240
  note conjunctD2[OF this,rule_format] note * = this(2)[OF conjI[OF assms(1-2)],unfolded if_P[OF assms(3)]]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3241
  hence "f integrable_on {a..b}" apply- apply(rule ccontr) apply(subst(asm) if_P) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3242
    apply(subst(asm) if_P) using assms(3-) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3243
  with * show ?thesis apply-apply(subst(asm) if_P) defer apply(subst(asm) if_P) defer apply(subst(asm) if_P)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3244
    unfolding lifted.simps using assms(3-) by(auto simp add: integrable_on_def integral_unique) qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3245
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3246
lemma integral_combine: fixes f::"real \<Rightarrow> 'a::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3247
  assumes "a \<le> c" "c \<le> b" "f integrable_on ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3248
  shows "integral {a..c} f + integral {c..b} f = integral({a..b}) f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3249
  apply(rule integral_unique[THEN sym]) apply(rule has_integral_combine[OF assms(1-2)])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3250
  apply(rule_tac[!] integrable_integral integrable_subinterval[OF assms(3)])+ using assms(1-2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3251
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3252
lemma integrable_combine: fixes f::"real \<Rightarrow> 'a::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3253
  assumes "a \<le> c" "c \<le> b" "f integrable_on {a..c}" "f integrable_on {c..b}"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  3254
  shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by(fastforce intro!:has_integral_combine)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3255
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3256
subsection {* Reduce integrability to "local" integrability. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3257
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3258
lemma integrable_on_little_subintervals: fixes f::"'b::ordered_euclidean_space \<Rightarrow> 'a::banach"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3259
  assumes "\<forall>x\<in>{a..b}. \<exists>d>0. \<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3260
  shows "f integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3261
proof- have "\<forall>x. \<exists>d. x\<in>{a..b} \<longrightarrow> d>0 \<and> (\<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3262
    using assms by auto note this[unfolded gauge_existence_lemma] from choice[OF this] guess d .. note d=this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3263
  guess p apply(rule fine_division_exists[OF gauge_ball_dependent,of d a b]) using d by auto note p=this(1-2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3264
  note division_of_tagged_division[OF this(1)] note * = operative_division_and[OF operative_integrable,OF this,THEN sym,of f]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3265
  show ?thesis unfolding * apply safe unfolding snd_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3266
  proof- fix x k assume "(x,k) \<in> p" note tagged_division_ofD(2-4)[OF p(1) this] fineD[OF p(2) this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3267
    thus "f integrable_on k" apply safe apply(rule d[THEN conjunct2,rule_format,of x]) by auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3268
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3269
subsection {* Second FCT or existence of antiderivative. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3270
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3271
lemma integrable_const[intro]:"(\<lambda>x. c) integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3272
  unfolding integrable_on_def by(rule,rule has_integral_const)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3273
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3274
lemma integral_has_vector_derivative: fixes f::"real \<Rightarrow> 'a::banach"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3275
  assumes "continuous_on {a..b} f" "x \<in> {a..b}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3276
  shows "((\<lambda>u. integral {a..u} f) has_vector_derivative f(x)) (at x within {a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3277
  unfolding has_vector_derivative_def has_derivative_within_alt
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3278
apply safe apply(rule bounded_linear_scaleR_left)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3279
proof- fix e::real assume e:"e>0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3280
  note compact_uniformly_continuous[OF assms(1) compact_interval,unfolded uniformly_continuous_on_def]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3281
  from this[rule_format,OF e] guess d apply-by(erule conjE exE)+ note d=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3282
  let ?I = "\<lambda>a b. integral {a..b} f"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3283
  show "\<exists>d>0. \<forall>y\<in>{a..b}. norm (y - x) < d \<longrightarrow> norm (?I a y - ?I a x - (y - x) *\<^sub>R f x) \<le> e * norm (y - x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3284
  proof(rule,rule,rule d,safe) case goal1 show ?case proof(cases "y < x")
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3285
      case False have "f integrable_on {a..y}" apply(rule integrable_subinterval,rule integrable_continuous)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3286
        apply(rule assms)  unfolding not_less using assms(2) goal1 by auto
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3287
      hence *:"?I a y - ?I a x = ?I x y" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3288
        using False unfolding not_less using assms(2) goal1 by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3289
      have **:"norm (y - x) = content {x..y}" apply(subst content_real) using False unfolding not_less by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3290
      show ?thesis unfolding ** apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3291
        defer apply(rule has_integral_sub) apply(rule integrable_integral)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3292
        apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3293
      proof- show "{x..y} \<subseteq> {a..b}" using goal1 assms(2) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3294
        have *:"y - x = norm(y - x)" using False by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3295
        show "((\<lambda>xa. f x) has_integral (y - x) *\<^sub>R f x) {x.. y}" apply(subst *) unfolding ** by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3296
        show "\<forall>xa\<in>{x..y}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3297
          apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3298
      qed(insert e,auto)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3299
    next case True have "f integrable_on {a..x}" apply(rule integrable_subinterval,rule integrable_continuous)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3300
        apply(rule assms)+  unfolding not_less using assms(2) goal1 by auto
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3301
      hence *:"?I a x - ?I a y = ?I y x" unfolding algebra_simps apply(subst eq_commute) apply(rule integral_combine)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3302
        using True using assms(2) goal1 by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3303
      have **:"norm (y - x) = content {y..x}" apply(subst content_real) using True unfolding not_less by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3304
      have ***:"\<And>fy fx c::'a. fx - fy - (y - x) *\<^sub>R c = -(fy - fx - (x - y) *\<^sub>R c)" unfolding scaleR_left.diff by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3305
      show ?thesis apply(subst ***) unfolding norm_minus_cancel **
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3306
        apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x)"]) unfolding * unfolding o_def
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3307
        defer apply(rule has_integral_sub) apply(subst minus_minus[THEN sym]) unfolding minus_minus
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3308
        apply(rule integrable_integral) apply(rule integrable_subinterval,rule integrable_continuous) apply(rule assms)+
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3309
      proof- show "{y..x} \<subseteq> {a..b}" using goal1 assms(2) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3310
        have *:"x - y = norm(y - x)" using True by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3311
        show "((\<lambda>xa. f x) has_integral (x - y) *\<^sub>R f x) {y..x}" apply(subst *) unfolding ** by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3312
        show "\<forall>xa\<in>{y..x}. norm (f xa - f x) \<le> e" apply safe apply(rule less_imp_le)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3313
          apply(rule d(2)[unfolded dist_norm]) using assms(2) using goal1 by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3314
      qed(insert e,auto) qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3315
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3316
lemma antiderivative_continuous: assumes "continuous_on {a..b::real} f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3317
  obtains g where "\<forall>x\<in> {a..b}. (g has_vector_derivative (f(x)::_::banach)) (at x within {a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3318
  apply(rule that,rule) using integral_has_vector_derivative[OF assms] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3319
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3320
subsection {* Combined fundamental theorem of calculus. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3321
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3322
lemma antiderivative_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3323
  obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> (f has_integral (g v - g u)) {u..v}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3324
proof- from antiderivative_continuous[OF assms] guess g . note g=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3325
  show ?thesis apply(rule that[of g])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3326
  proof safe case goal1 have "\<forall>x\<in>{u..v}. (g has_vector_derivative f x) (at x within {u..v})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3327
      apply(rule,rule has_vector_derivative_within_subset) apply(rule g[rule_format]) using goal1(1-2) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3328
    thus ?case using fundamental_theorem_of_calculus[OF goal1(3),of "g" "f"] by auto qed qed
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3329
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3330
subsection {* General "twiddling" for interval-to-interval function image. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3331
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3332
lemma has_integral_twiddle:
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3333
  assumes "0 < r" "\<forall>x. h(g x) = x" "\<forall>x. g(h x) = x" "\<forall>x. continuous (at x) g"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3334
  "\<forall>u v. \<exists>w z. g ` {u..v} = {w..z}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3335
  "\<forall>u v. \<exists>w z. h ` {u..v} = {w..z}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3336
  "\<forall>u v. content(g ` {u..v}) = r * content {u..v}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3337
  "(f has_integral i) {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3338
  shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` {a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3339
proof- { presume *:"{a..b} \<noteq> {} \<Longrightarrow> ?thesis"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3340
    show ?thesis apply cases defer apply(rule *,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3341
    proof- case goal1 thus ?thesis unfolding goal1 assms(8)[unfolded goal1 has_integral_empty_eq] by auto qed }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3342
  assume "{a..b} \<noteq> {}" from assms(6)[rule_format,of a b] guess w z apply-by(erule exE)+ note wz=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3343
  have inj:"inj g" "inj h" unfolding inj_on_def apply safe apply(rule_tac[!] ccontr)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3344
    using assms(2) apply(erule_tac x=x in allE) using assms(2) apply(erule_tac x=y in allE) defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3345
    using assms(3) apply(erule_tac x=x in allE) using assms(3) apply(erule_tac x=y in allE) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3346
  show ?thesis unfolding has_integral_def has_integral_compact_interval_def apply(subst if_P) apply(rule,rule,rule wz)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3347
  proof safe fix e::real assume e:"e>0" hence "e * r > 0" using assms(1) by(rule mult_pos_pos)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3348
    from assms(8)[unfolded has_integral,rule_format,OF this] guess d apply-by(erule exE conjE)+ note d=this[rule_format]
44170
510ac30f44c0 make Multivariate_Analysis work with separate set type
huffman
parents: 44167
diff changeset
  3349
    def d' \<equiv> "\<lambda>x. {y. g y \<in> d (g x)}" have d':"\<And>x. d' x = {y. g y \<in> (d (g x))}" unfolding d'_def ..
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3350
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3351
    proof(rule_tac x=d' in exI,safe) show "gauge d'" using d(1) unfolding gauge_def d' using continuous_open_preimage_univ[OF assms(4)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3352
      fix p assume as:"p tagged_division_of h ` {a..b}" "d' fine p" note p = tagged_division_ofD[OF as(1)] 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3353
      have "(\<lambda>(x, k). (g x, g ` k)) ` p tagged_division_of {a..b} \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3354
      proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using as by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3355
        show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using as(2) unfolding fine_def d' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3356
        fix x k assume xk[intro]:"(x,k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3357
        show "\<exists>u v. g ` k = {u..v}" using p(4)[OF xk] using assms(5-6) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3358
        { fix y assume "y \<in> k" thus "g y \<in> {a..b}" "g y \<in> {a..b}" using p(3)[OF xk,unfolded subset_eq,rule_format,of "h (g y)"]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3359
            using assms(2)[rule_format,of y] unfolding inj_image_mem_iff[OF inj(2)] by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3360
        fix x' k' assume xk':"(x',k') \<in> p" fix z assume "z \<in> interior (g ` k)" "z \<in> interior (g ` k')"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3361
        hence *:"interior (g ` k) \<inter> interior (g ` k') \<noteq> {}" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3362
        have same:"(x, k) = (x', k')" apply-apply(rule ccontr,drule p(5)[OF xk xk'])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3363
        proof- assume as:"interior k \<inter> interior k' = {}" from nonempty_witness[OF *] guess z .
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3364
          hence "z \<in> g ` (interior k \<inter> interior k')" using interior_image_subset[OF assms(4) inj(1)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3365
            unfolding image_Int[OF inj(1)] by auto thus False using as by blast
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3366
        qed thus "g x = g x'" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3367
        { fix z assume "z \<in> k"  thus  "g z \<in> g ` k'" using same by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3368
        { fix z assume "z \<in> k'" thus  "g z \<in> g ` k"  using same by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3369
      next fix x assume "x \<in> {a..b}" hence "h x \<in>  \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3370
        then guess X unfolding Union_iff .. note X=this from this(1) guess y unfolding mem_Collect_eq ..
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3371
        thus "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" apply-
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3372
          apply(rule_tac X="g ` X" in UnionI) defer apply(rule_tac x="h x" in image_eqI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3373
          using X(2) assms(3)[rule_format,of x] by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  3374
      qed note ** = d(2)[OF this] have *:"inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastforce
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3375
       have "(\<Sum>(x, k)\<in>(\<lambda>(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - i" (is "?l = _") unfolding algebra_simps add_left_cancel
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3376
        unfolding setsum_reindex[OF *] apply(subst scaleR_right.setsum) defer apply(rule setsum_cong2) unfolding o_def split_paired_all split_conv
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3377
        apply(drule p(4)) apply safe unfolding assms(7)[rule_format] using p by auto
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3378
      also have "... = r *\<^sub>R ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR_diff_right scaleR_scaleR
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3379
        using assms(1) by auto finally have *:"?l = ?r" .
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3380
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using ** unfolding * unfolding norm_scaleR
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3381
        using assms(1) by(auto simp add:field_simps) qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3382
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3383
subsection {* Special case of a basic affine transformation. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3384
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3385
lemma interval_image_affinity_interval: shows "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::'a::ordered_euclidean_space) + c) ` {a..b} = {u..v}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3386
  unfolding image_affinity_interval by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3387
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3388
lemma setprod_cong2: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "setprod f A = setprod g A"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3389
  apply(rule setprod_cong) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3390
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3391
lemma content_image_affinity_interval: 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3392
 "content((\<lambda>x::'a::ordered_euclidean_space. m *\<^sub>R x + c) ` {a..b}) = (abs m) ^ DIM('a) * content {a..b}" (is "?l = ?r")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3393
proof- { presume *:"{a..b}\<noteq>{} \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3394
      unfolding not_not using content_empty by auto }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3395
  have *:"DIM('a) = card {..<DIM('a)}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3396
  assume as:"{a..b}\<noteq>{}" show ?thesis proof(cases "m \<ge> 0")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3397
    case True show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_P[OF True]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3398
      unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3399
      apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3400
      apply(rule setprod_cong2) using True as unfolding interval_ne_empty euclidean_simps not_le  
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3401
      by(auto simp add:field_simps intro:mult_left_mono)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3402
  next case False show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_not_P[OF False]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3403
      unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') defer apply(subst(2) *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3404
      apply(subst setprod_constant[THEN sym]) apply(rule finite_lessThan) unfolding setprod_timesf[THEN sym]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3405
      apply(rule setprod_cong2) using False as unfolding interval_ne_empty euclidean_simps not_le 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3406
      by(auto simp add:field_simps mult_le_cancel_left_neg) qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3407
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3408
lemma has_integral_affinity: fixes a::"'a::ordered_euclidean_space" assumes "(f has_integral i) {a..b}" "m \<noteq> 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3409
  shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral ((1 / (abs(m) ^ DIM('a))) *\<^sub>R i)) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` {a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3410
  apply(rule has_integral_twiddle,safe) apply(rule zero_less_power) unfolding euclidean_eq[where 'a='a]
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3411
  unfolding scaleR_right_distrib euclidean_simps scaleR_scaleR
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3412
  defer apply(insert assms(2), simp add:field_simps) apply(insert assms(2), simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3413
  apply(rule continuous_intros)+ apply(rule interval_image_affinity_interval)+ apply(rule content_image_affinity_interval) using assms by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3414
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3415
lemma integrable_affinity: assumes "f integrable_on {a..b}" "m \<noteq> 0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3416
  shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` {a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3417
  using assms unfolding integrable_on_def apply safe apply(drule has_integral_affinity) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3418
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3419
subsection {* Special case of stretching coordinate axes separately. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3420
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3421
lemma image_stretch_interval:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3422
  "(\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3423
  (if {a..b} = {} then {} else {(\<chi>\<chi> k. min (m(k) * a$$k) (m(k) * b$$k))::'a ..  (\<chi>\<chi> k. max (m(k) * a$$k) (m(k) * b$$k))})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3424
  (is "?l = ?r")
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3425
proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3426
next have *:"\<And>P Q. (\<forall>i<DIM('a). P i) \<and> (\<forall>i<DIM('a). Q i) \<longleftrightarrow> (\<forall>i<DIM('a). P i \<and> Q i)" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3427
  case False note ab = this[unfolded interval_ne_empty]
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  3428
  show ?thesis apply-apply(rule set_eqI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3429
  proof- fix x::"'a" have **:"\<And>P Q. (\<forall>i<DIM('a). P i = Q i) \<Longrightarrow> (\<forall>i<DIM('a). P i) = (\<forall>i<DIM('a). Q i)" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3430
    show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False] 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3431
      unfolding image_iff mem_interval Bex_def euclidean_simps euclidean_eq[where 'a='a] *
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3432
      unfolding imp_conjR[THEN sym] apply(subst euclidean_lambda_beta'') apply(subst lambda_skolem'[THEN sym])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3433
      apply(rule **,rule,rule) unfolding euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3434
    proof- fix i assume i:"i<DIM('a)" show "(\<exists>xa. (a $$ i \<le> xa \<and> xa \<le> b $$ i) \<and> x $$ i = m i * xa) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3435
        (min (m i * a $$ i) (m i * b $$ i) \<le> x $$ i \<and> x $$ i \<le> max (m i * a $$ i) (m i * b $$ i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3436
      proof(cases "m i = 0") case True thus ?thesis using ab i by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3437
      next case False hence "0 < m i \<or> 0 > m i" by auto thus ?thesis apply-
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3438
        proof(erule disjE) assume as:"0 < m i" hence *:"min (m i * a $$ i) (m i * b $$ i) = m i * a $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3439
            "max (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab i unfolding min_def max_def by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3440
          show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3441
            using as by(auto simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3442
        next assume as:"0 > m i" hence *:"max (m i * a $$ i) (m i * b $$ i) = m i * a $$ i"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3443
            "min (m i * a $$ i) (m i * b $$ i) = m i * b $$ i" using ab as i unfolding min_def max_def 
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  3444
            by(auto simp add:field_simps mult_le_cancel_left_neg intro: order_antisym)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3445
          show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$$i" in exI)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3446
            using as by(auto simp add:field_simps) qed qed qed qed qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3447
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3448
lemma interval_image_stretch_interval: "\<exists>u v. (\<lambda>x. \<chi>\<chi> k. m k * x$$k) ` {a..b::'a::ordered_euclidean_space} = {u..v::'a}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3449
  unfolding image_stretch_interval by auto 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3450
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3451
lemma content_image_stretch_interval:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3452
  "content((\<lambda>x::'a::ordered_euclidean_space. (\<chi>\<chi> k. m k * x$$k)::'a) ` {a..b}) = abs(setprod m {..<DIM('a)}) * content({a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3453
proof(cases "{a..b} = {}") case True thus ?thesis
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3454
    unfolding content_def image_is_empty image_stretch_interval if_P[OF True] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3455
next case False hence "(\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a) ` {a..b} \<noteq> {}" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3456
  thus ?thesis using False unfolding content_def image_stretch_interval apply- unfolding interval_bounds' if_not_P
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3457
    unfolding abs_setprod setprod_timesf[THEN sym] apply(rule setprod_cong2) unfolding lessThan_iff euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3458
  proof- fix i assume i:"i<DIM('a)" have "(m i < 0 \<or> m i > 0) \<or> m i = 0" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3459
    thus "max (m i * a $$ i) (m i * b $$ i) - min (m i * a $$ i) (m i * b $$ i) = \<bar>m i\<bar> * (b $$ i - a $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3460
      apply-apply(erule disjE)+ unfolding min_def max_def using False[unfolded interval_ne_empty,rule_format,of i] i 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3461
      by(auto simp add:field_simps not_le mult_le_cancel_left_neg mult_le_cancel_left_pos) qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3462
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3463
lemma has_integral_stretch: fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3464
  assumes "(f has_integral i) {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3465
  shows "((\<lambda>x. f(\<chi>\<chi> k. m k * x$$k)) has_integral
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3466
             ((1/(abs(setprod m {..<DIM('a)}))) *\<^sub>R i)) ((\<lambda>x. (\<chi>\<chi> k. 1/(m k) * x$$k)::'a) ` {a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3467
  apply(rule has_integral_twiddle[where f=f]) unfolding zero_less_abs_iff content_image_stretch_interval
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3468
  unfolding image_stretch_interval empty_as_interval euclidean_eq[where 'a='a] using assms
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3469
proof- show "\<forall>y::'a. continuous (at y) (\<lambda>x. (\<chi>\<chi> k. m k * x $$ k)::'a)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3470
   apply(rule,rule linear_continuous_at) unfolding linear_linear
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3471
   unfolding linear_def euclidean_simps euclidean_eq[where 'a='a] by(auto simp add:field_simps) qed auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3472
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3473
lemma integrable_stretch:  fixes f::"'a::ordered_euclidean_space => 'b::real_normed_vector"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3474
  assumes "f integrable_on {a..b}" "\<forall>k<DIM('a). ~(m k = 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3475
  shows "(\<lambda>x::'a. f(\<chi>\<chi> k. m k * x$$k)) integrable_on ((\<lambda>x. \<chi>\<chi> k. 1/(m k) * x$$k) ` {a..b})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3476
  using assms unfolding integrable_on_def apply-apply(erule exE) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3477
  apply(drule has_integral_stretch,assumption) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3478
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3479
subsection {* even more special cases. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3480
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3481
lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::'a::ordered_euclidean_space}"
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  3482
  apply(rule set_eqI,rule) defer unfolding image_iff
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3483
  apply(rule_tac x="-x" in bexI) by(auto simp add:minus_le_iff le_minus_iff eucl_le[where 'a='a])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3484
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3485
lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3486
  shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3487
  using has_integral_affinity[OF assms, of "-1" 0] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3488
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3489
lemma has_integral_reflect[simp]: "((\<lambda>x. f(-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) ({a..b})"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3490
  apply rule apply(drule_tac[!] has_integral_reflect_lemma) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3491
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3492
lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on {-b..-a} \<longleftrightarrow> f integrable_on {a..b}"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3493
  unfolding integrable_on_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3494
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3495
lemma integral_reflect[simp]: "integral {-b..-a} (\<lambda>x. f(-x)) = integral ({a..b}) f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3496
  unfolding integral_def by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3497
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3498
subsection {* Stronger form of FCT; quite a tedious proof. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3499
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3500
lemma bgauge_existence_lemma: "(\<forall>x\<in>s. \<exists>d::real. 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. x\<in>s \<longrightarrow> q d x)" by(meson zero_less_one)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3501
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3502
lemma additive_tagged_division_1': fixes f::"real \<Rightarrow> 'a::real_normed_vector"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3503
  assumes "a \<le> b" "p tagged_division_of {a..b}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3504
  shows "setsum (\<lambda>(x,k). f (interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3505
  using additive_tagged_division_1[OF _ assms(2), of f] using assms(1) by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3506
36318
3567d0571932 eliminated spurious schematic statements;
wenzelm
parents: 36244
diff changeset
  3507
lemma split_minus[simp]:"(\<lambda>(x, k). f x k) x - (\<lambda>(x, k). g x k) x = (\<lambda>(x, k). f x k - g x k) x"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3508
  unfolding split_def by(rule refl)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3509
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3510
lemma norm_triangle_le_sub: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3511
  apply(subst(asm)(2) norm_minus_cancel[THEN sym])
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3512
  apply(drule norm_triangle_le) by(auto simp add:algebra_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3513
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3514
lemma fundamental_theorem_of_calculus_interior: fixes f::"real => 'a::real_normed_vector"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3515
  assumes"a \<le> b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_vector_derivative f'(x)) (at x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3516
  shows "(f' has_integral (f b - f a)) {a..b}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3517
proof- { presume *:"a < b \<Longrightarrow> ?thesis" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3518
    show ?thesis proof(cases,rule *,assumption)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3519
      assume "\<not> a < b" hence "a = b" using assms(1) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3520
      hence *:"{a .. b} = {b}" "f b - f a = 0" by(auto simp add:  order_antisym)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3521
      show ?thesis unfolding *(2) apply(rule has_integral_null) unfolding content_eq_0 using * `a=b` by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3522
    qed } assume ab:"a < b"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3523
  let ?P = "\<lambda>e. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3524
                   norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f b - f a)) \<le> e * content {a..b})"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3525
  { presume "\<And>e. e>0 \<Longrightarrow> ?P e" thus ?thesis unfolding has_integral_factor_content by auto }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3526
  fix e::real assume e:"e>0"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3527
  note assms(3)[unfolded has_vector_derivative_def has_derivative_at_alt ball_conj_distrib]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3528
  note conjunctD2[OF this] note bounded=this(1) and this(2)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3529
  from this(2) have "\<forall>x\<in>{a<..<b}. \<exists>d>0. \<forall>y. norm (y - x) < d \<longrightarrow> norm (f y - f x - (y - x) *\<^sub>R f' x) \<le> e/2 * norm (y - x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3530
    apply-apply safe apply(erule_tac x=x in ballE,erule_tac x="e/2" in allE) using e by auto note this[unfolded bgauge_existence_lemma]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3531
  from choice[OF this] guess d .. note conjunctD2[OF this[rule_format]] note d = this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3532
  have "bounded (f ` {a..b})" apply(rule compact_imp_bounded compact_continuous_image)+ using compact_interval assms by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3533
  from this[unfolded bounded_pos] guess B .. note B = this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3534
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3535
  have "\<exists>da. 0 < da \<and> (\<forall>c. a \<le> c \<and> {a..c} \<subseteq> {a..b} \<and> {a..c} \<subseteq> ball a da
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3536
    \<longrightarrow> norm(content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b - a)) / 4)"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3537
  proof- have "a\<in>{a..b}" using ab by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3538
    note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3539
    note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3540
    from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3541
    have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' a) \<le> (e * (b - a)) / 8"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3542
    proof(cases "f' a = 0") case True
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3543
      thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3544
    next case False thus ?thesis
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3545
        apply(rule_tac x="(e * (b - a)) / 8 / norm (f' a)" in exI) using ab e by(auto simp add:field_simps) 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3546
    qed then guess l .. note l = conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3547
    show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3548
    proof- fix c assume as:"a \<le> c" "{a..c} \<subseteq> {a..b}" "{a..c} \<subseteq> ball a (min k l)" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3549
      note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3550
      have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by(rule norm_triangle_ineq4)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3551
      also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3552
      proof(rule add_mono) case goal1 have "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using as' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3553
        thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3554
      next case goal2 show ?case apply(rule less_imp_le) apply(cases "a = c") defer
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3555
          apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3556
      qed finally show "norm (content {a..c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b - a) / 4"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3557
        unfolding content_real[OF as(1)] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3558
    qed qed then guess da .. note da=conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3559
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3560
  have "\<exists>db>0. \<forall>c\<le>b. {c..b} \<subseteq> {a..b} \<and> {c..b} \<subseteq> ball b db \<longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3561
    norm(content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b - a)) / 4"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3562
  proof- have "b\<in>{a..b}" using ab by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3563
    note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3564
    note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3565
      using e ab by(auto simp add:field_simps)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3566
    from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3567
    have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' b) \<le> (e * (b - a)) / 8"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3568
    proof(cases "f' b = 0") case True
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3569
      thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3570
    next case False thus ?thesis 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3571
        apply(rule_tac x="(e * (b - a)) / 8 / norm (f' b)" in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3572
        using ab e by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3573
    qed then guess l .. note l = conjunctD2[OF this]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3574
    show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3575
    proof- fix c assume as:"c \<le> b" "{c..b} \<subseteq> {a..b}" "{c..b} \<subseteq> ball b (min k l)" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3576
      note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3577
      have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by(rule norm_triangle_ineq4)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3578
      also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3579
      proof(rule add_mono) case goal1 have "\<bar>c - b\<bar> \<le> \<bar>l\<bar>" using as' by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3580
        thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3581
      next case goal2 show ?case apply(rule less_imp_le) apply(cases "b = c") defer apply(subst norm_minus_commute)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3582
          apply(rule k(2)[unfolded dist_norm]) using as' e ab by(auto simp add:field_simps)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3583
      qed finally show "norm (content {c..b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b - a) / 4"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3584
        unfolding content_real[OF as(1)] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3585
    qed qed then guess db .. note db=conjunctD2[OF this,rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3586
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3587
  let ?d = "(\<lambda>x. ball x (if x=a then da else if x=b then db else d x))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3588
  show "?P e" apply(rule_tac x="?d" in exI)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3589
  proof safe case goal1 show ?case apply(rule gauge_ball_dependent) using ab db(1) da(1) d(1) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3590
  next case goal2 note as=this let ?A = "{t. fst t \<in> {a, b}}" note p = tagged_division_ofD[OF goal2(1)]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3591
    have pA:"p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}"  using goal2 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3592
    note * = additive_tagged_division_1'[OF assms(1) goal2(1), THEN sym]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3593
    have **:"\<And>n1 s1 n2 s2::real. n2 \<le> s2 / 2 \<Longrightarrow> n1 - s1 \<le> s2 / 2 \<Longrightarrow> n1 + n2 \<le> s1 + s2" by arith
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3594
    show ?case unfolding content_real[OF assms(1)] and *[of "\<lambda>x. x"] *[of f] setsum_subtractf[THEN sym] split_minus
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3595
      unfolding setsum_right_distrib apply(subst(2) pA,subst pA) unfolding setsum_Un_disjoint[OF pA(2-)]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3596
    proof(rule norm_triangle_le,rule **) 
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  3597
      case goal1 show ?case apply(rule order_trans,rule setsum_norm_le) defer apply(subst setsum_divide_distrib)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3598
      proof(rule order_refl,safe,unfold not_le o_def split_conv fst_conv,rule ccontr) fix x k assume as:"(x,k) \<in> p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3599
          "e * (interval_upperbound k -  interval_lowerbound k) / 2
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3600
          < norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k)))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3601
        from p(4)[OF this(1)] guess u v apply-by(erule exE)+ note k=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3602
        hence "u \<le> v" and uv:"{u,v}\<subseteq>{u..v}" using p(2)[OF as(1)] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3603
        note result = as(2)[unfolded k interval_bounds_real[OF this(1)] content_real[OF this(1)]]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3604
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3605
        assume as':"x \<noteq> a" "x \<noteq> b" hence "x \<in> {a<..<b}" using p(2-3)[OF as(1)] by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3606
        note  * = d(2)[OF this]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3607
        have "norm ((v - u) *\<^sub>R f' (x) - (f (v) - f (u))) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3608
          norm ((f (u) - f (x) - (u - x) *\<^sub>R f' (x)) - (f (v) - f (x) - (v - x) *\<^sub>R f' (x)))" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3609
          apply(rule arg_cong[of _ _ norm]) unfolding scaleR_left.diff by auto 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3610
        also have "... \<le> e / 2 * norm (u - x) + e / 2 * norm (v - x)" apply(rule norm_triangle_le_sub)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3611
          apply(rule add_mono) apply(rule_tac[!] *) using fineD[OF goal2(2) as(1)] as' unfolding k subset_eq
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3612
          apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) using uv by(auto simp:dist_real_def)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3613
        also have "... \<le> e / 2 * norm (v - u)" using p(2)[OF as(1)] unfolding k by(auto simp add:field_simps)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3614
        finally have "e * (v - u) / 2 < e * (v - u) / 2"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3615
          apply- apply(rule less_le_trans[OF result]) using uv by auto thus False by auto qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3616
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3617
    next have *:"\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2) / 2 \<Longrightarrow> x - s1 \<le> s2 / 2" by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3618
      case goal2 show ?case apply(rule *) apply(rule setsum_nonneg) apply(rule,unfold split_paired_all split_conv)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3619
        defer unfolding setsum_Un_disjoint[OF pA(2-),THEN sym] pA(1)[THEN sym] unfolding setsum_right_distrib[THEN sym] 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3620
        apply(subst additive_tagged_division_1[OF _ as(1)]) apply(rule assms)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3621
      proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}}" note xk=IntD1[OF this]
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3622
        from p(4)[OF this] guess u v apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3623
        with p(2)[OF xk] have "{u..v} \<noteq> {}" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3624
        thus "0 \<le> e * ((interval_upperbound k) - (interval_lowerbound k))"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3625
          unfolding uv using e by(auto simp add:field_simps)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3626
      next have *:"\<And>s f t e. setsum f s = setsum f t \<Longrightarrow> norm(setsum f t) \<le> e \<Longrightarrow> norm(setsum f s) \<le> e" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3627
        show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R f' x -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3628
          (f ((interval_upperbound k)) - f ((interval_lowerbound k)))) \<le> e * (b - a) / 2" 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3629
          apply(rule *[where t="p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0}"])
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3630
          apply(rule setsum_mono_zero_right[OF pA(2)]) defer apply(rule) unfolding split_paired_all split_conv o_def
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3631
        proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {a, b}} - p \<inter> {t. fst t \<in> {a, b} \<and> content (snd t) \<noteq> 0}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3632
          hence xk:"(x,k)\<in>p" "content k = 0" by auto from p(4)[OF xk(1)] guess u v apply-by(erule exE)+ note uv=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3633
          have "k\<noteq>{}" using p(2)[OF xk(1)] by auto hence *:"u = v" using xk
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3634
            unfolding uv content_eq_0 interval_eq_empty by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3635
          thus "content k *\<^sub>R (f' (x)) - (f ((interval_upperbound k)) - f ((interval_lowerbound k))) = 0" using xk unfolding uv by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3636
        next have *:"p \<inter> {t. fst t \<in> {a, b} \<and> content(snd t) \<noteq> 0} = 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3637
            {t. t\<in>p \<and> fst t = a \<and> content(snd t) \<noteq> 0} \<union> {t. t\<in>p \<and> fst t = b \<and> content(snd t) \<noteq> 0}" by blast
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3638
          have **:"\<And>s f. \<And>e::real. (\<forall>x y. x \<in> s \<and> y \<in> s \<longrightarrow> x = y) \<Longrightarrow> (\<forall>x. x \<in> s \<longrightarrow> norm(f x) \<le> e)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3639
            \<Longrightarrow> e>0 \<Longrightarrow> norm(setsum f s) \<le> e"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3640
          proof(case_tac "s={}") case goal2 then obtain x where "x\<in>s" by auto hence *:"s = {x}" using goal2(1) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3641
            thus ?case using `x\<in>s` goal2(2) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3642
          qed auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3643
          case goal2 show ?case apply(subst *, subst setsum_Un_disjoint) prefer 4
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3644
            apply(rule order_trans[of _ "e * (b - a)/4 + e * (b - a)/4"]) 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3645
            apply(rule norm_triangle_le,rule add_mono) apply(rule_tac[1-2] **)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3646
          proof- let ?B = "\<lambda>x. {t \<in> p. fst t = x \<and> content (snd t) \<noteq> 0}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3647
            have pa:"\<And>k. (a, k) \<in> p \<Longrightarrow> \<exists>v. k = {a .. v} \<and> a \<le> v" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3648
            proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3649
              have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3650
              have u:"u = a" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3651
                have "u \<ge> a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "u\<noteq>a" ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3652
                have "u > a" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3653
                thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3654
              qed thus ?case apply(rule_tac x=v in exI) unfolding uv using * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3655
            qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3656
            have pb:"\<And>k. (b, k) \<in> p \<Longrightarrow> \<exists>v. k = {v .. b} \<and> b \<ge> v" 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3657
            proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3658
              have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3659
              have u:"v =  b" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3660
                have "v \<le>  b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "v\<noteq> b" ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3661
                have "v <  b" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3662
                thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:)
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3663
              qed thus ?case apply(rule_tac x=u in exI) unfolding uv using * by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3664
            qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3665
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3666
            show "\<forall>x y. x \<in> ?B a \<and> y \<in> ?B a \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3667
              unfolding mem_Collect_eq fst_conv snd_conv apply safe
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3668
            proof- fix x k k' assume k:"( a, k) \<in> p" "( a, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3669
              guess v using pa[OF k(1)] .. note v = conjunctD2[OF this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3670
              guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (min (v) (v'))"
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  3671
              have "{ a <..< ?v} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note interior_mono[OF this,unfolded interior_inter]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3672
              moreover have " ((a + ?v)/2) \<in> { a <..< ?v}" using k(3-)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3673
                unfolding v v' content_eq_0 not_le by(auto simp add:not_le)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3674
              ultimately have " ((a + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3675
              hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3676
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3677
            qed 
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3678
            show "\<forall>x y. x \<in> ?B b \<and> y \<in> ?B b \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3679
              unfolding mem_Collect_eq fst_conv snd_conv apply safe
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3680
            proof- fix x k k' assume k:"( b, k) \<in> p" "( b, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3681
              guess v using pb[OF k(1)] .. note v = conjunctD2[OF this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3682
              guess v' using pb[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = " (max (v) (v'))"
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  3683
              have "{?v <..<  b} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:) note interior_mono[OF this,unfolded interior_inter]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3684
              moreover have " ((b + ?v)/2) \<in> {?v <..<  b}" using k(3-) unfolding v v' content_eq_0 not_le by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3685
              ultimately have " ((b + ?v)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3686
              hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3687
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3688
            qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3689
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3690
            let ?a = a and ?b = b (* a is something else while proofing the next theorem. *)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3691
            show "\<forall>x. x \<in> ?B a \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) - (f ((interval_upperbound k)) -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3692
              f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4" apply(rule,rule) unfolding mem_Collect_eq
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3693
              unfolding split_paired_all fst_conv snd_conv 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3694
            proof safe case goal1 guess v using pa[OF goal1(1)] .. note v = conjunctD2[OF this]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3695
              have " ?a\<in>{ ?a..v}" using v(2) by auto hence "v \<le> ?b" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3696
              moreover have "{?a..v} \<subseteq> ball ?a da" using fineD[OF as(2) goal1(1)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3697
                apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x=" x" in ballE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3698
                by(auto simp add:subset_eq dist_real_def v) ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3699
              show ?case unfolding v interval_bounds_real[OF v(2)] apply- apply(rule da(2)[of "v"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3700
                using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3701
            qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3702
            show "\<forall>x. x \<in> ?B b \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x) -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3703
              (f ((interval_upperbound k)) - f ((interval_lowerbound k)))) x) \<le> e * (b - a) / 4"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3704
              apply(rule,rule) unfolding mem_Collect_eq unfolding split_paired_all fst_conv snd_conv 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3705
            proof safe case goal1 guess v using pb[OF goal1(1)] .. note v = conjunctD2[OF this]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3706
              have " ?b\<in>{v.. ?b}" using v(2) by auto hence "v \<ge> ?a" using p(3)[OF goal1(1)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3707
                unfolding subset_eq v by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3708
              moreover have "{v..?b} \<subseteq> ball ?b db" using fineD[OF as(2) goal1(1)]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3709
                apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3710
                apply(erule_tac x=" x" in ballE) using ab
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3711
                by(auto simp add:subset_eq v dist_real_def) ultimately
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3712
              show ?case unfolding v unfolding interval_bounds_real[OF v(2)] apply- apply(rule db(2)[of "v"])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3713
                using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0 by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3714
            qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3715
          qed(insert p(1) ab e, auto simp add:field_simps) qed auto qed qed qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3716
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3717
subsection {* Stronger form with finite number of exceptional points. *}
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3718
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3719
lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \<Rightarrow> 'a::banach"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3720
  assumes"finite s" "a \<le> b" "continuous_on {a..b} f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3721
  "\<forall>x\<in>{a<..<b} - s. (f has_vector_derivative f'(x)) (at x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3722
  shows "(f' has_integral (f b - f a)) {a..b}" using assms apply- 
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3723
proof(induct "card s" arbitrary:s a b)
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3724
  case 0 show ?case apply(rule fundamental_theorem_of_calculus_interior) using 0 by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3725
next case (Suc n) from this(2) guess c s' apply-apply(subst(asm) eq_commute) unfolding card_Suc_eq
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3726
    apply(subst(asm)(2) eq_commute) by(erule exE conjE)+ note cs = this[rule_format]
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3727
  show ?case proof(cases "c\<in>{a<..<b}")
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3728
    case False thus ?thesis apply- apply(rule Suc(1)[OF cs(3) _ Suc(4,5)]) apply safe defer
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3729
      apply(rule Suc(6)[rule_format]) using Suc(3) unfolding cs by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3730
  next have *:"f b - f a = (f c - f a) + (f b - f c)" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3731
    case True hence "a \<le> c" "c \<le> b" by auto
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3732
    thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3733
      apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3734
    proof- show "continuous_on {a..c} f" "continuous_on {c..b} f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3735
        apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3736
      let ?P = "\<lambda>i j. \<forall>x\<in>{i<..<j} - s'. (f has_vector_derivative f' x) (at x)"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3737
      show "?P a c" "?P c b" apply safe apply(rule_tac[!] Suc(6)[rule_format]) using True unfolding cs by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3738
    qed auto qed qed
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3739
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3740
lemma fundamental_theorem_of_calculus_strong: fixes f::"real \<Rightarrow> 'a::banach"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3741
  assumes "finite s" "a \<le> b" "continuous_on {a..b} f"
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3742
  "\<forall>x\<in>{a..b} - s. (f has_vector_derivative f'(x)) (at x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3743
  shows "(f' has_integral (f(b) - f(a))) {a..b}"
35172
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3744
  apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f'])
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3745
  using assms(4) by auto
579dd5570f96 Added integration to Multivariate-Analysis (upto FTC)
himmelma
parents:
diff changeset
  3746
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3747
lemma indefinite_integral_continuous_left: fixes f::"real \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3748
  assumes "f integrable_on {a..b}" "a < c" "c \<le> b" "0 < e"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3749
  obtains d where "0 < d" "\<forall>t. c - d < t \<and> t \<le> c \<longrightarrow> norm(integral {a..c} f - integral {a..t} f) < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3750
proof- have "\<exists>w>0. \<forall>t. c - w < t \<and> t < c \<longrightarrow> norm(f c) * norm(c - t) < e / 3"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3751
  proof(cases "f c = 0") case False hence "0 < e / 3 / norm (f c)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3752
      apply-apply(rule divide_pos_pos) using `e>0` by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3753
    thus ?thesis apply-apply(rule,rule,assumption,safe)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3754
    proof- fix t assume as:"t < c" and "c - e / 3 / norm (f c) < t"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3755
      hence "c - t < e / 3 / norm (f c)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3756
      hence "norm (c - t) < e / 3 / norm (f c)" using as by auto
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3757
      thus "norm (f c) * norm (c - t) < e / 3" using False apply-
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  3758
        apply(subst mult_commute) apply(subst pos_less_divide_eq[THEN sym]) by auto
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3759
    qed next case True show ?thesis apply(rule_tac x=1 in exI) unfolding True using `e>0` by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3760
  qed then guess w .. note w = conjunctD2[OF this,rule_format]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3761
  
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3762
  have *:"e / 3 > 0" using assms by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3763
  have "f integrable_on {a..c}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3764
  from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d1 ..
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3765
  note d1 = conjunctD2[OF this,rule_format] def d \<equiv> "\<lambda>x. ball x w \<inter> d1 x"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3766
  have "gauge d" unfolding d_def using w(1) d1 by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3767
  note this[unfolded gauge_def,rule_format,of c] note conjunctD2[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3768
  from this(2)[unfolded open_contains_ball,rule_format,OF this(1)] guess k .. note k=conjunctD2[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3769
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3770
  let ?d = "min k (c - a)/2" show ?thesis apply(rule that[of ?d])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3771
  proof safe show "?d > 0" using k(1) using assms(2) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3772
    fix t assume as:"c - ?d < t" "t \<le> c" let ?thesis = "norm (integral {a..c} f - integral {a..t} f) < e"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3773
    { presume *:"t < c \<Longrightarrow> ?thesis"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3774
      show ?thesis apply(cases "t = c") defer apply(rule *)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3775
        apply(subst less_le) using `e>0` as(2) by auto } assume "t < c"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3776
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3777
    have "f integrable_on {a..t}" apply(rule integrable_subinterval[OF assms(1)]) using assms(2-3) as(2) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3778
    from integrable_integral[OF this,unfolded has_integral,rule_format,OF *] guess d2 ..
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3779
    note d2 = conjunctD2[OF this,rule_format]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3780
    def d3 \<equiv> "\<lambda>x. if x \<le> t then d1 x \<inter> d2 x else d1 x"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3781
    have "gauge d3" using d2(1) d1(1) unfolding d3_def gauge_def by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3782
    from fine_division_exists[OF this, of a t] guess p . note p=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3783
    note p'=tagged_division_ofD[OF this(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3784
    have pt:"\<forall>(x,k)\<in>p. x \<le> t" proof safe case goal1 from p'(2,3)[OF this] show ?case by auto qed
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3785
    with p(2) have "d2 fine p" unfolding fine_def d3_def apply safe apply(erule_tac x="(a,b)" in ballE)+ by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3786
    note d2_fin = d2(2)[OF conjI[OF p(1) this]]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3787
    
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3788
    have *:"{a..c} \<inter> {x. x $$0 \<le> t} = {a..t}" "{a..c} \<inter> {x. x$$0 \<ge> t} = {t..c}"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3789
      using assms(2-3) as by(auto simp add:field_simps)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3790
    have "p \<union> {(c, {t..c})} tagged_division_of {a..c} \<and> d1 fine p \<union> {(c, {t..c})}" apply rule
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3791
      apply(rule tagged_division_union_interval[of _ _ _ 0 "t"]) unfolding * apply(rule p)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3792
      apply(rule tagged_division_of_self) unfolding fine_def
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3793
    proof safe fix x k y assume "(x,k)\<in>p" "y\<in>k" thus "y\<in>d1 x"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3794
        using p(2) pt unfolding fine_def d3_def apply- apply(erule_tac x="(x,k)" in ballE)+ by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3795
    next fix x assume "x\<in>{t..c}" hence "dist c x < k" unfolding dist_real_def
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3796
        using as(1) by(auto simp add:field_simps) 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3797
      thus "x \<in> d1 c" using k(2) unfolding d_def by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3798
    qed(insert as(2), auto) note d1_fin = d1(2)[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3799
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3800
    have *:"integral{a..c} f - integral {a..t} f = -(((c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)) -
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3801
        integral {a..c} f) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - integral {a..t} f) + (c - t) *\<^sub>R f c" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3802
      "e = (e/3 + e/3) + e/3" by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3803
    have **:"(\<Sum>(x, k)\<in>p \<union> {(c, {t..c})}. content k *\<^sub>R f x) = (c - t) *\<^sub>R f c + (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3804
    proof- have **:"\<And>x F. F \<union> {x} = insert x F" by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3805
      have "(c, {t..c}) \<notin> p" proof safe case goal1 from p'(2-3)[OF this]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3806
        have "c \<in> {a..t}" by auto thus False using `t<c` by auto
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3807
      qed thus ?thesis unfolding ** apply- apply(subst setsum_insert) apply(rule p')
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3808
        unfolding split_conv defer apply(subst content_real) using as(2) by auto qed 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3809
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3810
    have ***:"c - w < t \<and> t < c"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3811
    proof- have "c - k < t" using `k>0` as(1) by(auto simp add:field_simps)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3812
      moreover have "k \<le> w" apply(rule ccontr) using k(2) 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3813
        unfolding subset_eq apply(erule_tac x="c + ((k + w)/2)" in ballE)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3814
        unfolding d_def using `k>0` `w>0` by(auto simp add:field_simps not_le not_less dist_real_def)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3815
      ultimately show  ?thesis using `t<c` by(auto simp add:field_simps) qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3816
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3817
    show ?thesis unfolding *(1) apply(subst *(2)) apply(rule norm_triangle_lt add_strict_mono)+
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3818
      unfolding norm_minus_cancel apply(rule d1_fin[unfolded **]) apply(rule d2_fin)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3819
      using w(2)[OF ***] unfolding norm_scaleR by(auto simp add:field_simps) qed qed 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3820
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3821
lemma indefinite_integral_continuous_right: fixes f::"real \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3822
  assumes "f integrable_on {a..b}" "a \<le> c" "c < b" "0 < e"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3823
  obtains d where "0 < d" "\<forall>t. c \<le> t \<and> t < c + d \<longrightarrow> norm(integral{a..c} f - integral{a..t} f) < e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3824
proof- have *:"(\<lambda>x. f (- x)) integrable_on {- b..- a}" "- b < - c" "- c \<le> - a" using assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3825
  from indefinite_integral_continuous_left[OF * `e>0`] guess d . note d = this let ?d = "min d (b - c)"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3826
  show ?thesis apply(rule that[of "?d"])
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3827
  proof safe show "0 < ?d" using d(1) assms(3) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3828
    fix t::"real" assume as:"c \<le> t" "t < c + ?d"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3829
    have *:"integral{a..c} f = integral{a..b} f - integral{c..b} f"
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3830
      "integral{a..t} f = integral{a..b} f - integral{t..b} f" unfolding algebra_simps
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3831
      apply(rule_tac[!] integral_combine) using assms as by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3832
    have "(- c) - d < (- t) \<and> - t \<le> - c" using as by auto note d(2)[rule_format,OF this]
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3833
    thus "norm (integral {a..c} f - integral {a..t} f) < e" unfolding * 
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3834
      unfolding integral_reflect apply-apply(subst norm_minus_commute) by(auto simp add:algebra_simps) qed qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3835
   
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3836
lemma indefinite_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3837
  assumes "f integrable_on {a..b}" shows  "continuous_on {a..b} (\<lambda>x. integral {a..x} f)"
36359
e5c785c166b2 generalize type of continuous_on
huffman
parents: 36334
diff changeset
  3838
proof(unfold continuous_on_iff, safe)  fix x e assume as:"x\<in>{a..b}" "0<(e::real)"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3839
  let ?thesis = "\<exists>d>0. \<forall>x'\<in>{a..b}. dist x' x < d \<longrightarrow> dist (integral {a..x'} f) (integral {a..x} f) < e"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3840
  { presume *:"a<b \<Longrightarrow> ?thesis"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3841
    show ?thesis apply(cases,rule *,assumption)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 38656
diff changeset
  3842
    proof- case goal1 hence "{a..b} = {x}" using as(1) apply-apply(rule set_eqI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3843
        unfolding atLeastAtMost_iff by(auto simp only:field_simps not_less DIM_real)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3844
      thus ?case using `e>0` by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3845
    qed } assume "a<b"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3846
  have "(x=a \<or> x=b) \<or> (a<x \<and> x<b)" using as(1) by (auto simp add:)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3847
  thus ?thesis apply-apply(erule disjE)+
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3848
  proof- assume "x=a" have "a \<le> a" by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3849
    from indefinite_integral_continuous_right[OF assms(1) this `a<b` `e>0`] guess d . note d=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3850
    show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3851
      unfolding `x=a` dist_norm apply(rule d(2)[rule_format]) by auto
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3852
  next   assume "x=b" have "b \<le> b" by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3853
    from indefinite_integral_continuous_left[OF assms(1) `a<b` this `e>0`] guess d . note d=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3854
    show ?thesis apply(rule,rule,rule d,safe) apply(subst dist_commute)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3855
      unfolding `x=b` dist_norm apply(rule d(2)[rule_format])  by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3856
  next assume "a<x \<and> x<b" hence xl:"a<x" "x\<le>b" and xr:"a\<le>x" "x<b" by(auto simp add: )
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3857
    from indefinite_integral_continuous_left [OF assms(1) xl `e>0`] guess d1 . note d1=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3858
    from indefinite_integral_continuous_right[OF assms(1) xr `e>0`] guess d2 . note d2=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3859
    show ?thesis apply(rule_tac x="min d1 d2" in exI)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3860
    proof safe show "0 < min d1 d2" using d1 d2 by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3861
      fix y assume "y\<in>{a..b}" "dist y x < min d1 d2"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3862
      thus "dist (integral {a..y} f) (integral {a..x} f) < e" apply-apply(subst dist_commute)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  3863
        apply(cases "y < x") unfolding dist_norm apply(rule d1(2)[rule_format]) defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3864
        apply(rule d2(2)[rule_format]) unfolding not_less by(auto simp add:field_simps)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3865
    qed qed qed 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3866
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3867
subsection {* This doesn't directly involve integration, but that gives an easy proof. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3868
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3869
lemma has_derivative_zero_unique_strong_interval: fixes f::"real \<Rightarrow> 'a::banach"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3870
  assumes "finite k" "continuous_on {a..b} f" "f a = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3871
  "\<forall>x\<in>({a..b} - k). (f has_derivative (\<lambda>h. 0)) (at x within {a..b})" "x \<in> {a..b}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3872
  shows "f x = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3873
proof- have ab:"a\<le>b" using assms by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3874
  have *:"a\<le>x" using assms(5) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3875
  have "((\<lambda>x. 0\<Colon>'a) has_integral f x - f a) {a..x}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3876
    apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1) *])
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3877
    apply(rule continuous_on_subset[OF assms(2)]) defer
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3878
    apply safe unfolding has_vector_derivative_def apply(subst has_derivative_within_open[THEN sym])
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3879
    apply assumption apply(rule open_interval) apply(rule has_derivative_within_subset[where s="{a..b}"])
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3880
    using assms(4) assms(5) by auto note this[unfolded *]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3881
  note has_integral_unique[OF has_integral_0 this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3882
  thus ?thesis unfolding assms by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3883
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3884
subsection {* Generalize a bit to any convex set. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3885
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3886
lemma has_derivative_zero_unique_strong_convex: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3887
  assumes "convex s" "finite k" "continuous_on s f" "c \<in> s" "f c = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3888
  "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x \<in> s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3889
  shows "f x = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3890
proof- { presume *:"x \<noteq> c \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3891
      unfolding assms(5)[THEN sym] by auto } assume "x\<noteq>c"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3892
  note conv = assms(1)[unfolded convex_alt,rule_format]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3893
  have as1:"continuous_on {0..1} (f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x))"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3894
    apply(rule continuous_on_intros)+ apply(rule continuous_on_subset[OF assms(3)])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3895
    apply safe apply(rule conv) using assms(4,7) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3896
  have *:"\<And>t xa. (1 - t) *\<^sub>R c + t *\<^sub>R x = (1 - xa) *\<^sub>R c + xa *\<^sub>R x \<Longrightarrow> t = xa"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3897
  proof- case goal1 hence "(t - xa) *\<^sub>R x = (t - xa) *\<^sub>R c" 
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  3898
      unfolding scaleR_simps by(auto simp add:algebra_simps)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3899
    thus ?case using `x\<noteq>c` by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3900
  have as2:"finite {t. ((1 - t) *\<^sub>R c + t *\<^sub>R x) \<in> k}" using assms(2) 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3901
    apply(rule finite_surj[where f="\<lambda>z. SOME t. (1-t) *\<^sub>R c + t *\<^sub>R x = z"])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3902
    apply safe unfolding image_iff apply rule defer apply assumption
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3903
    apply(rule sym) apply(rule some_equality) defer apply(drule *) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3904
  have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x)) 1 = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3905
    apply(rule has_derivative_zero_unique_strong_interval[OF as2 as1, of ])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3906
    unfolding o_def using assms(5) defer apply-apply(rule)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3907
  proof- fix t assume as:"t\<in>{0..1} - {t. (1 - t) *\<^sub>R c + t *\<^sub>R x \<in> k}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3908
    have *:"c - t *\<^sub>R c + t *\<^sub>R x \<in> s - k" apply safe apply(rule conv[unfolded scaleR_simps]) 
36362
06475a1547cb fix lots of looping simp calls and other warnings
huffman
parents: 36359
diff changeset
  3909
      using `x\<in>s` `c\<in>s` as by(auto simp add: algebra_simps)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3910
    have "(f \<circ> (\<lambda>t. (1 - t) *\<^sub>R c + t *\<^sub>R x) has_derivative (\<lambda>x. 0) \<circ> (\<lambda>z. (0 - z *\<^sub>R c) + z *\<^sub>R x)) (at t within {0..1})"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3911
      apply(rule diff_chain_within) apply(rule has_derivative_add)
44140
2c10c35dd4be remove several redundant and unused theorems about derivatives
huffman
parents: 44125
diff changeset
  3912
      unfolding scaleR_simps
2c10c35dd4be remove several redundant and unused theorems about derivatives
huffman
parents: 44125
diff changeset
  3913
      apply(intro has_derivative_intros)
2c10c35dd4be remove several redundant and unused theorems about derivatives
huffman
parents: 44125
diff changeset
  3914
      apply(intro has_derivative_intros)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3915
      apply(rule has_derivative_within_subset,rule assms(6)[rule_format])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3916
      apply(rule *) apply safe apply(rule conv[unfolded scaleR_simps]) using `x\<in>s` `c\<in>s` by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3917
    thus "((\<lambda>xa. f ((1 - xa) *\<^sub>R c + xa *\<^sub>R x)) has_derivative (\<lambda>h. 0)) (at t within {0..1})" unfolding o_def .
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3918
  qed auto thus ?thesis by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3919
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3920
subsection {* Also to any open connected set with finite set of exceptions. Could 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3921
 generalize to locally convex set with limpt-free set of exceptions. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3922
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3923
lemma has_derivative_zero_unique_strong_connected: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3924
  assumes "connected s" "open s" "finite k" "continuous_on s f" "c \<in> s" "f c = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3925
  "\<forall>x\<in>(s - k). (f has_derivative (\<lambda>h. 0)) (at x within s)" "x\<in>s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3926
  shows "f x = y"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3927
proof- have "{x \<in> s. f x \<in> {y}} = {} \<or> {x \<in> s. f x \<in> {y}} = s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3928
    apply(rule assms(1)[unfolded connected_clopen,rule_format]) apply rule defer
41969
1cf3e4107a2a moved t2_spaces to HOL image
hoelzl
parents: 41958
diff changeset
  3929
    apply(rule continuous_closed_in_preimage[OF assms(4) closed_singleton])
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3930
    apply(rule open_openin_trans[OF assms(2)]) unfolding open_contains_ball
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3931
  proof safe fix x assume "x\<in>s" 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3932
    from assms(2)[unfolded open_contains_ball,rule_format,OF this] guess e .. note e=conjunctD2[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3933
    show "\<exists>e>0. ball x e \<subseteq> {xa \<in> s. f xa \<in> {f x}}" apply(rule,rule,rule e)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3934
    proof safe fix y assume y:"y \<in> ball x e" thus "y\<in>s" using e by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3935
      show "f y = f x" apply(rule has_derivative_zero_unique_strong_convex[OF convex_ball])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3936
        apply(rule assms) apply(rule continuous_on_subset,rule assms) apply(rule e)+
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3937
        apply(subst centre_in_ball,rule e,rule) apply safe
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3938
        apply(rule has_derivative_within_subset) apply(rule assms(7)[rule_format])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3939
        using y e by auto qed qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3940
  thus ?thesis using `x\<in>s` `f c = y` `c\<in>s` by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3941
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3942
subsection {* Integrating characteristic function of an interval. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3943
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3944
lemma has_integral_restrict_open_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3945
  assumes "(f has_integral i) {c..d}" "{c..d} \<subseteq> {a..b}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3946
  shows "((\<lambda>x. if x \<in> {c<..<d} then f x else 0) has_integral i) {a..b}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3947
proof- def g \<equiv> "\<lambda>x. if x \<in>{c<..<d} then f x else 0"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3948
  { presume *:"{c..d}\<noteq>{} \<Longrightarrow> ?thesis"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3949
    show ?thesis apply(cases,rule *,assumption)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3950
    proof- case goal1 hence *:"{c<..<d} = {}" using interval_open_subset_closed by auto 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3951
      show ?thesis using assms(1) unfolding * using goal1 by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3952
    qed } assume "{c..d}\<noteq>{}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3953
  from partial_division_extend_1[OF assms(2) this] guess p . note p=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3954
  note mon = monoidal_lifted[OF monoidal_monoid] 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3955
  note operat = operative_division[OF this operative_integral p(1), THEN sym]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3956
  let ?P = "(if g integrable_on {a..b} then Some (integral {a..b} g) else None) = Some i"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3957
  { presume "?P" hence "g integrable_on {a..b} \<and> integral {a..b} g = i"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3958
      apply- apply(cases,subst(asm) if_P,assumption) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3959
    thus ?thesis using integrable_integral unfolding g_def by auto }
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3960
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3961
  note iterate_eq_neutral[OF mon,unfolded neutral_lifted[OF monoidal_monoid]]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3962
  note * = this[unfolded neutral_monoid]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3963
  have iterate:"iterate (lifted op +) (p - {{c..d}})
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3964
      (\<lambda>i. if g integrable_on i then Some (integral i g) else None) = Some 0"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3965
  proof(rule *,rule) case goal1 hence "x\<in>p" by auto note div = division_ofD(2-5)[OF p(1) this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3966
    from div(3) guess u v apply-by(erule exE)+ note uv=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3967
    have "interior x \<inter> interior {c..d} = {}" using div(4)[OF p(2)] goal1 by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3968
    hence "(g has_integral 0) x" unfolding uv apply-apply(rule has_integral_spike_interior[where f="\<lambda>x. 0"])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3969
      unfolding g_def interior_closed_interval by auto thus ?case by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3970
  qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3971
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3972
  have *:"p = insert {c..d} (p - {{c..d}})" using p by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3973
  have **:"g integrable_on {c..d}" apply(rule integrable_spike_interior[where f=f])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3974
    unfolding g_def defer apply(rule has_integral_integrable) using assms(1) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3975
  moreover have "integral {c..d} g = i" apply(rule has_integral_unique[OF _ assms(1)])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3976
    apply(rule has_integral_spike_interior[where f=g]) defer
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3977
    apply(rule integrable_integral[OF **]) unfolding g_def by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3978
  ultimately show ?P unfolding operat apply- apply(subst *) apply(subst iterate_insert) apply rule+
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3979
    unfolding iterate defer apply(subst if_not_P) defer using p by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3980
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3981
lemma has_integral_restrict_closed_subinterval: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3982
  assumes "(f has_integral i) ({c..d})" "{c..d} \<subseteq> {a..b}" 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3983
  shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3984
proof- note has_integral_restrict_open_subinterval[OF assms]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3985
  note * = has_integral_spike[OF negligible_frontier_interval _ this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3986
  show ?thesis apply(rule *[of c d]) using interval_open_subset_closed[of c d] by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3987
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  3988
lemma has_integral_restrict_closed_subintervals_eq: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'b::banach" assumes "{c..d} \<subseteq> {a..b}" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3989
  shows "((\<lambda>x. if x \<in> {c..d} then f x else 0) has_integral i) {a..b} \<longleftrightarrow> (f has_integral i) {c..d}" (is "?l = ?r")
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3990
proof(cases "{c..d} = {}") case False let ?g = "\<lambda>x. if x \<in> {c..d} then f x else 0"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3991
  show ?thesis apply rule defer apply(rule has_integral_restrict_closed_subinterval[OF _ assms])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3992
  proof assumption assume ?l hence "?g integrable_on {c..d}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3993
      apply-apply(rule integrable_subinterval[OF _ assms]) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3994
    hence *:"f integrable_on {c..d}"apply-apply(rule integrable_eq) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3995
    hence "i = integral {c..d} f" apply-apply(rule has_integral_unique)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3996
      apply(rule `?l`) apply(rule has_integral_restrict_closed_subinterval[OF _ assms]) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3997
    thus ?r using * by auto qed qed auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3998
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  3999
subsection {* Hence we can apply the limit process uniformly to all integrals. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4000
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4001
lemma has_integral': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4002
 "(f has_integral i) s \<longleftrightarrow> (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4003
  \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then f(x) else 0) has_integral z) {a..b} \<and> norm(z - i) < e))" (is "?l \<longleftrightarrow> (\<forall>e>0. ?r e)")
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4004
proof- { presume *:"\<exists>a b. s = {a..b} \<Longrightarrow> ?thesis"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4005
    show ?thesis apply(cases,rule *,assumption)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4006
      apply(subst has_integral_alt) by auto }
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4007
  assume "\<exists>a b. s = {a..b}" then guess a b apply-by(erule exE)+ note s=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4008
  from bounded_interval[of a b, THEN conjunct1, unfolded bounded_pos] guess B ..
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4009
  note B = conjunctD2[OF this,rule_format] show ?thesis apply safe
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4010
  proof- fix e assume ?l "e>(0::real)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4011
    show "?r e" apply(rule_tac x="B+1" in exI) apply safe defer apply(rule_tac x=i in exI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4012
    proof fix c d assume as:"ball 0 (B+1) \<subseteq> {c..d::'n::ordered_euclidean_space}"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4013
      thus "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) {c..d}" unfolding s
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4014
        apply-apply(rule has_integral_restrict_closed_subinterval) apply(rule `?l`[unfolded s])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4015
        apply safe apply(drule B(2)[rule_format]) unfolding subset_eq apply(erule_tac x=x in ballE)
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4016
        by(auto simp add:dist_norm)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4017
    qed(insert B `e>0`, auto)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4018
  next assume as:"\<forall>e>0. ?r e" 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4019
    from this[rule_format,OF zero_less_one] guess C .. note C=conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4020
    def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4021
    have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4022
    proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4023
        by(auto simp add:field_simps) qed
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4024
    have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4025
    proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4026
    from C(2)[OF this] have "\<exists>y. (f has_integral y) {a..b}"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4027
      unfolding has_integral_restrict_closed_subintervals_eq[OF c_d,THEN sym] unfolding s by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4028
    then guess y .. note y=this
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4029
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4030
    have "y = i" proof(rule ccontr) assume "y\<noteq>i" hence "0 < norm (y - i)" by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4031
      from as[rule_format,OF this] guess C ..  note C=conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4032
      def c \<equiv> "(\<chi>\<chi> i. - max B C)::'n::ordered_euclidean_space" and d \<equiv> "(\<chi>\<chi> i. max B C)::'n::ordered_euclidean_space"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4033
      have c_d:"{a..b} \<subseteq> {c..d}" apply safe apply(drule B(2)) unfolding mem_interval
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4034
      proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4035
          by(auto simp add:field_simps) qed
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4036
      have "ball 0 C \<subseteq> {c..d}" apply safe unfolding mem_interval mem_ball dist_norm 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4037
      proof case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4038
      note C(2)[OF this] then guess z .. note z = conjunctD2[OF this, unfolded s]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4039
      note this[unfolded has_integral_restrict_closed_subintervals_eq[OF c_d]]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4040
      hence "z = y" "norm (z - i) < norm (y - i)" apply- apply(rule has_integral_unique[OF _ y(1)]) .
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4041
      thus False by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4042
    thus ?l using y unfolding s by auto qed qed 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4043
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4044
(*lemma has_integral_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4045
  "((\<lambda>x. vec1 (f x)) has_integral vec1 i) s \<longleftrightarrow> (f has_integral i) s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4046
  unfolding has_integral'[unfolded has_integral] 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4047
proof case goal1 thus ?case apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4048
  apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4049
  apply(erule_tac x=a in allE, erule_tac x=b in allE,safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4050
  apply(rule_tac x="dest_vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4051
  apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4052
  apply(subst(asm)(2) norm_vector_1) unfolding split_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4053
  unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4054
    Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4055
  apply(subst(asm)(2) norm_vector_1) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4056
next case goal2 thus ?case apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4057
  apply(erule_tac x=e in allE,safe) apply(rule_tac x=B in exI,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4058
  apply(erule_tac x=a in allE, erule_tac x=b in allE,safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4059
  apply(rule_tac x="vec1 z" in exI,safe) apply(erule_tac x=ea in allE,safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4060
  apply(rule_tac x=d in exI,safe) apply(erule_tac x=p in allE,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4061
  apply(subst norm_vector_1) unfolding split_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4062
  unfolding setsum_component Cart_nth.diff cond_value_iff[of dest_vec1]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4063
    Cart_nth.scaleR vec1_dest_vec1 zero_index apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4064
  apply(subst norm_vector_1) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4065
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4066
lemma integral_trans[simp]: assumes "(f::'n::ordered_euclidean_space \<Rightarrow> real) integrable_on s"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4067
  shows "integral s (\<lambda>x. vec1 (f x)) = vec1 (integral s f)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4068
  apply(rule integral_unique) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4069
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4070
lemma integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4071
  "(\<lambda>x. vec1 (f x)) integrable_on s \<longleftrightarrow> (f integrable_on s)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4072
  unfolding integrable_on_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4073
  apply(subst(2) vec1_dest_vec1(1)[THEN sym]) unfolding has_integral_trans
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4074
  apply safe defer apply(rule_tac x="vec1 y" in exI) by auto *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4075
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4076
lemma has_integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4077
  assumes "(f has_integral i) s" "(g has_integral j) s"  "\<forall>x\<in>s. (f x) \<le> (g x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4078
  shows "i \<le> j" using has_integral_component_le[OF assms(1-2), of 0] using assms(3) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4079
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4080
lemma integral_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4081
  assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4082
  shows "integral s f \<le> integral s g"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4083
  using has_integral_le[OF assms(1,2)[unfolded has_integral_integral] assms(3)] .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4084
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4085
lemma has_integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4086
  assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i" 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4087
  using has_integral_component_nonneg[of "f" "i" s 0]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4088
  unfolding o_def using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4089
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4090
lemma integral_nonneg: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4091
  assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4092
  using has_integral_nonneg[OF assms(1)[unfolded has_integral_integral] assms(2)] .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4093
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4094
subsection {* Hence a general restriction property. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4095
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4096
lemma has_integral_restrict[simp]: assumes "s \<subseteq> t" shows
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4097
  "((\<lambda>x. if x \<in> s then f x else (0::'a::banach)) has_integral i) t \<longleftrightarrow> (f has_integral i) s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4098
proof- have *:"\<And>x. (if x \<in> t then if x \<in> s then f x else 0 else 0) =  (if x\<in>s then f x else 0)" using assms by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4099
  show ?thesis apply(subst(2) has_integral') apply(subst has_integral') unfolding * by rule qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4100
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4101
lemma has_integral_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4102
  "((\<lambda>x. if x \<in> s then f x else 0) has_integral i) UNIV \<longleftrightarrow> (f has_integral i) s" by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4103
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4104
lemma has_integral_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4105
  assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "(f has_integral i) s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4106
  shows "(f has_integral i) t"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4107
proof- have "(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. if x \<in> t then f x else 0)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4108
    apply(rule) using assms(1-2) by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4109
  thus ?thesis apply- using assms(3) apply(subst has_integral_restrict_univ[THEN sym])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4110
  apply- apply(subst(asm) has_integral_restrict_univ[THEN sym]) by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4111
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4112
lemma integrable_on_superset: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4113
  assumes "\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0" "s \<subseteq> t" "f integrable_on s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4114
  shows "f integrable_on t"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4115
  using assms unfolding integrable_on_def by(auto intro:has_integral_on_superset)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4116
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4117
lemma integral_restrict_univ[intro]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4118
  shows "f integrable_on s \<Longrightarrow> integral UNIV (\<lambda>x. if x \<in> s then f x else 0) = integral s f"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4119
  apply(rule integral_unique) unfolding has_integral_restrict_univ by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4120
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4121
lemma integrable_restrict_univ: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4122
 "(\<lambda>x. if x \<in> s then f x else 0) integrable_on UNIV \<longleftrightarrow> f integrable_on s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4123
  unfolding integrable_on_def by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4124
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4125
lemma negligible_on_intervals: "negligible s \<longleftrightarrow> (\<forall>a b. negligible(s \<inter> {a..b}))" (is "?l = ?r")
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4126
proof assume ?r show ?l unfolding negligible_def
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4127
  proof safe case goal1 show ?case apply(rule has_integral_negligible[OF `?r`[rule_format,of a b]])
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4128
      unfolding indicator_def by auto qed qed auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4129
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4130
lemma has_integral_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" 
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4131
  assumes "negligible((s - t) \<union> (t - s))" shows "((f has_integral y) s \<longleftrightarrow> (f has_integral y) t)"
49194
85116a86d99f tuned proofs;
wenzelm
parents: 48069
diff changeset
  4132
  unfolding has_integral_restrict_univ[THEN sym,of f] apply(rule has_integral_spike_eq[OF assms]) by (auto split: split_if_asm)
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4133
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4134
lemma has_integral_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4135
  assumes "negligible((s - t) \<union> (t - s))" "(f has_integral y) s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4136
  shows "(f has_integral y) t"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4137
  using assms has_integral_spike_set_eq by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4138
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4139
lemma integrable_spike_set[dest]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4140
  assumes "negligible((s - t) \<union> (t - s))" "f integrable_on s"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4141
  shows "f integrable_on t" using assms(2) unfolding integrable_on_def 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4142
  unfolding has_integral_spike_set_eq[OF assms(1)] .
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4143
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4144
lemma integrable_spike_set_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4145
  assumes "negligible((s - t) \<union> (t - s))"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4146
  shows "(f integrable_on s \<longleftrightarrow> f integrable_on t)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4147
  apply(rule,rule_tac[!] integrable_spike_set) using assms by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4148
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4149
(*lemma integral_spike_set:
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4150
 "\<forall>f:real^M->real^N g s t.
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4151
        negligible(s DIFF t \<union> t DIFF s)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4152
        \<longrightarrow> integral s f = integral t f"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4153
qed  REPEAT STRIP_TAC THEN REWRITE_TAC[integral] THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4154
  AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4155
  ASM_MESON_TAC[]);;
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4156
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4157
lemma has_integral_interior:
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4158
 "\<forall>f:real^M->real^N y s.
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4159
        negligible(frontier s)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4160
        \<longrightarrow> ((f has_integral y) (interior s) \<longleftrightarrow> (f has_integral y) s)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4161
qed  REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4162
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4163
    NEGLIGIBLE_SUBSET)) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4164
  REWRITE_TAC[frontier] THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4165
  MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4166
  MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4167
  SET_TAC[]);;
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4168
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4169
lemma has_integral_closure:
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4170
 "\<forall>f:real^M->real^N y s.
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4171
        negligible(frontier s)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4172
        \<longrightarrow> ((f has_integral y) (closure s) \<longleftrightarrow> (f has_integral y) s)"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4173
qed  REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE_SET_EQ THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4174
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4175
    NEGLIGIBLE_SUBSET)) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4176
  REWRITE_TAC[frontier] THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4177
  MP_TAC(ISPEC `s:real^M->bool` INTERIOR_SUBSET) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4178
  MP_TAC(ISPEC `s:real^M->bool` CLOSURE_SUBSET) THEN
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4179
  SET_TAC[]);;*)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4180
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4181
subsection {* More lemmas that are useful later. *}
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4182
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4183
lemma has_integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4184
  assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4185
  shows "i$$k \<le> j$$k"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4186
proof- note has_integral_restrict_univ[THEN sym, of f]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4187
  note assms(2-3)[unfolded this] note * = has_integral_component_le[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4188
  show ?thesis apply(rule *) using assms(1,4) by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4189
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4190
lemma has_integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4191
  assumes "s \<subseteq> t" "(f has_integral i) s" "(f has_integral j) t" "\<forall>x\<in>t. 0 \<le> f(x)"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4192
  shows "i \<le> j" using has_integral_subset_component_le[OF assms(1), of "f" "i" "j" 0] using assms by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4193
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4194
lemma integral_subset_component_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4195
  assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4196
  shows "(integral s f)$$k \<le> (integral t f)$$k"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4197
  apply(rule has_integral_subset_component_le) using assms by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4198
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4199
lemma integral_subset_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4200
  assumes "s \<subseteq> t" "f integrable_on s" "f integrable_on t" "\<forall>x \<in> t. 0 \<le> f(x)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4201
  shows "(integral s f) \<le> (integral t f)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4202
  apply(rule has_integral_subset_le) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4203
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4204
lemma has_integral_alt': fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4205
  shows "(f has_integral i) s \<longleftrightarrow> (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4206
  (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e)" (is "?l = ?r")
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4207
proof assume ?r
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4208
  show ?l apply- apply(subst has_integral')
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4209
  proof safe case goal1 from `?r`[THEN conjunct2,rule_format,OF this] guess B .. note B=conjunctD2[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4210
    show ?case apply(rule,rule,rule B,safe)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4211
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then f x else 0)" in exI)
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4212
      apply(drule B(2)[rule_format]) using integrable_integral[OF `?r`[THEN conjunct1,rule_format]] by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4213
  qed next
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4214
  assume ?l note as = this[unfolded has_integral'[of f],rule_format]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4215
  let ?f = "\<lambda>x. if x \<in> s then f x else 0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4216
  show ?r proof safe fix a b::"'n::ordered_euclidean_space"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4217
    from as[OF zero_less_one] guess B .. note B=conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4218
    let ?a = "(\<chi>\<chi> i. min (a$$i) (-B))::'n::ordered_euclidean_space" and ?b = "(\<chi>\<chi> i. max (b$$i) B)::'n::ordered_euclidean_space"
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4219
    show "?f integrable_on {a..b}" apply(rule integrable_subinterval[of _ ?a ?b])
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4220
    proof- have "ball 0 B \<subseteq> {?a..?b}" apply safe unfolding mem_ball mem_interval dist_norm
35751
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4221
      proof case goal1 thus ?case using component_le_norm[of x i] by(auto simp add:field_simps) qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4222
      from B(2)[OF this] guess z .. note conjunct1[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4223
      thus "?f integrable_on {?a..?b}" unfolding integrable_on_def by auto
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4224
      show "{a..b} \<subseteq> {?a..?b}" apply safe unfolding mem_interval apply(rule,erule_tac x=i in allE) by auto qed
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4225
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4226
    fix e::real assume "e>0" from as[OF this] guess B .. note B=conjunctD2[OF this,rule_format]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4227
    show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow>
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4228
                    norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4229
    proof(rule,rule,rule B,safe) case goal1 from B(2)[OF this] guess z .. note z=conjunctD2[OF this]
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4230
      from integral_unique[OF this(1)] show ?case using z(2) by auto qed qed qed 
f7f8d59b60b9 added lemmas
himmelma
parents: 35540
diff changeset
  4231
35752
c8a8df426666 reset smt_certificates
himmelma
parents: 35751
diff changeset
  4232
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4233
subsection {* Continuity of the integral (for a 1-dimensional interval). *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4234
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4235
lemma integrable_alt: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4236
  "f integrable_on s \<longleftrightarrow>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4237
          (\<forall>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}) \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4238
          (\<forall>e>0. \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4239
  \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4240
          integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e)" (is "?l = ?r")
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4241
proof assume ?l then guess y unfolding integrable_on_def .. note this[unfolded has_integral_alt'[of f]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4242
  note y=conjunctD2[OF this,rule_format] show ?r apply safe apply(rule y)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4243
  proof- case goal1 hence "e/2 > 0" by auto from y(2)[OF this] guess B .. note B=conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4244
    show ?case apply(rule,rule,rule B)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4245
    proof safe case goal1 show ?case apply(rule norm_triangle_half_l)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4246
        using B(2)[OF goal1(1)] B(2)[OF goal1(2)] by auto qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4247
        
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4248
next assume ?r note as = conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4249
  have "Cauchy (\<lambda>n. integral ({(\<chi>\<chi> i. - real n)::'n .. (\<chi>\<chi> i. real n)}) (\<lambda>x. if x \<in> s then f x else 0))"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4250
  proof(unfold Cauchy_def,safe) case goal1
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4251
    from as(2)[OF this] guess B .. note B = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4252
    from real_arch_simple[of B] guess N .. note N = this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4253
    { fix n assume n:"n \<ge> N" have "ball 0 B \<subseteq> {(\<chi>\<chi> i. - real n)::'n..\<chi>\<chi> i. real n}" apply safe
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4254
        unfolding mem_ball mem_interval dist_norm
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4255
      proof case goal1 thus ?case using component_le_norm[of x i]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4256
          using n N by(auto simp add:field_simps) qed }
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4257
    thus ?case apply-apply(rule_tac x=N in exI) apply safe unfolding dist_norm apply(rule B(2)) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4258
  qed from this[unfolded convergent_eq_cauchy[THEN sym]] guess i ..
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4259
  note i = this[THEN LIMSEQ_D]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4260
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4261
  show ?l unfolding integrable_on_def has_integral_alt'[of f] apply(rule_tac x=i in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4262
    apply safe apply(rule as(1)[unfolded integrable_on_def])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4263
  proof- case goal1 hence *:"e/2 > 0" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4264
    from i[OF this] guess N .. note N =this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4265
    from as(2)[OF *] guess B .. note B=conjunctD2[OF this,rule_format] let ?B = "max (real N) B"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4266
    show ?case apply(rule_tac x="?B" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4267
    proof safe show "0 < ?B" using B(1) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4268
      fix a b assume ab:"ball 0 ?B \<subseteq> {a..b::'n::ordered_euclidean_space}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4269
      from real_arch_simple[of ?B] guess n .. note n=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4270
      show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - i) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4271
        apply(rule norm_triangle_half_l) apply(rule B(2)) defer apply(subst norm_minus_commute)
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4272
        apply(rule N[of n])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4273
      proof safe show "N \<le> n" using n by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4274
        fix x::"'n::ordered_euclidean_space" assume x:"x \<in> ball 0 B" hence "x\<in> ball 0 ?B" by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4275
        thus "x\<in>{a..b}" using ab by blast 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4276
        show "x\<in>{\<chi>\<chi> i. - real n..\<chi>\<chi> i. real n}" using x unfolding mem_interval mem_ball dist_norm apply-
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4277
        proof case goal1 thus ?case using component_le_norm[of x i]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4278
            using n by(auto simp add:field_simps) qed qed qed qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4279
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4280
lemma integrable_altD: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4281
  assumes "f integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4282
  shows "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4283
  "\<And>e. e>0 \<Longrightarrow> \<exists>B>0. \<forall>a b c d. ball 0 B \<subseteq> {a..b} \<and> ball 0 B \<subseteq> {c..d}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4284
  \<longrightarrow> norm(integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d}  (\<lambda>x. if x \<in> s then f x else 0)) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4285
  using assms[unfolded integrable_alt[of f]] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4286
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4287
lemma integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4288
  assumes "f integrable_on s" "{a..b} \<subseteq> s" shows "f integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4289
  apply(rule integrable_eq) defer apply(rule integrable_altD(1)[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4290
  using assms(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4291
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4292
subsection {* A straddling criterion for integrability. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4293
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4294
lemma integrable_straddle_interval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4295
  assumes "\<forall>e>0. \<exists>g  h i j. (g has_integral i) ({a..b}) \<and> (h has_integral j) ({a..b}) \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4296
  norm(i - j) < e \<and> (\<forall>x\<in>{a..b}. (g x) \<le> (f x) \<and> (f x) \<le>(h x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4297
  shows "f integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4298
proof(subst integrable_cauchy,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4299
  case goal1 hence e:"e/3 > 0" by auto note assms[rule_format,OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4300
  then guess g h i j apply- by(erule exE conjE)+ note obt = this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4301
  from obt(1)[unfolded has_integral[of g], rule_format, OF e] guess d1 .. note d1=conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4302
  from obt(2)[unfolded has_integral[of h], rule_format, OF e] guess d2 .. note d2=conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4303
  show ?case apply(rule_tac x="\<lambda>x. d1 x \<inter> d2 x" in exI) apply(rule conjI gauge_inter d1 d2)+ unfolding fine_inter
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4304
  proof safe have **:"\<And>i j g1 g2 h1 h2 f1 f2. g1 - h2 \<le> f1 - f2 \<Longrightarrow> f1 - f2 \<le> h1 - g2 \<Longrightarrow>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4305
      abs(i - j) < e / 3 \<Longrightarrow> abs(g2 - i) < e / 3 \<Longrightarrow>  abs(g1 - i) < e / 3 \<Longrightarrow> 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4306
      abs(h2 - j) < e / 3 \<Longrightarrow> abs(h1 - j) < e / 3 \<Longrightarrow> abs(f1 - f2) < e" using `e>0` by arith
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4307
    case goal1 note tagged_division_ofD(2-4) note * = this[OF goal1(1)] this[OF goal1(4)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4308
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4309
    have "(\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R g x) \<ge> 0"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4310
      "0 \<le> (\<Sum>(x, k)\<in>p2. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4311
      "(\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R g x) \<ge> 0"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4312
      "0 \<le> (\<Sum>(x, k)\<in>p1. content k *\<^sub>R h x) - (\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x)" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4313
      unfolding setsum_subtractf[THEN sym] apply- apply(rule_tac[!] setsum_nonneg)
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  4314
      apply safe unfolding real_scaleR_def right_diff_distrib[THEN sym]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4315
      apply(rule_tac[!] mult_nonneg_nonneg)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4316
    proof- fix a b assume ab:"(a,b) \<in> p1"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4317
      show "0 \<le> content b" using *(3)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4318
      show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(1-2)[OF ab] using obt(4)[rule_format,of a] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4319
    next fix a b assume ab:"(a,b) \<in> p2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4320
      show "0 \<le> content b" using *(6)[OF ab] apply safe using content_pos_le . thus "0 \<le> content b" .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4321
      show "0 \<le> f a - g a" "0 \<le> h a - f a" using *(4-5)[OF ab] using obt(4)[rule_format,of a] by auto qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4322
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4323
    thus ?case apply- unfolding real_norm_def apply(rule **) defer defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4324
      unfolding real_norm_def[THEN sym] apply(rule obt(3))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4325
      apply(rule d1(2)[OF conjI[OF goal1(4,5)]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4326
      apply(rule d1(2)[OF conjI[OF goal1(1,2)]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4327
      apply(rule d2(2)[OF conjI[OF goal1(4,6)]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4328
      apply(rule d2(2)[OF conjI[OF goal1(1,3)]]) by auto qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4329
     
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4330
lemma integrable_straddle: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4331
  assumes "\<forall>e>0. \<exists>g h i j. (g has_integral i) s \<and> (h has_integral j) s \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4332
  norm(i - j) < e \<and> (\<forall>x\<in>s. (g x) \<le>(f x) \<and>(f x) \<le>(h x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4333
  shows "f integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4334
proof- have "\<And>a b. (\<lambda>x. if x \<in> s then f x else 0) integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4335
  proof(rule integrable_straddle_interval,safe) case goal1 hence *:"e/4 > 0" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4336
    from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4337
    note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4338
    note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4339
    note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4340
    note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4341
    def c \<equiv> "(\<chi>\<chi> i. min (a$$i) (- (max B1 B2)))::'n" and d \<equiv> "(\<chi>\<chi> i. max (b$$i) (max B1 B2))::'n"
36587
534418d8d494 remove redundant lemma vector_dist_norm
huffman
parents: 36365
diff changeset
  4342
    have *:"ball 0 B1 \<subseteq> {c..d}" "ball 0 B2 \<subseteq> {c..d}" apply safe unfolding mem_ball mem_interval dist_norm
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4343
    proof(rule_tac[!] allI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4344
      case goal1 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto next
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4345
      case goal2 thus ?case using component_le_norm[of x i] unfolding c_def d_def by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4346
    have **:"\<And>ch cg ag ah::real. norm(ah - ag) \<le> norm(ch - cg) \<Longrightarrow> norm(cg - i) < e / 4 \<Longrightarrow>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4347
      norm(ch - j) < e / 4 \<Longrightarrow> norm(ag - ah) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4348
      using obt(3) unfolding real_norm_def by arith 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4349
    show ?case apply(rule_tac x="\<lambda>x. if x \<in> s then g x else 0" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4350
               apply(rule_tac x="\<lambda>x. if x \<in> s then h x else 0" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4351
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4352
      apply(rule_tac x="integral {a..b} (\<lambda>x. if x \<in> s then h x else 0)" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4353
      apply safe apply(rule_tac[1-2] integrable_integral,rule g,rule h)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4354
      apply(rule **[OF _ B1(2)[OF *(1)] B2(2)[OF *(2)]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4355
    proof- have *:"\<And>x f g. (if x \<in> s then f x else 0) - (if x \<in> s then g x else 0) =
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4356
        (if x \<in> s then f x - g x else (0::real))" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4357
      note ** = abs_of_nonneg[OF integral_nonneg[OF integrable_sub, OF h g]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4358
      show " norm (integral {a..b} (\<lambda>x. if x \<in> s then h x else 0) -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4359
                   integral {a..b} (\<lambda>x. if x \<in> s then g x else 0))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4360
           \<le> norm (integral {c..d} (\<lambda>x. if x \<in> s then h x else 0) -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4361
                   integral {c..d} (\<lambda>x. if x \<in> s then g x else 0))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4362
        unfolding integral_sub[OF h g,THEN sym] real_norm_def apply(subst **) defer apply(subst **) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4363
        apply(rule has_integral_subset_le) defer apply(rule integrable_integral integrable_sub h g)+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4364
      proof safe fix x assume "x\<in>{a..b}" thus "x\<in>{c..d}" unfolding mem_interval c_def d_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4365
          apply - apply rule apply(erule_tac x=i in allE) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4366
      qed(insert obt(4), auto) qed(insert obt(4), auto) qed note interv = this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4367
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4368
  show ?thesis unfolding integrable_alt[of f] apply safe apply(rule interv)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4369
  proof- case goal1 hence *:"e/3 > 0" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4370
    from assms[rule_format,OF this] guess g h i j apply-by(erule exE conjE)+ note obt=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4371
    note obt(1)[unfolded has_integral_alt'[of g]] note conjunctD2[OF this, rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4372
    note g = this(1) and this(2)[OF *] from this(2) guess B1 .. note B1 = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4373
    note obt(2)[unfolded has_integral_alt'[of h]] note conjunctD2[OF this, rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4374
    note h = this(1) and this(2)[OF *] from this(2) guess B2 .. note B2 = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4375
    show ?case apply(rule_tac x="max B1 B2" in exI) apply safe apply(rule min_max.less_supI1,rule B1)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4376
    proof- fix a b c d::"'n::ordered_euclidean_space" assume as:"ball 0 (max B1 B2) \<subseteq> {a..b}" "ball 0 (max B1 B2) \<subseteq> {c..d}"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4377
      have **:"ball 0 B1 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" "ball 0 B2 \<subseteq> ball (0::'n::ordered_euclidean_space) (max B1 B2)" by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4378
      have *:"\<And>ga gc ha hc fa fc::real. abs(ga - i) < e / 3 \<and> abs(gc - i) < e / 3 \<and> abs(ha - j) < e / 3 \<and>
48069
e9b2782c4f99 restricted Z3 by default to a fragment where proof reconstruction should not fail (for better integration with Sledgehammer) -- the full set of supported Z3 features can still be used by enabling the configuration option "z3_with_extensions"
boehmes
parents: 47317
diff changeset
  4379
        abs(hc - j) < e / 3 \<and> abs(i - j) < e / 3 \<and> ga \<le> fa \<and> fa \<le> ha \<and> gc \<le> fc \<and> fc \<le> hc\<Longrightarrow> abs(fa - fc) < e" using [[z3_with_extensions]] by smt
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4380
      show "norm (integral {a..b} (\<lambda>x. if x \<in> s then f x else 0) - integral {c..d} (\<lambda>x. if x \<in> s then f x else 0)) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4381
        unfolding real_norm_def apply(rule *, safe) unfolding real_norm_def[THEN sym]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4382
        apply(rule B1(2),rule order_trans,rule **,rule as(1)) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4383
        apply(rule B1(2),rule order_trans,rule **,rule as(2)) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4384
        apply(rule B2(2),rule order_trans,rule **,rule as(1)) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4385
        apply(rule B2(2),rule order_trans,rule **,rule as(2)) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4386
        apply(rule obt) apply(rule_tac[!] integral_le) using obt
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4387
        by(auto intro!: h g interv) qed qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4388
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4389
subsection {* Adding integrals over several sets. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4390
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4391
lemma has_integral_union: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4392
  assumes "(f has_integral i) s" "(f has_integral j) t" "negligible(s \<inter> t)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4393
  shows "(f has_integral (i + j)) (s \<union> t)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4394
proof- note * = has_integral_restrict_univ[THEN sym, of f]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4395
  show ?thesis unfolding * apply(rule has_integral_spike[OF assms(3)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4396
    defer apply(rule has_integral_add[OF assms(1-2)[unfolded *]]) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4397
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4398
lemma has_integral_unions: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4399
  assumes "finite t" "\<forall>s\<in>t. (f has_integral (i s)) s"  "\<forall>s\<in>t. \<forall>s'\<in>t. ~(s = s') \<longrightarrow> negligible(s \<inter> s')"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4400
  shows "(f has_integral (setsum i t)) (\<Union>t)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4401
proof- note * = has_integral_restrict_univ[THEN sym, of f]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4402
  have **:"negligible (\<Union>((\<lambda>(a,b). a \<inter> b) ` {(a,b). a \<in> t \<and> b \<in> {y. y \<in> t \<and> ~(a = y)}}))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4403
    apply(rule negligible_unions) apply(rule finite_imageI) apply(rule finite_subset[of _ "t \<times> t"]) defer 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4404
    apply(rule finite_cartesian_product[OF assms(1,1)]) using assms(3) by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4405
  note assms(2)[unfolded *] note has_integral_setsum[OF assms(1) this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4406
  thus ?thesis unfolding * apply-apply(rule has_integral_spike[OF **]) defer apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4407
  proof safe case goal1 thus ?case
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4408
    proof(cases "x\<in>\<Union>t") case True then guess s unfolding Union_iff .. note s=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4409
      hence *:"\<forall>b\<in>t. x \<in> b \<longleftrightarrow> b = s" using goal1(3) by blast
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4410
      show ?thesis unfolding if_P[OF True] apply(rule trans) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4411
        apply(rule setsum_cong2) apply(subst *, assumption) apply(rule refl)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4412
        unfolding setsum_delta[OF assms(1)] using s by auto qed auto qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4413
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4414
subsection {* In particular adding integrals over a division, maybe not of an interval. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4415
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4416
lemma has_integral_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4417
  assumes "d division_of s" "\<forall>k\<in>d. (f has_integral (i k)) k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4418
  shows "(f has_integral (setsum i d)) s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4419
proof- note d = division_ofD[OF assms(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4420
  show ?thesis unfolding d(6)[THEN sym] apply(rule has_integral_unions)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4421
    apply(rule d assms)+ apply(rule,rule,rule)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4422
  proof- case goal1 from d(4)[OF this(1)] d(4)[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4423
    guess a c b d apply-by(erule exE)+ note obt=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4424
    from d(5)[OF goal1] show ?case unfolding obt interior_closed_interval
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4425
      apply-apply(rule negligible_subset[of "({a..b}-{a<..<b}) \<union> ({c..d}-{c<..<d})"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4426
      apply(rule negligible_union negligible_frontier_interval)+ by auto qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4427
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4428
lemma integral_combine_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4429
  assumes "d division_of s" "\<forall>k\<in>d. f integrable_on k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4430
  shows "integral s f = setsum (\<lambda>i. integral i f) d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4431
  apply(rule integral_unique) apply(rule has_integral_combine_division[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4432
  using assms(2) unfolding has_integral_integral .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4433
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4434
lemma has_integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4435
  assumes "f integrable_on s" "d division_of k" "k \<subseteq> s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4436
  shows "(f has_integral (setsum (\<lambda>i. integral i f) d)) k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4437
  apply(rule has_integral_combine_division[OF assms(2)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4438
  apply safe unfolding has_integral_integral[THEN sym]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4439
proof- case goal1 from division_ofD(2,4)[OF assms(2) this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4440
  show ?case apply safe apply(rule integrable_on_subinterval)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4441
    apply(rule assms) using assms(3) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4442
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4443
lemma integral_combine_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4444
  assumes "f integrable_on s" "d division_of s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4445
  shows "integral s f = setsum (\<lambda>i. integral i f) d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4446
  apply(rule integral_unique,rule has_integral_combine_division_topdown) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4447
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4448
lemma integrable_combine_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4449
  assumes "d division_of s" "\<forall>i\<in>d. f integrable_on i"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4450
  shows "f integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4451
  using assms(2) unfolding integrable_on_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4452
  by(metis has_integral_combine_division[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4453
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4454
lemma integrable_on_subdivision: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4455
  assumes "d division_of i" "f integrable_on s" "i \<subseteq> s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4456
  shows "f integrable_on i"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4457
  apply(rule integrable_combine_division assms)+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4458
proof safe case goal1 note division_ofD(2,4)[OF assms(1) this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4459
  thus ?case apply safe apply(rule integrable_on_subinterval[OF assms(2)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4460
    using assms(3) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4461
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4462
subsection {* Also tagged divisions. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4463
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4464
lemma has_integral_combine_tagged_division: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4465
  assumes "p tagged_division_of s" "\<forall>(x,k) \<in> p. (f has_integral (i k)) k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4466
  shows "(f has_integral (setsum (\<lambda>(x,k). i k) p)) s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4467
proof- have *:"(f has_integral (setsum (\<lambda>k. integral k f) (snd ` p))) s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4468
    apply(rule has_integral_combine_division) apply(rule division_of_tagged_division[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4469
    using assms(2) unfolding has_integral_integral[THEN sym] by(safe,auto)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4470
  thus ?thesis apply- apply(rule subst[where P="\<lambda>i. (f has_integral i) s"]) defer apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4471
    apply(rule trans[of _ "setsum (\<lambda>(x,k). integral k f) p"]) apply(subst eq_commute)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4472
    apply(rule setsum_over_tagged_division_lemma[OF assms(1)]) apply(rule integral_null,assumption)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4473
    apply(rule setsum_cong2) using assms(2) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4474
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4475
lemma integral_combine_tagged_division_bottomup: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4476
  assumes "p tagged_division_of {a..b}" "\<forall>(x,k)\<in>p. f integrable_on k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4477
  shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4478
  apply(rule integral_unique) apply(rule has_integral_combine_tagged_division[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4479
  using assms(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4480
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4481
lemma has_integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4482
  assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4483
  shows "(f has_integral (setsum (\<lambda>(x,k). integral k f) p)) {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4484
  apply(rule has_integral_combine_tagged_division[OF assms(2)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4485
proof safe case goal1 note tagged_division_ofD(3-4)[OF assms(2) this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4486
  thus ?case using integrable_subinterval[OF assms(1)] by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4487
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4488
lemma integral_combine_tagged_division_topdown: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4489
  assumes "f integrable_on {a..b}" "p tagged_division_of {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4490
  shows "integral {a..b} f = setsum (\<lambda>(x,k). integral k f) p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4491
  apply(rule integral_unique,rule has_integral_combine_tagged_division_topdown) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4492
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4493
subsection {* Henstock's lemma. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4494
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4495
lemma henstock_lemma_part1: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4496
  assumes "f integrable_on {a..b}" "0 < e" "gauge d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4497
  "(\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - integral({a..b}) f) < e)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4498
  and p:"p tagged_partial_division_of {a..b}" "d fine p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4499
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x - integral k f) p) \<le> e" (is "?x \<le> e")
41863
e5104b436ea1 removed dependency on Dense_Linear_Order
boehmes
parents: 41851
diff changeset
  4500
proof-  { presume "\<And>k. 0<k \<Longrightarrow> ?x \<le> e + k" thus ?thesis by (blast intro: field_le_epsilon) }
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4501
  fix k::real assume k:"k>0" note p' = tagged_partial_division_ofD[OF p(1)]
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  4502
  have "\<Union>snd ` p \<subseteq> {a..b}" using p'(3) by fastforce
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4503
  note partial_division_of_tagged_division[OF p(1)] this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4504
  from partial_division_extend_interval[OF this] guess q . note q=this and q' = division_ofD[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4505
  def r \<equiv> "q - snd ` p" have "snd ` p \<inter> r = {}" unfolding r_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4506
  have r:"finite r" using q' unfolding r_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4507
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4508
  have "\<forall>i\<in>r. \<exists>p. p tagged_division_of i \<and> d fine p \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4509
    norm(setsum (\<lambda>(x,j). content j *\<^sub>R f x) p - integral i f) < k / (real (card r) + 1)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4510
  proof safe case goal1 hence i:"i \<in> q" unfolding r_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4511
    from q'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4512
    have *:"k / (real (card r) + 1) > 0" apply(rule divide_pos_pos,rule k) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4513
    have "f integrable_on {u..v}" apply(rule integrable_subinterval[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4514
      using q'(2)[OF i] unfolding uv by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4515
    note integrable_integral[OF this, unfolded has_integral[of f]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4516
    from this[rule_format,OF *] guess dd .. note dd=conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4517
    note gauge_inter[OF `gauge d` dd(1)] from fine_division_exists[OF this,of u v] guess qq .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4518
    thus ?case apply(rule_tac x=qq in exI) using dd(2)[of qq] unfolding fine_inter uv by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4519
  from bchoice[OF this] guess qq .. note qq=this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4520
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4521
  let ?p = "p \<union> \<Union>qq ` r" have "norm ((\<Sum>(x, k)\<in>?p. content k *\<^sub>R f x) - integral {a..b} f) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4522
    apply(rule assms(4)[rule_format])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4523
  proof show "d fine ?p" apply(rule fine_union,rule p) apply(rule fine_unions) using qq by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4524
    note * = tagged_partial_division_of_union_self[OF p(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4525
    have "p \<union> \<Union>qq ` r tagged_division_of \<Union>snd ` p \<union> \<Union>r"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4526
    proof(rule tagged_division_union[OF * tagged_division_unions])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4527
      show "finite r" by fact case goal2 thus ?case using qq by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4528
    next case goal3 thus ?case apply(rule,rule,rule) apply(rule q'(5)) unfolding r_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4529
    next case goal4 thus ?case apply(rule inter_interior_unions_intervals) apply(fact,rule)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4530
        apply(rule,rule q') defer apply(rule,subst Int_commute) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4531
        apply(rule inter_interior_unions_intervals) apply(rule finite_imageI,rule p',rule) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4532
        apply(rule,rule q') using q(1) p' unfolding r_def by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4533
    moreover have "\<Union>snd ` p \<union> \<Union>r = {a..b}" "{qq i |i. i \<in> r} = qq ` r"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4534
      unfolding Union_Un_distrib[THEN sym] r_def using q by auto
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  4535
    ultimately show "?p tagged_division_of {a..b}" by fastforce qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4536
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4537
  hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>\<Union>qq ` r. content k *\<^sub>R f x) -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4538
    integral {a..b} f) < e" apply(subst setsum_Un_zero[THEN sym]) apply(rule p') prefer 3 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4539
    apply assumption apply rule apply(rule finite_imageI,rule r) apply safe apply(drule qq)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4540
  proof- fix x l k assume as:"(x,l)\<in>p" "(x,l)\<in>qq k" "k\<in>r"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4541
    note qq[OF this(3)] note tagged_division_ofD(3,4)[OF conjunct1[OF this] as(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4542
    from this(2) guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4543
    have "l\<in>snd ` p" unfolding image_iff apply(rule_tac x="(x,l)" in bexI) using as by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4544
    hence "l\<in>q" "k\<in>q" "l\<noteq>k" using as(1,3) q(1) unfolding r_def by auto
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  4545
    note q'(5)[OF this] hence "interior l = {}" using interior_mono[OF `l \<subseteq> k`] by blast
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4546
    thus "content l *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto qed auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4547
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4548
  hence "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4549
    (qq ` r) - integral {a..b} f) < e" apply(subst(asm) setsum_UNION_zero)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4550
    prefer 4 apply assumption apply(rule finite_imageI,fact)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4551
    unfolding split_paired_all split_conv image_iff defer apply(erule bexE)+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4552
  proof- fix x m k l T1 T2 assume "(x,m)\<in>T1" "(x,m)\<in>T2" "T1\<noteq>T2" "k\<in>r" "l\<in>r" "T1 = qq k" "T2 = qq l"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4553
    note as = this(1-5)[unfolded this(6-)] note kl = tagged_division_ofD(3,4)[OF qq[THEN conjunct1]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4554
    from this(2)[OF as(4,1)] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4555
    have *:"interior (k \<inter> l) = {}" unfolding interior_inter apply(rule q')
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4556
      using as unfolding r_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4557
    have "interior m = {}" unfolding subset_empty[THEN sym] unfolding *[THEN sym]
44522
2f7e9d890efe rename subset_{interior,closure} to {interior,closure}_mono;
huffman
parents: 44514
diff changeset
  4558
      apply(rule interior_mono) using kl(1)[OF as(4,1)] kl(1)[OF as(5,2)] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4559
    thus "content m *\<^sub>R f x = 0" unfolding uv content_eq_0_interior[THEN sym] by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4560
  qed(insert qq, auto)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4561
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4562
  hence **:"norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + setsum (setsum (\<lambda>(x, k). content k *\<^sub>R f x) \<circ> qq) r -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4563
    integral {a..b} f) < e" apply(subst(asm) setsum_reindex_nonzero) apply fact
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4564
    apply(rule setsum_0',rule) unfolding split_paired_all split_conv defer apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4565
  proof- fix k l x m assume as:"k\<in>r" "l\<in>r" "k\<noteq>l" "qq k = qq l" "(x,m)\<in>qq k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4566
    note tagged_division_ofD(6)[OF qq[THEN conjunct1]] from this[OF as(1)] this[OF as(2)] 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4567
    show "content m *\<^sub>R f x = 0"  using as(3) unfolding as by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4568
  
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4569
  have *:"\<And>ir ip i cr cp. norm((cp + cr) - i) < e \<Longrightarrow> norm(cr - ir) < k \<Longrightarrow> 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4570
    ip + ir = i \<Longrightarrow> norm(cp - ip) \<le> e + k" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4571
  proof- case goal1 thus ?case  using norm_triangle_le[of "cp + cr - i" "- (cr - ir)"]  
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  4572
      unfolding goal1(3)[THEN sym] norm_minus_cancel by(auto simp add:algebra_simps) qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4573
  
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4574
  have "?x =  norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p. integral k f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4575
    unfolding split_def setsum_subtractf ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4576
  also have "... \<le> e + k" apply(rule *[OF **, where ir="setsum (\<lambda>k. integral k f) r"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4577
  proof- case goal2 have *:"(\<Sum>(x, k)\<in>p. integral k f) = (\<Sum>k\<in>snd ` p. integral k f)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4578
      apply(subst setsum_reindex_nonzero) apply fact
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4579
      unfolding split_paired_all snd_conv split_def o_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4580
    proof- fix x l y m assume as:"(x,l)\<in>p" "(y,m)\<in>p" "(x,l)\<noteq>(y,m)" "l = m"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4581
      from p'(4)[OF as(1)] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4582
      show "integral l f = 0" unfolding uv apply(rule integral_unique)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4583
        apply(rule has_integral_null) unfolding content_eq_0_interior
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4584
        using p'(5)[OF as(1-3)] unfolding uv as(4)[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4585
    qed auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4586
    show ?case unfolding integral_combine_division_topdown[OF assms(1) q(2)] * r_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4587
      apply(rule setsum_Un_disjoint'[THEN sym]) using q(1) q'(1) p'(1) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4588
  next  case goal1 have *:"k * real (card r) / (1 + real (card r)) < k" using k by(auto simp add:field_simps)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4589
    show ?case apply(rule le_less_trans[of _ "setsum (\<lambda>x. k / (real (card r) + 1)) r"])
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  4590
      unfolding setsum_subtractf[THEN sym] apply(rule setsum_norm_le)
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  4591
      apply rule apply(drule qq) defer unfolding divide_inverse setsum_left_distrib[THEN sym]
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  4592
      unfolding divide_inverse[THEN sym] using * by(auto simp add:field_simps real_eq_of_nat)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4593
  qed finally show "?x \<le> e + k" . qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4594
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4595
lemma henstock_lemma_part2: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4596
  assumes "f integrable_on {a..b}" "0 < e" "gauge d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4597
  "\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4598
          integral({a..b}) f) < e"    "p tagged_partial_division_of {a..b}" "d fine p"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4599
  shows "setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p \<le> 2 * real (DIM('n)) * e"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4600
  unfolding split_def apply(rule setsum_norm_allsubsets_bound) defer 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4601
  apply(rule henstock_lemma_part1[unfolded split_def,OF assms(1-3)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4602
  apply safe apply(rule assms[rule_format,unfolded split_def]) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4603
  apply(rule tagged_partial_division_subset,rule assms,assumption)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4604
  apply(rule fine_subset,assumption,rule assms) using assms(5) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4605
  
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4606
lemma henstock_lemma: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4607
  assumes "f integrable_on {a..b}" "e>0"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4608
  obtains d where "gauge d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4609
  "\<forall>p. p tagged_partial_division_of {a..b} \<and> d fine p
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4610
  \<longrightarrow> setsum (\<lambda>(x,k). norm(content k *\<^sub>R f x - integral k f)) p < e"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4611
proof- have *:"e / (2 * (real DIM('n) + 1)) > 0" apply(rule divide_pos_pos) using assms(2) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4612
  from integrable_integral[OF assms(1),unfolded has_integral[of f],rule_format,OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4613
  guess d .. note d = conjunctD2[OF this] show thesis apply(rule that,rule d)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4614
  proof safe case goal1 note * = henstock_lemma_part2[OF assms(1) * d this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4615
    show ?case apply(rule le_less_trans[OF *]) using `e>0` by(auto simp add:field_simps) qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4616
44514
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4617
subsection {* Geometric progression *}
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4618
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4619
text {* FIXME: Should one or more of these theorems be moved to @{file
47317
432b29a96f61 modernized obsolete old-style theory name with proper new-style underscore
huffman
parents: 47152
diff changeset
  4620
"~~/src/HOL/Set_Interval.thy"}, alongside @{text geometric_sum}? *}
44514
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4621
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4622
lemma sum_gp_basic:
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4623
  fixes x :: "'a::ring_1"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4624
  shows "(1 - x) * setsum (\<lambda>i. x^i) {0 .. n} = (1 - x^(Suc n))"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4625
proof-
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4626
  def y \<equiv> "1 - x"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4627
  have "y * (\<Sum>i=0..n. (1 - y) ^ i) = 1 - (1 - y) ^ Suc n"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4628
    by (induct n, simp, simp add: algebra_simps)
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4629
  thus ?thesis
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4630
    unfolding y_def by simp
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4631
qed
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4632
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4633
lemma sum_gp_multiplied: assumes mn: "m <= n"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4634
  shows "((1::'a::{field}) - x) * setsum (op ^ x) {m..n} = x^m - x^ Suc n"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4635
  (is "?lhs = ?rhs")
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4636
proof-
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4637
  let ?S = "{0..(n - m)}"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4638
  from mn have mn': "n - m \<ge> 0" by arith
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4639
  let ?f = "op + m"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4640
  have i: "inj_on ?f ?S" unfolding inj_on_def by auto
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4641
  have f: "?f ` ?S = {m..n}"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4642
    using mn apply (auto simp add: image_iff Bex_def) by arith
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4643
  have th: "op ^ x o op + m = (\<lambda>i. x^m * x^i)"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4644
    by (rule ext, simp add: power_add power_mult)
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4645
  from setsum_reindex[OF i, of "op ^ x", unfolded f th setsum_right_distrib[symmetric]]
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4646
  have "?lhs = x^m * ((1 - x) * setsum (op ^ x) {0..n - m})" by simp
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4647
  then show ?thesis unfolding sum_gp_basic using mn
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4648
    by (simp add: field_simps power_add[symmetric])
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4649
qed
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4650
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4651
lemma sum_gp: "setsum (op ^ (x::'a::{field})) {m .. n} =
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4652
   (if n < m then 0 else if x = 1 then of_nat ((n + 1) - m)
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4653
                    else (x^ m - x^ (Suc n)) / (1 - x))"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4654
proof-
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4655
  {assume nm: "n < m" hence ?thesis by simp}
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4656
  moreover
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4657
  {assume "\<not> n < m" hence nm: "m \<le> n" by arith
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4658
    {assume x: "x = 1"  hence ?thesis by simp}
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4659
    moreover
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4660
    {assume x: "x \<noteq> 1" hence nz: "1 - x \<noteq> 0" by simp
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4661
      from sum_gp_multiplied[OF nm, of x] nz have ?thesis by (simp add: field_simps)}
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4662
    ultimately have ?thesis by metis
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4663
  }
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4664
  ultimately show ?thesis by metis
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4665
qed
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4666
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4667
lemma sum_gp_offset: "setsum (op ^ (x::'a::{field})) {m .. m+n} =
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4668
  (if x = 1 then of_nat n + 1 else x^m * (1 - x^Suc n) / (1 - x))"
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4669
  unfolding sum_gp[of x m "m + n"] power_Suc
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4670
  by (simp add: field_simps power_add)
d02b01e5ab8f move geometric progression lemmas from Linear_Algebra.thy to Integration.thy where they are used
huffman
parents: 44457
diff changeset
  4671
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4672
subsection {* monotone convergence (bounded interval first). *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4673
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4674
lemma monotone_convergence_interval: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4675
  assumes "\<forall>k. (f k) integrable_on {a..b}"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4676
  "\<forall>k. \<forall>x\<in>{a..b}.(f k x) \<le> (f (Suc k) x)"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4677
  "\<forall>x\<in>{a..b}. ((\<lambda>k. f k x) ---> g x) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4678
  "bounded {integral {a..b} (f k) | k . k \<in> UNIV}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4679
  shows "g integrable_on {a..b} \<and> ((\<lambda>k. integral ({a..b}) (f k)) ---> integral ({a..b}) g) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4680
proof(case_tac[!] "content {a..b} = 0") assume as:"content {a..b} = 0"
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4681
  show ?thesis using integrable_on_null[OF as] unfolding integral_null[OF as] using tendsto_const by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4682
next assume ab:"content {a..b} \<noteq> 0"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4683
  have fg:"\<forall>x\<in>{a..b}. \<forall> k. (f k x) $$ 0 \<le> (g x) $$ 0"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4684
  proof safe case goal1 note assms(3)[rule_format,OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4685
    note * = Lim_component_ge[OF this trivial_limit_sequentially]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4686
    show ?case apply(rule *) unfolding eventually_sequentially
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4687
      apply(rule_tac x=k in exI) apply- apply(rule transitive_stepwise_le)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4688
      using assms(2)[rule_format,OF goal1] by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4689
  have "\<exists>i. ((\<lambda>k. integral ({a..b}) (f k)) ---> i) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4690
    apply(rule bounded_increasing_convergent) defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4691
    apply rule apply(rule integral_le) apply safe
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4692
    apply(rule assms(1-2)[rule_format])+ using assms(4) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4693
  then guess i .. note i=this
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4694
  have i':"\<And>k. (integral({a..b}) (f k)) \<le> i$$0"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4695
    apply(rule Lim_component_ge,rule i) apply(rule trivial_limit_sequentially)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4696
    unfolding eventually_sequentially apply(rule_tac x=k in exI)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4697
    apply(rule transitive_stepwise_le) prefer 3 unfolding Eucl_real_simps apply(rule integral_le)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4698
    apply(rule assms(1-2)[rule_format])+ using assms(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4699
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4700
  have "(g has_integral i) {a..b}" unfolding has_integral
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4701
  proof safe case goal1 note e=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4702
    hence "\<forall>k. (\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4703
             norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f k x) - integral {a..b} (f k)) < e / 2 ^ (k + 2)))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4704
      apply-apply(rule,rule assms(1)[unfolded has_integral_integral has_integral,rule_format])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4705
      apply(rule divide_pos_pos) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4706
    from choice[OF this] guess c .. note c=conjunctD2[OF this[rule_format],rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4707
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4708
    have "\<exists>r. \<forall>k\<ge>r. 0 \<le> i$$0 - (integral {a..b} (f k)) \<and> i$$0 - (integral {a..b} (f k)) < e / 4"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4709
    proof- case goal1 have "e/4 > 0" using e by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4710
      from LIMSEQ_D [OF i this] guess r ..
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4711
      thus ?case apply(rule_tac x=r in exI) apply rule
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4712
        apply(erule_tac x=k in allE)
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4713
      proof- case goal1 thus ?case using i'[of k] by auto qed qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4714
    then guess r .. note r=conjunctD2[OF this[rule_format]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4715
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4716
    have "\<forall>x\<in>{a..b}. \<exists>n\<ge>r. \<forall>k\<ge>n. 0 \<le> (g x)$$0 - (f k x)$$0 \<and>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4717
           (g x)$$0 - (f k x)$$0 < e / (4 * content({a..b}))"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4718
    proof case goal1 have "e / (4 * content {a..b}) > 0" apply(rule divide_pos_pos,fact)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4719
        using ab content_pos_le[of a b] by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4720
      from assms(3)[rule_format, OF goal1, THEN LIMSEQ_D, OF this]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4721
      guess n .. note n=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4722
      thus ?case apply(rule_tac x="n + r" in exI) apply safe apply(erule_tac[2-3] x=k in allE)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4723
        unfolding dist_real_def using fg[rule_format,OF goal1] by(auto simp add:field_simps) qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4724
    from bchoice[OF this] guess m .. note m=conjunctD2[OF this[rule_format],rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4725
    def d \<equiv> "\<lambda>x. c (m x) x" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4726
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4727
    show ?case apply(rule_tac x=d in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4728
    proof safe show "gauge d" using c(1) unfolding gauge_def d_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4729
    next fix p assume p:"p tagged_division_of {a..b}" "d fine p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4730
      note p'=tagged_division_ofD[OF p(1)]
41851
96184364aa6f got rid of lemma upper_bound_finite_set
nipkow
parents: 41601
diff changeset
  4731
      have "\<exists>a. \<forall>x\<in>p. m (fst x) \<le> a"
96184364aa6f got rid of lemma upper_bound_finite_set
nipkow
parents: 41601
diff changeset
  4732
        by (metis finite_imageI finite_nat_set_iff_bounded_le p'(1) rev_image_eqI)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4733
      then guess s .. note s=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4734
      have *:"\<forall>a b c d. norm(a - b) \<le> e / 4 \<and> norm(b - c) < e / 2 \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4735
            norm(c - d) < e / 4 \<longrightarrow> norm(a - d) < e" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4736
      proof safe case goal1 thus ?case using norm_triangle_lt[of "a - b" "b - c" "3* e/4"]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4737
          norm_triangle_lt[of "a - b + (b - c)" "c - d" e] unfolding norm_minus_cancel
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  4738
          by(auto simp add:algebra_simps) qed
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4739
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - i) < e" apply(rule *[rule_format,where
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4740
          b="\<Sum>(x, k)\<in>p. content k *\<^sub>R f (m x) x" and c="\<Sum>(x, k)\<in>p. integral k (f (m x))"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4741
      proof safe case goal1
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4742
         show ?case apply(rule order_trans[of _ "\<Sum>(x, k)\<in>p. content k * (e / (4 * content {a..b}))"])
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  4743
           unfolding setsum_subtractf[THEN sym] apply(rule order_trans,rule norm_setsum)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4744
           apply(rule setsum_mono) unfolding split_paired_all split_conv
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  4745
           unfolding split_def setsum_left_distrib[THEN sym] scaleR_diff_right[THEN sym]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4746
           unfolding additive_content_tagged_division[OF p(1), unfolded split_def]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4747
         proof- fix x k assume xk:"(x,k) \<in> p" hence x:"x\<in>{a..b}" using p'(2-3)[OF xk] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4748
           from p'(4)[OF xk] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4749
           show " norm (content k *\<^sub>R (g x - f (m x) x)) \<le> content k * (e / (4 * content {a..b}))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4750
             unfolding norm_scaleR uv unfolding abs_of_nonneg[OF content_pos_le] 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4751
             apply(rule mult_left_mono) using m(2)[OF x,of "m x"] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4752
         qed(insert ab,auto)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4753
         
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4754
       next case goal2 show ?case apply(rule le_less_trans[of _ "norm (\<Sum>j = 0..s.
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4755
           \<Sum>(x, k)\<in>{xk\<in>p. m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x)))"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4756
           apply(subst setsum_group) apply fact apply(rule finite_atLeastAtMost) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4757
           apply(subst split_def)+ unfolding setsum_subtractf apply rule
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4758
         proof- show "norm (\<Sum>j = 0..s. \<Sum>(x, k)\<in>{xk \<in> p.
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4759
             m (fst xk) = j}. content k *\<^sub>R f (m x) x - integral k (f (m x))) < e / 2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4760
             apply(rule le_less_trans[of _ "setsum (\<lambda>i. e / 2^(i+2)) {0..s}"])
44176
eda112e9cdee remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents: 44170
diff changeset
  4761
             apply(rule setsum_norm_le)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4762
           proof show "(\<Sum>i = 0..s. e / 2 ^ (i + 2)) < e / 2"
36778
739a9379e29b avoid using real-specific versions of generic lemmas
huffman
parents: 36725
diff changeset
  4763
               unfolding power_add divide_inverse inverse_mult_distrib
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4764
               unfolding setsum_right_distrib[THEN sym] setsum_left_distrib[THEN sym]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4765
               unfolding power_inverse sum_gp apply(rule mult_strict_left_mono[OF _ e])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4766
               unfolding power2_eq_square by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4767
             fix t assume "t\<in>{0..s}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4768
             show "norm (\<Sum>(x, k)\<in>{xk \<in> p. m (fst xk) = t}. content k *\<^sub>R f (m x) x -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4769
               integral k (f (m x))) \<le> e / 2 ^ (t + 2)"apply(rule order_trans[of _
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4770
               "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f t x - integral k (f t)) {xk \<in> p. m (fst xk) = t})"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4771
               apply(rule eq_refl) apply(rule arg_cong[where f=norm]) apply(rule setsum_cong2) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4772
               apply(rule henstock_lemma_part1) apply(rule assms(1)[rule_format])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4773
               apply(rule divide_pos_pos,rule e) defer  apply safe apply(rule c)+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4774
               apply rule apply assumption+ apply(rule tagged_partial_division_subset[of p])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4775
               apply(rule p(1)[unfolded tagged_division_of_def,THEN conjunct1]) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4776
               unfolding fine_def apply safe apply(drule p(2)[unfolded fine_def,rule_format])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4777
               unfolding d_def by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4778
         qed(insert s, auto)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4779
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4780
       next case goal3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4781
         note comb = integral_combine_tagged_division_topdown[OF assms(1)[rule_format] p(1)]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4782
         have *:"\<And>sr sx ss ks kr::real. kr = sr \<longrightarrow> ks = ss \<longrightarrow> ks \<le> i \<and> sr \<le> sx \<and> sx \<le> ss \<and> 0 \<le> i$$0 - kr$$0
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4783
           \<and> i$$0 - kr$$0 < e/4 \<longrightarrow> abs(sx - i) < e/4" by auto 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4784
         show ?case unfolding real_norm_def apply(rule *[rule_format],safe)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4785
           apply(rule comb[of r],rule comb[of s]) apply(rule i'[unfolded Eucl_real_simps]) 
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4786
           apply(rule_tac[1-2] setsum_mono) unfolding split_paired_all split_conv
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4787
           apply(rule_tac[1-2] integral_le[OF ])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4788
         proof safe show "0 \<le> i$$0 - (integral {a..b} (f r))$$0" using r(1) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4789
           show "i$$0 - (integral {a..b} (f r))$$0 < e / 4" using r(2) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4790
           fix x k assume xk:"(x,k)\<in>p" from p'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4791
           show "f r integrable_on k" "f s integrable_on k" "f (m x) integrable_on k" "f (m x) integrable_on k" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4792
             unfolding uv apply(rule_tac[!] integrable_on_subinterval[OF assms(1)[rule_format]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4793
             using p'(3)[OF xk] unfolding uv by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4794
           fix y assume "y\<in>k" hence "y\<in>{a..b}" using p'(3)[OF xk] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4795
           hence *:"\<And>m. \<forall>n\<ge>m. (f m y) \<le> (f n y)" apply-apply(rule transitive_stepwise_le) using assms(2) by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4796
           show "(f r y) \<le> (f (m x) y)" "(f (m x) y) \<le> (f s y)"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4797
             apply(rule_tac[!] *[rule_format]) using s[rule_format,OF xk] m(1)[of x] p'(2-3)[OF xk] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4798
         qed qed qed qed note * = this 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4799
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4800
   have "integral {a..b} g = i" apply(rule integral_unique) using * .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4801
   thus ?thesis using i * by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4802
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4803
lemma monotone_convergence_increasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4804
  assumes "\<forall>k. (f k) integrable_on s"  "\<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x)"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4805
  "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4806
  shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4807
proof- have lem:"\<And>f::nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real. \<And> g s. \<forall>k.\<forall>x\<in>s. 0 \<le> (f k x) \<Longrightarrow> \<forall>k. (f k) integrable_on s \<Longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4808
    \<forall>k. \<forall>x\<in>s. (f k x) \<le> (f (Suc k) x) \<Longrightarrow> \<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially  \<Longrightarrow>
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4809
    bounded {integral s (f k)| k. True} \<Longrightarrow> g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4810
  proof- case goal1 note assms=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4811
    have "\<forall>x\<in>s. \<forall>k. (f k x)$$0 \<le> (g x)$$0" apply safe apply(rule Lim_component_ge)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4812
      apply(rule goal1(4)[rule_format],assumption) apply(rule trivial_limit_sequentially)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4813
      unfolding eventually_sequentially apply(rule_tac x=k in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4814
      apply(rule transitive_stepwise_le) using goal1(3) by auto note fg=this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4815
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4816
    have "\<exists>i. ((\<lambda>k. integral s (f k)) ---> i) sequentially" apply(rule bounded_increasing_convergent)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4817
      apply(rule goal1(5)) apply(rule,rule integral_le) apply(rule goal1(2)[rule_format])+
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4818
      using goal1(3) by auto then guess i .. note i=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4819
    have "\<And>k. \<forall>x\<in>s. \<forall>n\<ge>k. f k x \<le> f n x" apply(rule,rule transitive_stepwise_le) using goal1(3) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4820
    hence i':"\<forall>k. (integral s (f k))$$0 \<le> i$$0" apply-apply(rule,rule Lim_component_ge)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4821
      apply(rule i,rule trivial_limit_sequentially) unfolding eventually_sequentially
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4822
      apply(rule_tac x=k in exI,safe) apply(rule integral_component_le)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4823
      apply(rule goal1(2)[rule_format])+ by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4824
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4825
    note int = assms(2)[unfolded integrable_alt[of _ s],THEN conjunct1,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4826
    have ifif:"\<And>k t. (\<lambda>x. if x \<in> t then if x \<in> s then f k x else 0 else 0) =
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4827
      (\<lambda>x. if x \<in> t\<inter>s then f k x else 0)" apply(rule ext) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4828
    have int':"\<And>k a b. f k integrable_on {a..b} \<inter> s" apply(subst integrable_restrict_univ[THEN sym])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4829
      apply(subst ifif[THEN sym]) apply(subst integrable_restrict_univ) using int .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4830
    have "\<And>a b. (\<lambda>x. if x \<in> s then g x else 0) integrable_on {a..b} \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4831
      ((\<lambda>k. integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) --->
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4832
      integral {a..b} (\<lambda>x. if x \<in> s then g x else 0)) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4833
    proof(rule monotone_convergence_interval,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4834
      case goal1 show ?case using int .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4835
    next case goal2 thus ?case apply-apply(cases "x\<in>s") using assms(3) by auto
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4836
    next case goal3 thus ?case apply-apply(cases "x\<in>s")
44457
d366fa5551ef declare euclidean_simps [simp] at the point they are proved;
huffman
parents: 44282
diff changeset
  4837
        using assms(4) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4838
    next case goal4 note * = integral_nonneg
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4839
      have "\<And>k. norm (integral {a..b} (\<lambda>x. if x \<in> s then f k x else 0)) \<le> norm (integral s (f k))"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4840
        unfolding real_norm_def apply(subst abs_of_nonneg) apply(rule *[OF int])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4841
        apply(safe,case_tac "x\<in>s") apply(drule assms(1)) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4842
        apply(subst abs_of_nonneg) apply(rule *[OF assms(2) goal1(1)[THEN spec]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4843
        apply(subst integral_restrict_univ[THEN sym,OF int]) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4844
        unfolding ifif unfolding integral_restrict_univ[OF int']
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4845
        apply(rule integral_subset_le[OF _ int' assms(2)]) using assms(1) by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4846
      thus ?case using assms(5) unfolding bounded_iff apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4847
        apply(rule_tac x=aa in exI,safe) apply(erule_tac x="integral s (f k)" in ballE)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4848
        apply(rule order_trans) apply assumption by auto qed note g = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4849
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4850
    have "(g has_integral i) s" unfolding has_integral_alt' apply safe apply(rule g(1))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4851
    proof- case goal1 hence "e/4>0" by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4852
      from LIMSEQ_D [OF i this] guess N .. note N=this
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4853
      note assms(2)[of N,unfolded has_integral_integral has_integral_alt'[of "f N"]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4854
      from this[THEN conjunct2,rule_format,OF `e/4>0`] guess B .. note B=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4855
      show ?case apply(rule,rule,rule B,safe)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4856
      proof- fix a b::"'n::ordered_euclidean_space" assume ab:"ball 0 B \<subseteq> {a..b}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4857
        from `e>0` have "e/2>0" by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4858
        from LIMSEQ_D [OF g(2)[of a b] this] guess M .. note M=this
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4859
        have **:"norm (integral {a..b} (\<lambda>x. if x \<in> s then f N x else 0) - i) < e/2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4860
          apply(rule norm_triangle_half_l) using B(2)[rule_format,OF ab] N[rule_format,of N]
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4861
          apply-defer apply(subst norm_minus_commute) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4862
        have *:"\<And>f1 f2 g. abs(f1 - i) < e / 2 \<longrightarrow> abs(f2 - g) < e / 2 \<longrightarrow> f1 \<le> f2 \<longrightarrow> f2 \<le> i
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4863
          \<longrightarrow> abs(g - i) < e" unfolding Eucl_real_simps by arith
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4864
        show "norm (integral {a..b} (\<lambda>x. if x \<in> s then g x else 0) - i) < e" 
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4865
          unfolding real_norm_def apply(rule *[rule_format])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4866
          apply(rule **[unfolded real_norm_def])
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  4867
          apply(rule M[rule_format,of "M + N",unfolded real_norm_def]) apply(rule le_add1)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4868
          apply(rule integral_le[OF int int]) defer
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4869
          apply(rule order_trans[OF _ i'[rule_format,of "M + N",unfolded Eucl_real_simps]])
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4870
        proof safe case goal2 have "\<And>m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x)$$0 \<le> (f n x)$$0"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4871
            apply(rule transitive_stepwise_le) using assms(3) by auto thus ?case by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4872
        next case goal1 show ?case apply(subst integral_restrict_univ[THEN sym,OF int]) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4873
            unfolding ifif integral_restrict_univ[OF int']
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4874
            apply(rule integral_subset_le[OF _ int']) using assms by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4875
        qed qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4876
    thus ?case apply safe defer apply(drule integral_unique) using i by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4877
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4878
  have sub:"\<And>k. integral s (\<lambda>x. f k x - f 0 x) = integral s (f k) - integral s (f 0)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4879
    apply(subst integral_sub) apply(rule assms(1)[rule_format])+ by rule
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4880
  have "\<And>x m. x\<in>s \<Longrightarrow> \<forall>n\<ge>m. (f m x) \<le> (f n x)" apply(rule transitive_stepwise_le)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4881
    using assms(2) by auto note * = this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4882
  have "(\<lambda>x. g x - f 0 x) integrable_on s \<and>((\<lambda>k. integral s (\<lambda>x. f (Suc k) x - f 0 x)) --->
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4883
      integral s (\<lambda>x. g x - f 0 x)) sequentially" apply(rule lem,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4884
  proof- case goal1 thus ?case using *[of x 0 "Suc k"] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4885
  next case goal2 thus ?case apply(rule integrable_sub) using assms(1) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4886
  next case goal3 thus ?case using *[of x "Suc k" "Suc (Suc k)"] by auto
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4887
  next case goal4 thus ?case apply-apply(rule tendsto_diff) 
44457
d366fa5551ef declare euclidean_simps [simp] at the point they are proved;
huffman
parents: 44282
diff changeset
  4888
      using seq_offset[OF assms(3)[rule_format],of x 1] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4889
  next case goal5 thus ?case using assms(4) unfolding bounded_iff
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4890
      apply safe apply(rule_tac x="a + norm (integral s (\<lambda>x. f 0 x))" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4891
      apply safe apply(erule_tac x="integral s (\<lambda>x. f (Suc k) x)" in ballE) unfolding sub
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4892
      apply(rule order_trans[OF norm_triangle_ineq4]) by auto qed
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4893
  note conjunctD2[OF this] note tendsto_add[OF this(2) tendsto_const[of "integral s (f 0)"]]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4894
    integrable_add[OF this(1) assms(1)[rule_format,of 0]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4895
  thus ?thesis unfolding sub apply-apply rule defer apply(subst(asm) integral_sub)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4896
    using assms(1) apply auto apply(rule seq_offset_rev[where k=1]) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4897
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4898
lemma monotone_convergence_decreasing: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4899
  assumes "\<forall>k. (f k) integrable_on s"  "\<forall>k. \<forall>x\<in>s. (f (Suc k) x) \<le> (f k x)"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4900
  "\<forall>x\<in>s. ((\<lambda>k. f k x) ---> g x) sequentially" "bounded {integral s (f k)| k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4901
  shows "g integrable_on s \<and> ((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4902
proof- note assm = assms[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4903
  have *:"{integral s (\<lambda>x. - f k x) |k. True} = op *\<^sub>R -1 ` {integral s (f k)| k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4904
    apply safe unfolding image_iff apply(rule_tac x="integral s (f k)" in bexI) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4905
    apply(rule_tac x=k in exI) unfolding integral_neg[OF assm(1)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4906
  have "(\<lambda>x. - g x) integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. - f k x))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4907
    ---> integral s (\<lambda>x. - g x))  sequentially" apply(rule monotone_convergence_increasing)
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4908
    apply(safe,rule integrable_neg) apply(rule assm) defer apply(rule tendsto_minus)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4909
    apply(rule assm,assumption) unfolding * apply(rule bounded_scaling) using assm by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4910
  note * = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4911
  show ?thesis apply rule using integrable_neg[OF *(1)] defer
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 42871
diff changeset
  4912
    using tendsto_minus[OF *(2)] apply- unfolding integral_neg[OF assm(1)]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4913
    unfolding integral_neg[OF *(1),THEN sym] by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4914
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4915
subsection {* absolute integrability (this is the same as Lebesgue integrability). *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4916
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4917
definition absolutely_integrable_on (infixr "absolutely'_integrable'_on" 46) where
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4918
  "f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and> (\<lambda>x. (norm(f x))) integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4919
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4920
lemma absolutely_integrable_onI[intro?]:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4921
  "f integrable_on s \<Longrightarrow> (\<lambda>x. (norm(f x))) integrable_on s \<Longrightarrow> f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4922
  unfolding absolutely_integrable_on_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4923
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4924
lemma absolutely_integrable_onD[dest]: assumes "f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4925
  shows "f integrable_on s" "(\<lambda>x. (norm(f x))) integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4926
  using assms unfolding absolutely_integrable_on_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4927
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4928
(*lemma absolutely_integrable_on_trans[simp]: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real" shows
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4929
  "(vec1 o f) absolutely_integrable_on s \<longleftrightarrow> f absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4930
  unfolding absolutely_integrable_on_def o_def by auto*)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4931
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4932
lemma integral_norm_bound_integral: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4933
  assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. norm(f x) \<le> g x"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4934
  shows "norm(integral s f) \<le> (integral s g)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4935
proof- have *:"\<And>x y. (\<forall>e::real. 0 < e \<longrightarrow> x < y + e) \<longrightarrow> x \<le> y" apply(safe,rule ccontr)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4936
    apply(erule_tac x="x - y" in allE) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4937
  have "\<And>e sg dsa dia ig. norm(sg) \<le> dsa \<longrightarrow> abs(dsa - dia) < e / 2 \<longrightarrow> norm(sg - ig) < e / 2
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4938
    \<longrightarrow> norm(ig) < dia + e" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4939
  proof safe case goal1 show ?case apply(rule le_less_trans[OF norm_triangle_sub[of ig sg]])
36844
5f9385ecc1a7 Removed usage of normalizating locales.
hoelzl
parents: 36778
diff changeset
  4940
      apply(subst real_sum_of_halves[of e,THEN sym]) unfolding add_assoc[symmetric]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4941
      apply(rule add_le_less_mono) defer apply(subst norm_minus_commute,rule goal1)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4942
      apply(rule order_trans[OF goal1(1)]) using goal1(2) by arith
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4943
  qed note norm=this[rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4944
  have lem:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'a. \<And> g a b. f integrable_on {a..b} \<Longrightarrow> g integrable_on {a..b} \<Longrightarrow>
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4945
    \<forall>x\<in>{a..b}. norm(f x) \<le> (g x) \<Longrightarrow> norm(integral({a..b}) f) \<le> (integral({a..b}) g)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4946
  proof(rule *[rule_format]) case goal1 hence *:"e/2>0" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4947
    from integrable_integral[OF goal1(1),unfolded has_integral[of f],rule_format,OF *]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4948
    guess d1 .. note d1 = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4949
    from integrable_integral[OF goal1(2),unfolded has_integral[of g],rule_format,OF *]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4950
    guess d2 .. note d2 = conjunctD2[OF this,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4951
    note gauge_inter[OF d1(1) d2(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4952
    from fine_division_exists[OF this, of a b] guess p . note p=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4953
    show ?case apply(rule norm) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4954
      apply(rule d2(2)[OF conjI[OF p(1)],unfolded real_norm_def]) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4955
      apply(rule d1(2)[OF conjI[OF p(1)]]) defer apply(rule setsum_norm_le)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4956
    proof safe fix x k assume "(x,k)\<in>p" note as = tagged_division_ofD(2-4)[OF p(1) this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4957
      from this(3) guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4958
      show "norm (content k *\<^sub>R f x) \<le> content k *\<^sub>R g x" unfolding uv norm_scaleR
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4959
        unfolding abs_of_nonneg[OF content_pos_le] real_scaleR_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4960
        apply(rule mult_left_mono) using goal1(3) as by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4961
    qed(insert p[unfolded fine_inter],auto) qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4962
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4963
  { presume "\<And>e. 0 < e \<Longrightarrow> norm (integral s f) < integral s g + e" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4964
    thus ?thesis apply-apply(rule *[rule_format]) by auto }
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4965
  fix e::real assume "e>0" hence e:"e/2 > 0" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4966
  note assms(1)[unfolded integrable_alt[of f]] note f=this[THEN conjunct1,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4967
  note assms(2)[unfolded integrable_alt[of g]] note g=this[THEN conjunct1,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4968
  from integrable_integral[OF assms(1),unfolded has_integral'[of f],rule_format,OF e]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4969
  guess B1 .. note B1=conjunctD2[OF this[rule_format],rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4970
  from integrable_integral[OF assms(2),unfolded has_integral'[of g],rule_format,OF e]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4971
  guess B2 .. note B2=conjunctD2[OF this[rule_format],rule_format]
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4972
  from bounded_subset_closed_interval[OF bounded_ball, of "0::'n::ordered_euclidean_space" "max B1 B2"]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4973
  guess a b apply-by(erule exE)+ note ab=this[unfolded ball_max_Un]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4974
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4975
  have "ball 0 B1 \<subseteq> {a..b}" using ab by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4976
  from B1(2)[OF this] guess z .. note z=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4977
  have "ball 0 B2 \<subseteq> {a..b}" using ab by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4978
  from B2(2)[OF this] guess w .. note w=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4979
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4980
  show "norm (integral s f) < integral s g + e" apply(rule norm)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4981
    apply(rule lem[OF f g, of a b]) unfolding integral_unique[OF z(1)] integral_unique[OF w(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4982
    defer apply(rule w(2)[unfolded real_norm_def],rule z(2))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4983
    apply safe apply(case_tac "x\<in>s") unfolding if_P apply(rule assms(3)[rule_format]) by auto qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4984
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4985
lemma integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4986
  fixes g::"'n => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4987
  assumes "f integrable_on s" "g integrable_on s"  "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4988
  shows "norm(integral s f) \<le> (integral s g)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4989
proof- have "norm (integral s f) \<le> integral s ((\<lambda>x. x $$ k) o g)"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4990
    apply(rule integral_norm_bound_integral[OF assms(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4991
    apply(rule integrable_linear[OF assms(2)],rule)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4992
    unfolding o_def by(rule assms)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4993
  thus ?thesis unfolding o_def integral_component_eq[OF assms(2)] . qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4994
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4995
lemma has_integral_norm_bound_integral_component: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4996
  fixes g::"'n => 'b::ordered_euclidean_space"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4997
  assumes "(f has_integral i) s" "(g has_integral j) s" "\<forall>x\<in>s. norm(f x) \<le> (g x)$$k"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  4998
  shows "norm(i) \<le> j$$k" using integral_norm_bound_integral_component[of f s g k]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  4999
  unfolding integral_unique[OF assms(1)] integral_unique[OF assms(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5000
  using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5001
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5002
lemma absolutely_integrable_le: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5003
  assumes "f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5004
  shows "norm(integral s f) \<le> integral s (\<lambda>x. norm(f x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5005
  apply(rule integral_norm_bound_integral) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5006
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5007
lemma absolutely_integrable_0[intro]: "(\<lambda>x. 0) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5008
  unfolding absolutely_integrable_on_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5009
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5010
lemma absolutely_integrable_cmul[intro]:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5011
 "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f x) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5012
  unfolding absolutely_integrable_on_def using integrable_cmul[of f s c]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5013
  using integrable_cmul[of "\<lambda>x. norm (f x)" s "abs c"] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5014
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5015
lemma absolutely_integrable_neg[intro]:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5016
 "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5017
  apply(drule absolutely_integrable_cmul[where c="-1"]) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5018
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5019
lemma absolutely_integrable_norm[intro]:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5020
 "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. norm(f x)) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5021
  unfolding absolutely_integrable_on_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5022
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5023
lemma absolutely_integrable_abs[intro]:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5024
 "f absolutely_integrable_on s \<Longrightarrow> (\<lambda>x. abs(f x::real)) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5025
  apply(drule absolutely_integrable_norm) unfolding real_norm_def .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5026
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5027
lemma absolutely_integrable_on_subinterval: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach" shows
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5028
  "f absolutely_integrable_on s \<Longrightarrow> {a..b} \<subseteq> s \<Longrightarrow> f absolutely_integrable_on {a..b}" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5029
  unfolding absolutely_integrable_on_def by(meson integrable_on_subinterval)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5030
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5031
lemma absolutely_integrable_bounded_variation: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'a::banach"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5032
  assumes "f absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5033
  obtains B where "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5034
  apply(rule that[of "integral UNIV (\<lambda>x. norm (f x))"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5035
proof safe case goal1 note d = division_ofD[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5036
  have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. integral i (\<lambda>x. norm (f x)))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5037
    apply(rule setsum_mono,rule absolutely_integrable_le) apply(drule d(4),safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5038
    apply(rule absolutely_integrable_on_subinterval[OF assms]) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5039
  also have "... \<le> integral (\<Union>d) (\<lambda>x. norm (f x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5040
    apply(subst integral_combine_division_topdown[OF _ goal1(2)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5041
    using integrable_on_subdivision[OF goal1(2)] using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5042
  also have "... \<le> integral UNIV (\<lambda>x. norm (f x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5043
    apply(rule integral_subset_le) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5044
    using integrable_on_subdivision[OF goal1(2)] using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5045
  finally show ?case . qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5046
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5047
lemma helplemma:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5048
  assumes "setsum (\<lambda>x. norm(f x - g x)) s < e" "finite s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5049
  shows "abs(setsum (\<lambda>x. norm(f x)) s - setsum (\<lambda>x. norm(g x)) s) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5050
  unfolding setsum_subtractf[THEN sym] apply(rule le_less_trans[OF setsum_abs])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5051
  apply(rule le_less_trans[OF _ assms(1)]) apply(rule setsum_mono)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5052
  using norm_triangle_ineq3 .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5053
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5054
lemma bounded_variation_absolutely_integrable_interval:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5055
  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assumes "f integrable_on {a..b}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5056
  "\<forall>d. d division_of {a..b} \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5057
  shows "f absolutely_integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5058
proof- let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of {a..b} }" def i \<equiv> "Sup ?S"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5059
  have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5060
    apply(rule elementary_interval) defer apply(rule_tac x=B in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5061
    apply(rule setleI) using assms(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5062
  show ?thesis apply(rule,rule assms) apply rule apply(subst has_integral[of _ i])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5063
  proof safe case goal1 hence "i - e / 2 \<notin> Collect (isUb UNIV (setsum (\<lambda>k. norm (integral k f)) `
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5064
        {d. d division_of {a..b}}))" using isLub_ubs[OF i,rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5065
      unfolding setge_def ubs_def by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5066
    hence " \<exists>y. y division_of {a..b} \<and> i - e / 2 < (\<Sum>k\<in>y. norm (integral k f))"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5067
      unfolding mem_Collect_eq isUb_def setle_def by(simp add:not_le) then guess d .. note d=conjunctD2[OF this]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5068
    note d' = division_ofD[OF this(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5069
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5070
    have "\<forall>x. \<exists>e>0. \<forall>i\<in>d. x \<notin> i \<longrightarrow> ball x e \<inter> i = {}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5071
    proof case goal1 have "\<exists>da>0. \<forall>xa\<in>\<Union>{i \<in> d. x \<notin> i}. da \<le> dist x xa"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5072
        apply(rule separate_point_closed) apply(rule closed_Union)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5073
        apply(rule finite_subset[OF _ d'(1)]) apply safe apply(drule d'(4)) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5074
      thus ?case apply safe apply(rule_tac x=da in exI,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5075
        apply(erule_tac x=xa in ballE) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5076
    qed from choice[OF this] guess k .. note k=conjunctD2[OF this[rule_format],rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5077
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5078
    have "e/2 > 0" using goal1 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5079
    from henstock_lemma[OF assms(1) this] guess g . note g=this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5080
    let ?g = "\<lambda>x. g x \<inter> ball x (k x)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5081
    show ?case apply(rule_tac x="?g" in exI) apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5082
    proof- show "gauge ?g" using g(1) unfolding gauge_def using k(1) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5083
      fix p assume "p tagged_division_of {a..b}" "?g fine p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5084
      note p = this(1) conjunctD2[OF this(2)[unfolded fine_inter]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5085
      note p' = tagged_division_ofD[OF p(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5086
      def p' \<equiv> "{(x,k) | x k. \<exists>i l. x \<in> i \<and> i \<in> d \<and> (x,l) \<in> p \<and> k = i \<inter> l}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5087
      have gp':"g fine p'" using p(2) unfolding p'_def fine_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5088
      have p'':"p' tagged_division_of {a..b}" apply(rule tagged_division_ofI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5089
      proof- show "finite p'" apply(rule finite_subset[of _ "(\<lambda>(k,(x,l)). (x,k \<inter> l))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5090
          ` {(k,xl) | k xl. k \<in> d \<and> xl \<in> p}"]) unfolding p'_def 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5091
          defer apply(rule finite_imageI,rule finite_product_dependent[OF d'(1) p'(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5092
          apply safe unfolding image_iff apply(rule_tac x="(i,x,l)" in bexI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5093
        fix x k assume "(x,k)\<in>p'"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5094
        hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5095
        then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5096
        show "x\<in>k" "k\<subseteq>{a..b}" using p'(2-3)[OF il(3)] il by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5097
        show "\<exists>a b. k = {a..b}" unfolding il using p'(4)[OF il(3)] d'(4)[OF il(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5098
          apply safe unfolding inter_interval by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5099
      next fix x1 k1 assume "(x1,k1)\<in>p'"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5100
        hence "\<exists>i l. x1 \<in> i \<and> i \<in> d \<and> (x1, l) \<in> p \<and> k1 = i \<inter> l" unfolding p'_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5101
        then guess i1 l1 apply-by(erule exE)+ note il1=conjunctD4[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5102
        fix x2 k2 assume "(x2,k2)\<in>p'"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5103
        hence "\<exists>i l. x2 \<in> i \<and> i \<in> d \<and> (x2, l) \<in> p \<and> k2 = i \<inter> l" unfolding p'_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5104
        then guess i2 l2 apply-by(erule exE)+ note il2=conjunctD4[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5105
        assume "(x1, k1) \<noteq> (x2, k2)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5106
        hence "interior(i1) \<inter> interior(i2) = {} \<or> interior(l1) \<inter> interior(l2) = {}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5107
          using d'(5)[OF il1(2) il2(2)] p'(5)[OF il1(3) il2(3)] unfolding il1 il2 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5108
        thus "interior k1 \<inter> interior k2 = {}" unfolding il1 il2 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5109
      next have *:"\<forall>(x, X) \<in> p'. X \<subseteq> {a..b}" unfolding p'_def using d' by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5110
        show "\<Union>{k. \<exists>x. (x, k) \<in> p'} = {a..b}" apply rule apply(rule Union_least)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5111
          unfolding mem_Collect_eq apply(erule exE) apply(drule *[rule_format]) apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5112
        proof- fix y assume y:"y\<in>{a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5113
          hence "\<exists>x l. (x, l) \<in> p \<and> y\<in>l" unfolding p'(6)[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5114
          then guess x l apply-by(erule exE)+ note xl=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5115
          hence "\<exists>k. k\<in>d \<and> y\<in>k" using y unfolding d'(6)[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5116
          then guess i .. note i = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5117
          have "x\<in>i" using fineD[OF p(3) xl(1)] using k(2)[OF i(1), of x] using i(2) xl(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5118
          thus "y\<in>\<Union>{k. \<exists>x. (x, k) \<in> p'}" unfolding p'_def Union_iff apply(rule_tac x="i \<inter> l" in bexI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5119
            defer unfolding mem_Collect_eq apply(rule_tac x=x in exI)+ apply(rule_tac x="i\<inter>l" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5120
            apply safe apply(rule_tac x=i in exI) apply(rule_tac x=l in exI) using i xl by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5121
        qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5122
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5123
      hence "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x - integral k f)) < e / 2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5124
        apply-apply(rule g(2)[rule_format]) unfolding tagged_division_of_def apply safe using gp' .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5125
      hence **:" \<bar>(\<Sum>(x,k)\<in>p'. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p'. norm (integral k f))\<bar> < e / 2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5126
        unfolding split_def apply(rule helplemma) using p'' by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5127
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5128
      have p'alt:"p' = {(x,(i \<inter> l)) | x i l. (x,l) \<in> p \<and> i \<in> d \<and> ~(i \<inter> l = {})}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5129
      proof safe case goal2
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5130
        have "x\<in>i" using fineD[OF p(3) goal2(1)] k(2)[OF goal2(2), of x] goal2(4-) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5131
        hence "(x, i \<inter> l) \<in> p'" unfolding p'_def apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5132
          apply(rule_tac x=x in exI,rule_tac x="i\<inter>l" in exI) apply safe using goal2 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5133
        thus ?case using goal2(3) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5134
      next fix x k assume "(x,k)\<in>p'"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5135
        hence "\<exists>i l. x \<in> i \<and> i \<in> d \<and> (x, l) \<in> p \<and> k = i \<inter> l" unfolding p'_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5136
        then guess i l apply-by(erule exE)+ note il=conjunctD4[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5137
        thus "\<exists>y i l. (x, k) = (y, i \<inter> l) \<and> (y, l) \<in> p \<and> i \<in> d \<and> i \<inter> l \<noteq> {}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5138
          apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5139
          using p'(2)[OF il(3)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5140
      qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5141
      have sum_p':"(\<Sum>(x, k)\<in>p'. norm (integral k f)) = (\<Sum>k\<in>snd ` p'. norm (integral k f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5142
        apply(subst setsum_over_tagged_division_lemma[OF p'',of "\<lambda>k. norm (integral k f)"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5143
        unfolding norm_eq_zero apply(rule integral_null,assumption) ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5144
      note snd_p = division_ofD[OF division_of_tagged_division[OF p(1)]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5145
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5146
      have *:"\<And>sni sni' sf sf'. abs(sf' - sni') < e / 2 \<longrightarrow> i - e / 2 < sni \<and> sni' \<le> i \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5147
        sni \<le> sni' \<and> sf' = sf \<longrightarrow> abs(sf - i) < e" by arith
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5148
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - i) < e" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5149
        unfolding real_norm_def apply(rule *[rule_format,OF **],safe) apply(rule d(2))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5150
      proof- case goal1 show ?case unfolding sum_p'
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5151
          apply(rule isLubD2[OF i]) using division_of_tagged_division[OF p''] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5152
      next case goal2 have *:"{k \<inter> l | k l. k \<in> d \<and> l \<in> snd ` p} =
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5153
          (\<lambda>(k,l). k \<inter> l) ` {(k,l)|k l. k \<in> d \<and> l \<in> snd ` p}" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5154
        have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>i\<in>d. \<Sum>l\<in>snd ` p. norm (integral (i \<inter> l) f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5155
        proof(rule setsum_mono) case goal1 note k=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5156
          from d'(4)[OF this] guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5157
          def d' \<equiv> "{{u..v} \<inter> l |l. l \<in> snd ` p \<and>  ~({u..v} \<inter> l = {})}" note uvab = d'(2)[OF k[unfolded uv]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5158
          have "d' division_of {u..v}" apply(subst d'_def) apply(rule division_inter_1) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5159
            apply(rule division_of_tagged_division[OF p(1)]) using uvab .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5160
          hence "norm (integral k f) \<le> setsum (\<lambda>k. norm (integral k f)) d'"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5161
            unfolding uv apply(subst integral_combine_division_topdown[of _ _ d'])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5162
            apply(rule integrable_on_subinterval[OF assms(1) uvab]) apply assumption
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5163
            apply(rule setsum_norm_le) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5164
          also have "... = (\<Sum>k\<in>{k \<inter> l |l. l \<in> snd ` p}. norm (integral k f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5165
            apply(rule setsum_mono_zero_left) apply(subst simple_image)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5166
            apply(rule finite_imageI)+ apply fact unfolding d'_def uv apply blast
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5167
          proof case goal1 hence "i \<in> {{u..v} \<inter> l |l. l \<in> snd ` p}" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5168
            from this[unfolded mem_Collect_eq] guess l .. note l=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5169
            hence "{u..v} \<inter> l = {}" using goal1 by auto thus ?case using l by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5170
          qed also have "... = (\<Sum>l\<in>snd ` p. norm (integral (k \<inter> l) f))" unfolding  simple_image
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5171
            apply(rule setsum_reindex_nonzero[unfolded o_def])apply(rule finite_imageI,rule p')
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5172
          proof- case goal1 have "interior (k \<inter> l) \<subseteq> interior (l \<inter> y)" apply(subst(2) interior_inter)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5173
              apply(rule Int_greatest) defer apply(subst goal1(4)) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5174
            hence *:"interior (k \<inter> l) = {}" using snd_p(5)[OF goal1(1-3)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5175
            from d'(4)[OF k] snd_p(4)[OF goal1(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5176
            show ?case using * unfolding uv inter_interval content_eq_0_interior[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5177
          qed finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5178
        qed also have "... = (\<Sum>(i,l)\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (i\<inter>l) f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5179
          apply(subst sum_sum_product[THEN sym],fact) using p'(1) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5180
        also have "... = (\<Sum>x\<in>{(i, l) |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral (split op \<inter> x) f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5181
          unfolding split_def ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5182
        also have "... = (\<Sum>k\<in>{i \<inter> l |i l. i \<in> d \<and> l \<in> snd ` p}. norm (integral k f))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5183
          unfolding * apply(rule setsum_reindex_nonzero[THEN sym,unfolded o_def])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5184
          apply(rule finite_product_dependent) apply(fact,rule finite_imageI,rule p')
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5185
          unfolding split_paired_all mem_Collect_eq split_conv o_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5186
        proof- note * = division_ofD(4,5)[OF division_of_tagged_division,OF p(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5187
          fix l1 l2 k1 k2 assume as:"(l1, k1) \<noteq> (l2, k2)"  "l1 \<inter> k1 = l2 \<inter> k2" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5188
            "\<exists>i l. (l1, k1) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5189
            "\<exists>i l. (l2, k2) = (i, l) \<and> i \<in> d \<and> l \<in> snd ` p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5190
          hence "l1 \<in> d" "k1 \<in> snd ` p" by auto from d'(4)[OF this(1)] *(1)[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5191
          guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5192
          have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" using as by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5193
          hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" apply-
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5194
            apply(erule disjE) apply(rule disjI2) apply(rule d'(5)) prefer 4 apply(rule disjI1)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5195
            apply(rule *) using as by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5196
          moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" using as(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5197
          ultimately have "interior(l1 \<inter> k1) = {}" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5198
          thus "norm (integral (l1 \<inter> k1) f) = 0" unfolding uv inter_interval
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5199
            unfolding content_eq_0_interior[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5200
        qed also have "... = (\<Sum>(x, k)\<in>p'. norm (integral k f))" unfolding sum_p'
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5201
          apply(rule setsum_mono_zero_right) apply(subst *)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5202
          apply(rule finite_imageI[OF finite_product_dependent]) apply fact
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5203
          apply(rule finite_imageI[OF p'(1)]) apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5204
        proof- case goal2 have "ia \<inter> b = {}" using goal2 unfolding p'alt image_iff Bex_def not_ex
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5205
            apply(erule_tac x="(a,ia\<inter>b)" in allE) by auto thus ?case by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5206
        next case goal1 thus ?case unfolding p'_def apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5207
            apply(rule_tac x=i in exI,rule_tac x=l in exI) unfolding snd_conv image_iff 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5208
            apply safe apply(rule_tac x="(a,l)" in bexI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5209
        qed finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5210
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5211
      next case goal3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5212
        let ?S = "{(x, i \<inter> l) |x i l. (x, l) \<in> p \<and> i \<in> d}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5213
        have Sigma_alt:"\<And>s t. s \<times> t = {(i, j) |i j. i \<in> s \<and> j \<in> t}" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5214
        have *:"?S = (\<lambda>(xl,i). (fst xl, snd xl \<inter> i)) ` (p \<times> d)" (*{(xl,i)|xl i. xl\<in>p \<and> i\<in>d}"**)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5215
          apply safe unfolding image_iff apply(rule_tac x="((x,l),i)" in bexI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5216
        note pdfin = finite_cartesian_product[OF p'(1) d'(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5217
        have "(\<Sum>(x, k)\<in>p'. norm (content k *\<^sub>R f x)) = (\<Sum>(x, k)\<in>?S. \<bar>content k\<bar> * norm (f x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5218
          unfolding norm_scaleR apply(rule setsum_mono_zero_left)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5219
          apply(subst *, rule finite_imageI) apply fact unfolding p'alt apply blast
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5220
          apply safe apply(rule_tac x=x in exI,rule_tac x=i in exI,rule_tac x=l in exI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5221
        also have "... = (\<Sum>((x,l),i)\<in>p \<times> d. \<bar>content (l \<inter> i)\<bar> * norm (f x))" unfolding *
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5222
          apply(subst setsum_reindex_nonzero,fact) unfolding split_paired_all
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5223
          unfolding  o_def split_def snd_conv fst_conv mem_Sigma_iff Pair_eq apply(erule_tac conjE)+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5224
        proof- fix x1 l1 k1 x2 l2 k2 assume as:"(x1,l1)\<in>p" "(x2,l2)\<in>p" "k1\<in>d" "k2\<in>d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5225
            "x1 = x2" "l1 \<inter> k1 = l2 \<inter> k2" "\<not> ((x1 = x2 \<and> l1 = l2) \<and> k1 = k2)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5226
          from d'(4)[OF as(3)] p'(4)[OF as(1)] guess u1 v1 u2 v2 apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5227
          from as have "l1 \<noteq> l2 \<or> k1 \<noteq> k2" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5228
          hence "(interior(k1) \<inter> interior(k2) = {} \<or> interior(l1) \<inter> interior(l2) = {})" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5229
            apply-apply(erule disjE) apply(rule disjI2) defer apply(rule disjI1)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5230
            apply(rule d'(5)[OF as(3-4)],assumption) apply(rule p'(5)[OF as(1-2)]) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5231
          moreover have "interior(l1 \<inter> k1) = interior(l2 \<inter> k2)" unfolding  as ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5232
          ultimately have "interior (l1 \<inter> k1) = {}" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5233
          thus "\<bar>content (l1 \<inter> k1)\<bar> * norm (f x1) = 0" unfolding uv inter_interval
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5234
            unfolding content_eq_0_interior[THEN sym] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5235
        qed safe also have "... = (\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x))" unfolding Sigma_alt
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5236
          apply(subst sum_sum_product[THEN sym]) apply(rule p', rule,rule d')
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5237
          apply(rule setsum_cong2) unfolding split_paired_all split_conv
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5238
        proof- fix x l assume as:"(x,l)\<in>p"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5239
          note xl = p'(2-4)[OF this] from this(3) guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5240
          have "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar>) = (\<Sum>k\<in>d. content (k \<inter> {u..v}))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5241
            apply(rule setsum_cong2) apply(drule d'(4),safe) apply(subst Int_commute)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5242
            unfolding inter_interval uv apply(subst abs_of_nonneg) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5243
          also have "... = setsum content {k\<inter>{u..v}| k. k\<in>d}" unfolding simple_image
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5244
            apply(rule setsum_reindex_nonzero[unfolded o_def,THEN sym]) apply(rule d')
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5245
          proof- case goal1 from d'(4)[OF this(1)] d'(4)[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5246
            guess u1 v1 u2 v2 apply- by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5247
            have "{} = interior ((k \<inter> y) \<inter> {u..v})" apply(subst interior_inter)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5248
              using d'(5)[OF goal1(1-3)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5249
            also have "... = interior (y \<inter> (k \<inter> {u..v}))" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5250
            also have "... = interior (k \<inter> {u..v})" unfolding goal1(4) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5251
            finally show ?case unfolding uv inter_interval content_eq_0_interior ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5252
          qed also have "... = setsum content {{u..v} \<inter> k |k. k \<in> d \<and> ~({u..v} \<inter> k = {})}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5253
            apply(rule setsum_mono_zero_right) unfolding simple_image
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5254
            apply(rule finite_imageI,rule d') apply blast apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5255
            apply(rule_tac x=k in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5256
          proof- case goal1 from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5257
            have "interior (k \<inter> {u..v}) \<noteq> {}" using goal1(2)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5258
              unfolding ab inter_interval content_eq_0_interior by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5259
            thus ?case using goal1(1) using interior_subset[of "k \<inter> {u..v}"] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5260
          qed finally show "(\<Sum>i\<in>d. \<bar>content (l \<inter> i)\<bar> * norm (f x)) = content l *\<^sub>R norm (f x)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5261
            unfolding setsum_left_distrib[THEN sym] real_scaleR_def apply -
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5262
            apply(subst(asm) additive_content_division[OF division_inter_1[OF d(1)]])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5263
            using xl(2)[unfolded uv] unfolding uv by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5264
        qed finally show ?case . 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5265
      qed qed qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5266
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5267
lemma bounded_variation_absolutely_integrable:  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5268
  assumes "f integrable_on UNIV" "\<forall>d. d division_of (\<Union>d) \<longrightarrow> setsum (\<lambda>k. norm(integral k f)) d \<le> B"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5269
  shows "f absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5270
proof(rule absolutely_integrable_onI,fact,rule)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5271
  let ?S = "(\<lambda>d. setsum (\<lambda>k. norm(integral k f)) d) ` {d. d division_of  (\<Union>d)}" def i \<equiv> "Sup ?S"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5272
  have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5273
    apply(rule elementary_interval) defer apply(rule_tac x=B in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5274
    apply(rule setleI) using assms(2) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5275
  have f_int:"\<And>a b. f absolutely_integrable_on {a..b}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5276
    apply(rule bounded_variation_absolutely_integrable_interval[where B=B])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5277
    apply(rule integrable_on_subinterval[OF assms(1)]) defer apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5278
    apply(rule assms(2)[rule_format]) by auto 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5279
  show "((\<lambda>x. norm (f x)) has_integral i) UNIV" apply(subst has_integral_alt',safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5280
  proof- case goal1 show ?case using f_int[of a b] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5281
  next case goal2 have "\<exists>y\<in>setsum (\<lambda>k. norm (integral k f)) ` {d. d division_of \<Union>d}. \<not> y \<le> i - e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5282
    proof(rule ccontr) case goal1 hence "i \<le> i - e" apply-
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5283
        apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5284
      thus False using goal2 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5285
    qed then guess K .. note * = this[unfolded image_iff not_le]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5286
    from this(1) guess d .. note this[unfolded mem_Collect_eq]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5287
    note d = this(1) *(2)[unfolded this(2)] note d'=division_ofD[OF this(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5288
    have "bounded (\<Union>d)" by(rule elementary_bounded,fact)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5289
    from this[unfolded bounded_pos] guess K .. note K=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5290
    show ?case apply(rule_tac x="K + 1" in exI,safe)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5291
    proof- fix a b assume ab:"ball 0 (K + 1) \<subseteq> {a..b::'n::ordered_euclidean_space}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5292
      have *:"\<forall>s s1. i - e < s1 \<and> s1 \<le> s \<and> s < i + e \<longrightarrow> abs(s - i) < (e::real)" by arith
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5293
      show "norm (integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) - i) < e"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5294
        unfolding real_norm_def apply(rule *[rule_format],safe) apply(rule d(2))
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5295
      proof- case goal1 have "(\<Sum>k\<in>d. norm (integral k f)) \<le> setsum (\<lambda>k. integral k (\<lambda>x. norm (f x))) d"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5296
          apply(rule setsum_mono) apply(rule absolutely_integrable_le)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5297
          apply(drule d'(4),safe) by(rule f_int)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5298
        also have "... = integral (\<Union>d) (\<lambda>x. norm(f x))" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5299
          apply(rule integral_combine_division_bottomup[THEN sym])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5300
          apply(rule d) unfolding forall_in_division[OF d(1)] using f_int by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5301
        also have "... \<le> integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0)" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5302
        proof- case goal1 have "\<Union>d \<subseteq> {a..b}" apply rule apply(drule K(2)[rule_format]) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5303
            apply(rule ab[unfolded subset_eq,rule_format]) by(auto simp add:dist_norm)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5304
          thus ?case apply- apply(subst if_P,rule) apply(rule integral_subset_le) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5305
            apply(rule integrable_on_subdivision[of _ _ _ "{a..b}"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5306
            apply(rule d) using f_int[of a b] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5307
        qed finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5308
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5309
      next note f = absolutely_integrable_onD[OF f_int[of a b]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5310
        note * = this(2)[unfolded has_integral_integral has_integral[of "\<lambda>x. norm (f x)"],rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5311
        have "e/2>0" using `e>0` by auto from *[OF this] guess d1 .. note d1=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5312
        from henstock_lemma[OF f(1) `e/2>0`] guess d2 . note d2=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5313
        from fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] guess p .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5314
        note p=this(1) conjunctD2[OF this(2)[unfolded fine_inter]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5315
        have *:"\<And>sf sf' si di. sf' = sf \<longrightarrow> si \<le> i \<longrightarrow> abs(sf - si) < e / 2
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5316
          \<longrightarrow> abs(sf' - di) < e / 2 \<longrightarrow> di < i + e" by arith
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5317
        show "integral {a..b} (\<lambda>x. if x \<in> UNIV then norm (f x) else 0) < i + e" apply(subst if_P,rule)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5318
        proof(rule *[rule_format]) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5319
          show "\<bar>(\<Sum>(x,k)\<in>p. norm (content k *\<^sub>R f x)) - (\<Sum>(x,k)\<in>p. norm (integral k f))\<bar> < e / 2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5320
            unfolding split_def apply(rule helplemma) using d2(2)[rule_format,of p]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5321
            using p(1,3) unfolding tagged_division_of_def split_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5322
          show "abs ((\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) - integral {a..b} (\<lambda>x. norm(f x))) < e / 2"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5323
            using d1(2)[rule_format,OF conjI[OF p(1,2)]] unfolding real_norm_def .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5324
          show "(\<Sum>(x, k)\<in>p. content k *\<^sub>R norm (f x)) = (\<Sum>(x, k)\<in>p. norm (content k *\<^sub>R f x))"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5325
            apply(rule setsum_cong2) unfolding split_paired_all split_conv
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5326
            apply(drule tagged_division_ofD(4)[OF p(1)]) unfolding norm_scaleR
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5327
            apply(subst abs_of_nonneg) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5328
          show "(\<Sum>(x, k)\<in>p. norm (integral k f)) \<le> i"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5329
            apply(subst setsum_over_tagged_division_lemma[OF p(1)]) defer apply(rule isLubD2[OF i])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5330
            unfolding image_iff apply(rule_tac x="snd ` p" in bexI) unfolding mem_Collect_eq defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5331
            apply(rule partial_division_of_tagged_division[of _ "{a..b}"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5332
            using p(1) unfolding tagged_division_of_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5333
        qed qed qed(insert K,auto) qed qed 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5334
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5335
lemma absolutely_integrable_restrict_univ:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5336
 "(\<lambda>x. if x \<in> s then f x else (0::'a::banach)) absolutely_integrable_on UNIV \<longleftrightarrow> f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5337
  unfolding absolutely_integrable_on_def if_distrib norm_zero integrable_restrict_univ ..
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5338
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5339
lemma absolutely_integrable_add[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5340
  assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5341
  shows "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5342
proof- let ?P = "\<And>f g::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. f absolutely_integrable_on UNIV \<Longrightarrow>
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5343
    g absolutely_integrable_on UNIV \<Longrightarrow> (\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5344
  { presume as:"PROP ?P" note a = absolutely_integrable_restrict_univ[THEN sym]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5345
    have *:"\<And>x. (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5346
      = (if x \<in> s then f x + g x else 0)" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5347
    show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]] unfolding * . }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5348
  fix f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f absolutely_integrable_on UNIV"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5349
    "g absolutely_integrable_on UNIV" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5350
  note absolutely_integrable_bounded_variation
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5351
  from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5352
  show "(\<lambda>x. f(x) + g(x)) absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5353
    apply(rule bounded_variation_absolutely_integrable[of _ "B1+B2"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5354
    apply(rule integrable_add) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5355
  proof safe case goal1 have "\<And>k. k \<in> d \<Longrightarrow> f integrable_on k \<and> g integrable_on k"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5356
      apply(drule division_ofD(4)[OF goal1]) apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5357
      apply(rule_tac[!] integrable_on_subinterval[of _ UNIV]) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5358
    hence "(\<Sum>k\<in>d. norm (integral k (\<lambda>x. f x + g x))) \<le>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5359
      (\<Sum>k\<in>d. norm (integral k f)) + (\<Sum>k\<in>d. norm (integral k g))" apply-
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5360
      unfolding setsum_addf[THEN sym] apply(rule setsum_mono)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5361
      apply(subst integral_add) prefer 3 apply(rule norm_triangle_ineq) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5362
    also have "... \<le> B1 + B2" using B(1)[OF goal1] B(2)[OF goal1] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5363
    finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5364
  qed(insert assms,auto) qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5365
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5366
lemma absolutely_integrable_sub[intro]: fixes f g::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5367
  assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5368
  shows "(\<lambda>x. f(x) - g(x)) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5369
  using absolutely_integrable_add[OF assms(1) absolutely_integrable_neg[OF assms(2)]]
36350
bc7982c54e37 dropped group_simps, ring_simps, field_eq_simps
haftmann
parents: 36334
diff changeset
  5370
  unfolding algebra_simps .
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5371
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5372
lemma absolutely_integrable_linear: fixes f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5373
  assumes "f absolutely_integrable_on s" "bounded_linear h"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5374
  shows "(h o f) absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5375
proof- { presume as:"\<And>f::'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space. \<And>h::'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space. 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5376
    f absolutely_integrable_on UNIV \<Longrightarrow> bounded_linear h \<Longrightarrow>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5377
    (h o f) absolutely_integrable_on UNIV" note a = absolutely_integrable_restrict_univ[THEN sym]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5378
    show ?thesis apply(subst a) using as[OF assms[unfolded a[of f] a[of g]]]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5379
      unfolding o_def if_distrib linear_simps[OF assms(2)] . }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5380
  fix f::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space" and h::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5381
  assume assms:"f absolutely_integrable_on UNIV" "bounded_linear h" 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5382
  from absolutely_integrable_bounded_variation[OF assms(1)] guess B . note B=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5383
  from bounded_linear.pos_bounded[OF assms(2)] guess b .. note b=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5384
  show "(h o f) absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5385
    apply(rule bounded_variation_absolutely_integrable[of _ "B * b"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5386
    apply(rule integrable_linear[OF _ assms(2)]) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5387
  proof safe case goal2
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5388
    have "(\<Sum>k\<in>d. norm (integral k (h \<circ> f))) \<le> setsum (\<lambda>k. norm(integral k f)) d * b"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5389
      unfolding setsum_left_distrib apply(rule setsum_mono)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5390
    proof- case goal1 from division_ofD(4)[OF goal2 this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5391
      guess u v apply-by(erule exE)+ note uv=this
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5392
      have *:"f integrable_on k" unfolding uv apply(rule integrable_on_subinterval[of _ UNIV])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5393
        using assms by auto note this[unfolded has_integral_integral]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5394
      note has_integral_linear[OF this assms(2)] integrable_linear[OF * assms(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5395
      note * = has_integral_unique[OF this(2)[unfolded has_integral_integral] this(1)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5396
      show ?case unfolding * using b by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5397
    qed also have "... \<le> B * b" apply(rule mult_right_mono) using B goal2 b by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5398
    finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5399
  qed(insert assms,auto) qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5400
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5401
lemma absolutely_integrable_setsum: fixes f::"'a \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5402
  assumes "finite t" "\<And>a. a \<in> t \<Longrightarrow> (f a) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5403
  shows "(\<lambda>x. setsum (\<lambda>a. f a x) t) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5404
  using assms(1,2) apply induct defer apply(subst setsum.insert) apply assumption+ by(rule,auto)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5405
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5406
lemma absolutely_integrable_vector_abs: fixes f::"'a::ordered_euclidean_space => 'b::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5407
  assumes "f absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5408
  shows "(\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) absolutely_integrable_on s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5409
proof- have *:"\<And>x. ((\<chi>\<chi> i. abs(f x$$i))::'c::ordered_euclidean_space) = (setsum (\<lambda>i.
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5410
    (((\<lambda>y. (\<chi>\<chi> j. if j = i then y else 0)) o
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5411
    (((\<lambda>x. (norm((\<chi>\<chi> j. if j = i then x$$i else 0)::'c::ordered_euclidean_space))) o f))) x)) {..<DIM('c)})"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  5412
    unfolding euclidean_eq[where 'a='c] euclidean_component_setsum apply safe
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5413
    unfolding euclidean_lambda_beta'
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5414
  proof- case goal1 have *:"\<And>i xa. ((if i = xa then f x $$ xa else 0) * (if i = xa then f x $$ xa else 0)) =
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5415
      (if i = xa then (f x $$ xa) * (f x $$ xa) else 0)" by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5416
    have *:"\<And>xa. norm ((\<chi>\<chi> j. if j = xa then f x $$ xa else 0)::'c) = (if xa<DIM('c) then abs (f x $$ xa) else 0)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5417
      unfolding norm_eq_sqrt_inner euclidean_inner[where 'a='c]
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5418
      by(auto simp add:setsum_delta[OF finite_lessThan] *)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5419
    have "\<bar>f x $$ i\<bar> = (setsum (\<lambda>k. if k = i then abs ((f x)$$i) else 0) {..<DIM('c)})"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5420
      unfolding setsum_delta[OF finite_lessThan] using goal1 by auto
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5421
    also have "... = (\<Sum>xa<DIM('c). ((\<lambda>y. (\<chi>\<chi> j. if j = xa then y else 0)::'c) \<circ>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5422
                      (\<lambda>x. (norm ((\<chi>\<chi> j. if j = xa then x $$ xa else 0)::'c))) \<circ> f) x $$ i)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5423
      unfolding o_def * apply(rule setsum_cong2)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5424
      unfolding euclidean_lambda_beta'[OF goal1 ] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5425
    finally show ?case unfolding o_def . qed
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5426
  show ?thesis unfolding * apply(rule absolutely_integrable_setsum) apply(rule finite_lessThan)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5427
    apply(rule absolutely_integrable_linear) unfolding o_def apply(rule absolutely_integrable_norm)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5428
    apply(rule absolutely_integrable_linear[OF assms,unfolded o_def]) unfolding linear_linear
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5429
    apply(rule_tac[!] linearI) unfolding euclidean_eq[where 'a='c]
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  5430
    by(auto simp:euclidean_component_scaleR[where 'a=real,unfolded real_scaleR_def])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5431
qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5432
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5433
lemma absolutely_integrable_max: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5434
  assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5435
  shows "(\<lambda>x. (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5436
proof- have *:"\<And>x. (1 / 2) *\<^sub>R (((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n) + (f x + g x)) = (\<chi>\<chi> i. max (f(x)$$i) (g(x)$$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5437
    unfolding euclidean_eq[where 'a='n] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5438
  note absolutely_integrable_sub[OF assms] absolutely_integrable_add[OF assms]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5439
  note absolutely_integrable_vector_abs[OF this(1)] this(2)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5440
  note absolutely_integrable_add[OF this] note absolutely_integrable_cmul[OF this,of "1/2"]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5441
  thus ?thesis unfolding * . qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5442
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5443
lemma absolutely_integrable_min: fixes f g::"'m::ordered_euclidean_space \<Rightarrow> 'n::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5444
  assumes "f absolutely_integrable_on s" "g absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5445
  shows "(\<lambda>x. (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))::'n::ordered_euclidean_space) absolutely_integrable_on s"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5446
proof- have *:"\<And>x. (1 / 2) *\<^sub>R ((f x + g x) - ((\<chi>\<chi> i. \<bar>(f x - g x) $$ i\<bar>)::'n)) = (\<chi>\<chi> i. min (f(x)$$i) (g(x)$$i))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5447
    unfolding euclidean_eq[where 'a='n] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5448
  note absolutely_integrable_add[OF assms] absolutely_integrable_sub[OF assms]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5449
  note this(1) absolutely_integrable_vector_abs[OF this(2)]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5450
  note absolutely_integrable_sub[OF this] note absolutely_integrable_cmul[OF this,of "1/2"]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5451
  thus ?thesis unfolding * . qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5452
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5453
lemma absolutely_integrable_abs_eq: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5454
  shows "f absolutely_integrable_on s \<longleftrightarrow> f integrable_on s \<and>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5455
          (\<lambda>x. (\<chi>\<chi> i. abs(f x$$i))::'m) integrable_on s" (is "?l = ?r")
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5456
proof assume ?l thus ?r apply-apply rule defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5457
    apply(drule absolutely_integrable_vector_abs) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5458
next assume ?r { presume lem:"\<And>f::'n \<Rightarrow> 'm. f integrable_on UNIV \<Longrightarrow>
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5459
    (\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m) integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5460
    have *:"\<And>x. (\<chi>\<chi> i. \<bar>(if x \<in> s then f x else 0) $$ i\<bar>) = (if x\<in>s then (\<chi>\<chi> i. \<bar>f x $$ i\<bar>) else (0::'m))"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5461
      unfolding euclidean_eq[where 'a='m] by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5462
    show ?l apply(subst absolutely_integrable_restrict_univ[THEN sym]) apply(rule lem)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5463
      unfolding integrable_restrict_univ * using `?r` by auto }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5464
  fix f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" assume assms:"f integrable_on UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5465
    "(\<lambda>x. (\<chi>\<chi> i. abs(f(x)$$i))::'m::ordered_euclidean_space) integrable_on UNIV"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5466
  let ?B = "setsum (\<lambda>i. integral UNIV (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ i) {..<DIM('m)}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5467
  show "f absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5468
    apply(rule bounded_variation_absolutely_integrable[OF assms(1), where B="?B"],safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5469
  proof- case goal1 note d=this and d'=division_ofD[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5470
    have "(\<Sum>k\<in>d. norm (integral k f)) \<le>
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5471
      (\<Sum>k\<in>d. setsum (op $$ (integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m))) {..<DIM('m)})" apply(rule setsum_mono)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5472
      apply(rule order_trans[OF norm_le_l1]) apply(rule setsum_mono) unfolding lessThan_iff
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5473
    proof- fix k and i assume "k\<in>d" and i:"i<DIM('m)"
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5474
      from d'(4)[OF this(1)] guess a b apply-by(erule exE)+ note ab=this
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5475
      show "\<bar>integral k f $$ i\<bar> \<le> integral k (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ i" apply(rule abs_leI)
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  5476
        unfolding euclidean_component_minus[THEN sym] defer apply(subst integral_neg[THEN sym])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5477
        defer apply(rule_tac[1-2] integral_component_le) apply(rule integrable_neg)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5478
        using integrable_on_subinterval[OF assms(1),of a b]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5479
          integrable_on_subinterval[OF assms(2),of a b] unfolding ab by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5480
    qed also have "... \<le> setsum (op $$ (integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>))::'m)) {..<DIM('m)}"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5481
      apply(subst setsum_commute,rule setsum_mono)
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5482
    proof- case goal1 have *:"(\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) integrable_on \<Union>d"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5483
        using integrable_on_subdivision[OF d assms(2)] by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5484
      have "(\<Sum>i\<in>d. integral i (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j)
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5485
        = integral (\<Union>d) (\<lambda>x. (\<chi>\<chi> j. abs(f x$$j)) ::'m::ordered_euclidean_space) $$ j"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44176
diff changeset
  5486
        unfolding euclidean_component_setsum[THEN sym] integral_combine_division_topdown[OF * d] ..
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5487
      also have "... \<le> integral UNIV (\<lambda>x. (\<chi>\<chi> j. \<bar>f x $$ j\<bar>)::'m) $$ j"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5488
        apply(rule integral_subset_component_le) using assms * by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5489
      finally show ?case .
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5490
    qed finally show ?case . qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5491
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5492
lemma nonnegative_absolutely_integrable: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37665
diff changeset
  5493
  assumes "\<forall>x\<in>s. \<forall>i<DIM('m). 0 \<le> f(x)$$i" "f integrable_on s"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5494
  shows "f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5495
  unfolding absolutely_integrable_abs_eq apply rule defer
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37665
diff changeset
  5496
  apply(rule integrable_eq[of _ f]) using assms apply-apply(subst euclidean_eq) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5497
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5498
lemma absolutely_integrable_integrable_bound: fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5499
  assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5500
  shows "f absolutely_integrable_on s"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5501
proof- { presume *:"\<And>f::'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space. \<And> g. \<forall>x. norm(f x) \<le> g x \<Longrightarrow> f integrable_on UNIV
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5502
    \<Longrightarrow> g integrable_on UNIV \<Longrightarrow> f absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5503
    show ?thesis apply(subst absolutely_integrable_restrict_univ[THEN sym])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5504
      apply(rule *[of _ "\<lambda>x. if x\<in>s then g x else 0"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5505
      using assms unfolding integrable_restrict_univ by auto }
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5506
  fix g and f :: "'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5507
  assume assms:"\<forall>x. norm(f x) \<le> g x" "f integrable_on UNIV" "g integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5508
  show "f absolutely_integrable_on UNIV"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5509
    apply(rule bounded_variation_absolutely_integrable[OF assms(2),where B="integral UNIV g"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5510
  proof safe case goal1 note d=this and d'=division_ofD[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5511
    have "(\<Sum>k\<in>d. norm (integral k f)) \<le> (\<Sum>k\<in>d. integral k g)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5512
      apply(rule setsum_mono) apply(rule integral_norm_bound_integral) apply(drule_tac[!] d'(4),safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5513
      apply(rule_tac[1-2] integrable_on_subinterval) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5514
    also have "... = integral (\<Union>d) g" apply(rule integral_combine_division_bottomup[THEN sym])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5515
      apply(rule d,safe) apply(drule d'(4),safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5516
      apply(rule integrable_on_subinterval[OF assms(3)]) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5517
    also have "... \<le> integral UNIV g" apply(rule integral_subset_le) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5518
      apply(rule integrable_on_subdivision[OF d,of _ UNIV]) prefer 4
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5519
      apply(rule,rule_tac y="norm (f x)" in order_trans) using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5520
    finally show ?case . qed qed
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5521
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5522
lemma absolutely_integrable_integrable_bound_real: fixes f::"'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5523
  assumes "\<forall>x\<in>s. norm(f x) \<le> g x" "f integrable_on s" "g integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5524
  shows "f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5525
  apply(rule absolutely_integrable_integrable_bound[where g=g])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5526
  using assms unfolding o_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5527
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5528
lemma absolutely_integrable_absolutely_integrable_bound:
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5529
  fixes f::"'n::ordered_euclidean_space \<Rightarrow> 'm::ordered_euclidean_space" and g::"'n::ordered_euclidean_space \<Rightarrow> 'p::ordered_euclidean_space"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5530
  assumes "\<forall>x\<in>s. norm(f x) \<le> norm(g x)" "f integrable_on s" "g absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5531
  shows "f absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5532
  apply(rule absolutely_integrable_integrable_bound[of s f "\<lambda>x. norm (g x)"])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5533
  using assms by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5534
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5535
lemma absolutely_integrable_inf_real:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5536
  assumes "finite k" "k \<noteq> {}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5537
  "\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5538
  shows "(\<lambda>x. (Inf ((fs x) ` k))) absolutely_integrable_on s" using assms
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5539
proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5540
         else min (fs x a) (Inf (fs x ` k))) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5541
  show ?case unfolding image_insert
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5542
    apply(subst Inf_insert_finite) apply(rule finite_imageI[OF insert(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5543
  proof(cases "k={}") case True
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5544
    thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5545
  next case False thus ?P apply(subst if_not_P) defer      
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5546
      apply(rule absolutely_integrable_min[where 'n=real,unfolded Eucl_real_simps])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5547
      defer apply(rule insert(3)[OF False]) using insert(5) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5548
  qed qed auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5549
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5550
lemma absolutely_integrable_sup_real:
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5551
  assumes "finite k" "k \<noteq> {}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5552
  "\<forall>i\<in>k. (\<lambda>x. (fs x i)::real) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5553
  shows "(\<lambda>x. (Sup ((fs x) ` k))) absolutely_integrable_on s" using assms
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5554
proof induct case (insert a k) let ?P = " (\<lambda>x. if fs x ` k = {} then fs x a
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5555
         else max (fs x a) (Sup (fs x ` k))) absolutely_integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5556
  show ?case unfolding image_insert
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5557
    apply(subst Sup_insert_finite) apply(rule finite_imageI[OF insert(1)])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5558
  proof(cases "k={}") case True
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5559
    thus ?P apply(subst if_P) defer apply(rule insert(5)[rule_format]) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5560
  next case False thus ?P apply(subst if_not_P) defer
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5561
      apply(rule absolutely_integrable_max[where 'n=real,unfolded Eucl_real_simps]) 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5562
      defer apply(rule insert(3)[OF False]) using insert(5) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5563
  qed qed auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5564
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5565
subsection {* Dominated convergence. *}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5566
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5567
lemma dominated_convergence: fixes f::"nat \<Rightarrow> 'n::ordered_euclidean_space \<Rightarrow> real"
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5568
  assumes "\<And>k. (f k) integrable_on s" "h integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5569
  "\<And>k. \<forall>x \<in> s. norm(f k x) \<le> (h x)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5570
  "\<forall>x \<in> s. ((\<lambda>k. f k x) ---> g x) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5571
  shows "g integrable_on s" "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5572
proof- have "\<And>m. (\<lambda>x. Inf {f j x |j. m \<le> j}) integrable_on s \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5573
    ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) --->
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5574
    integral s (\<lambda>x. Inf {f j x |j. m \<le> j}))sequentially"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5575
  proof(rule monotone_convergence_decreasing,safe) fix m::nat
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5576
    show "bounded {integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) |k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5577
      unfolding bounded_iff apply(rule_tac x="integral s h" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5578
    proof safe fix k::nat
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5579
      show "norm (integral s (\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5580
        apply(rule integral_norm_bound_integral) unfolding simple_image
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5581
        apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_inf_real)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5582
        prefer 5 unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5583
        prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5584
        using assms unfolding real_norm_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5585
    qed fix k::nat show "(\<lambda>x. Inf {f j x |j. j \<in> {m..m + k}}) integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5586
      unfolding simple_image apply(rule absolutely_integrable_onD)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5587
      apply(rule absolutely_integrable_inf_real) prefer 3 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5588
      using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5589
    fix x assume x:"x\<in>s" show "Inf {f j x |j. j \<in> {m..m + Suc k}}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5590
      \<le> Inf {f j x |j. j \<in> {m..m + k}}" apply(rule Inf_ge) unfolding setge_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5591
      defer apply rule apply(subst Inf_finite_le_iff) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5592
      apply(rule_tac x=xa in bexI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5593
    let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Inf ?S"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5594
    show "((\<lambda>k. Inf {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5595
    proof (rule LIMSEQ_I) case goal1 note r=this have i:"isGlb UNIV ?S i" unfolding i_def apply(rule Inf)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5596
        defer apply(rule_tac x="- h x - 1" in exI) unfolding setge_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5597
      proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5598
      qed auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5599
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5600
      have "\<exists>y\<in>?S. \<not> y \<ge> i + r"
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5601
      proof(rule ccontr) case goal1 hence "i \<ge> i + r" apply-
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  5602
          apply(rule isGlb_le_isLb[OF i]) apply(rule isLbI) unfolding setge_def by fastforce+
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5603
        thus False using r by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5604
      qed then guess y .. note y=this[unfolded not_le]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5605
      from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5606
      
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5607
      show ?case apply(rule_tac x=N in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5608
      proof safe case goal1
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5609
        have *:"\<And>y ix. y < i + r \<longrightarrow> i \<le> ix \<longrightarrow> ix \<le> y \<longrightarrow> abs(ix - i) < r" by arith
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5610
        show ?case unfolding real_norm_def apply(rule *[rule_format,OF y(2)])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5611
          unfolding i_def apply(rule real_le_inf_subset) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5612
          apply(rule,rule isGlbD1[OF i]) prefer 3 apply(subst Inf_finite_le_iff)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5613
          prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5614
      qed qed qed note dec1 = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5615
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5616
  have "\<And>m. (\<lambda>x. Sup {f j x |j. m \<le> j}) integrable_on s \<and>
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5617
    ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) --->
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5618
    integral s (\<lambda>x. Sup {f j x |j. m \<le> j})) sequentially"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5619
  proof(rule monotone_convergence_increasing,safe) fix m::nat
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5620
    show "bounded {integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) |k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5621
      unfolding bounded_iff apply(rule_tac x="integral s h" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5622
    proof safe fix k::nat
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5623
      show "norm (integral s (\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}})) \<le> integral s h"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5624
        apply(rule integral_norm_bound_integral) unfolding simple_image
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5625
        apply(rule absolutely_integrable_onD) apply(rule absolutely_integrable_sup_real)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5626
        prefer 5 unfolding real_norm_def apply(rule) apply(rule Sup_abs_le)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5627
        prefer 5 apply rule apply(rule_tac g=h in absolutely_integrable_integrable_bound_real)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5628
        using assms unfolding real_norm_def by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5629
    qed fix k::nat show "(\<lambda>x. Sup {f j x |j. j \<in> {m..m + k}}) integrable_on s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5630
      unfolding simple_image apply(rule absolutely_integrable_onD)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5631
      apply(rule absolutely_integrable_sup_real) prefer 3 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5632
      using absolutely_integrable_integrable_bound_real[OF assms(3,1,2)] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5633
    fix x assume x:"x\<in>s" show "Sup {f j x |j. j \<in> {m..m + Suc k}}
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5634
      \<ge> Sup {f j x |j. j \<in> {m..m + k}}" apply(rule Sup_le) unfolding setle_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5635
      defer apply rule apply(subst Sup_finite_ge_iff) prefer 3 apply(rule_tac x=y in bexI) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5636
    let ?S = "{f j x| j.  m \<le> j}" def i \<equiv> "Sup ?S"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5637
    show "((\<lambda>k. Sup {f j x |j. j \<in> {m..m + k}}) ---> i) sequentially"
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5638
    proof (rule LIMSEQ_I) case goal1 note r=this have i:"isLub UNIV ?S i" unfolding i_def apply(rule Sup)
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5639
        defer apply(rule_tac x="h x" in exI) unfolding setle_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5640
      proof safe case goal1 thus ?case using assms(3)[rule_format,OF x, of j] by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5641
      qed auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5642
      
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5643
      have "\<exists>y\<in>?S. \<not> y \<le> i - r"
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5644
      proof(rule ccontr) case goal1 hence "i \<le> i - r" apply-
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44522
diff changeset
  5645
          apply(rule isLub_le_isUb[OF i]) apply(rule isUbI) unfolding setle_def by fastforce+
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5646
        thus False using r by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5647
      qed then guess y .. note y=this[unfolded not_le]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5648
      from this(1)[unfolded mem_Collect_eq] guess N .. note N=conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5649
      
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5650
      show ?case apply(rule_tac x=N in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5651
      proof safe case goal1
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5652
        have *:"\<And>y ix. i - r < y \<longrightarrow> ix \<le> i \<longrightarrow> y \<le> ix \<longrightarrow> abs(ix - i) < r" by arith
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5653
        show ?case unfolding real_norm_def apply(rule *[rule_format,OF y(2)])
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5654
          unfolding i_def apply(rule real_ge_sup_subset) prefer 3
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5655
          apply(rule,rule isLubD1[OF i]) prefer 3 apply(subst Sup_finite_ge_iff)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5656
          prefer 3 apply(rule_tac x=y in bexI) using N goal1 by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5657
      qed qed qed note inc1 = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5658
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5659
  have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) ---> integral s g) sequentially"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5660
  apply(rule monotone_convergence_increasing,safe) apply fact 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5661
  proof- show "bounded {integral s (\<lambda>x. Inf {f j x |j. k \<le> j}) |k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5662
      unfolding bounded_iff apply(rule_tac x="integral s h" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5663
    proof safe fix k::nat
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5664
      show "norm (integral s (\<lambda>x. Inf {f j x |j. k \<le> j})) \<le> integral s h"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5665
        apply(rule integral_norm_bound_integral) apply fact+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5666
        unfolding real_norm_def apply(rule) apply(rule Inf_abs_ge) using assms(3) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5667
    qed fix k::nat and x assume x:"x\<in>s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5668
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5669
    have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5670
    show "Inf {f j x |j. k \<le> j} \<le> Inf {f j x |j. Suc k \<le> j}" apply-
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5671
      apply(rule real_le_inf_subset) prefer 3 unfolding setge_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5672
      apply(rule_tac x="- h x" in exI) apply safe apply(rule *)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5673
      using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5674
    show "((\<lambda>k. Inf {f j x |j. k \<le> j}) ---> g x) sequentially"
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5675
    proof (rule LIMSEQ_I) case goal1 hence "0<r/2" by auto
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5676
      from assms(4)[THEN bspec, THEN LIMSEQ_D, OF x this] guess N .. note N=this
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5677
      show ?case apply(rule_tac x=N in exI,safe) unfolding real_norm_def
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5678
        apply(rule le_less_trans[of _ "r/2"]) apply(rule Inf_asclose) apply safe
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5679
        defer apply(rule less_imp_le) using N goal1 by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5680
    qed qed note inc2 = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5681
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5682
  have "g integrable_on s \<and> ((\<lambda>k. integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) ---> integral s g) sequentially"
37489
44e42d392c6e Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
hoelzl
parents: 36899
diff changeset
  5683
  apply(rule monotone_convergence_decreasing,safe) apply fact 
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5684
  proof- show "bounded {integral s (\<lambda>x. Sup {f j x |j. k \<le> j}) |k. True}"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5685
      unfolding bounded_iff apply(rule_tac x="integral s h" in exI)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5686
    proof safe fix k::nat
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5687
      show "norm (integral s (\<lambda>x. Sup {f j x |j. k \<le> j})) \<le> integral s h"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5688
        apply(rule integral_norm_bound_integral) apply fact+
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5689
        unfolding real_norm_def apply(rule) apply(rule Sup_abs_le) using assms(3) by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5690
    qed fix k::nat and x assume x:"x\<in>s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5691
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5692
    show "Sup {f j x |j. k \<le> j} \<ge> Sup {f j x |j. Suc k \<le> j}" apply-
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5693
      apply(rule real_ge_sup_subset) prefer 3 unfolding setle_def
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5694
      apply(rule_tac x="h x" in exI) apply safe
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5695
      using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5696
    show "((\<lambda>k. Sup {f j x |j. k \<le> j}) ---> g x) sequentially"
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5697
    proof (rule LIMSEQ_I) case goal1 hence "0<r/2" by auto
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5698
      from assms(4)[THEN bspec, THEN LIMSEQ_D, OF x this] guess N .. note N=this
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5699
      show ?case apply(rule_tac x=N in exI,safe) unfolding real_norm_def
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5700
        apply(rule le_less_trans[of _ "r/2"]) apply(rule Sup_asclose) apply safe
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5701
        defer apply(rule less_imp_le) using N goal1 by auto
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5702
    qed qed note dec2 = conjunctD2[OF this]
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5703
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5704
  show "g integrable_on s" by fact
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5705
  show "((\<lambda>k. integral s (f k)) ---> integral s g) sequentially"
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5706
  proof (rule LIMSEQ_I) case goal1
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5707
    from LIMSEQ_D [OF inc2(2) goal1] guess N1 .. note N1=this[unfolded real_norm_def]
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5708
    from LIMSEQ_D [OF dec2(2) goal1] guess N2 .. note N2=this[unfolded real_norm_def]
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5709
    show ?case apply(rule_tac x="N1+N2" in exI,safe)
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5710
    proof- fix n assume n:"n \<ge> N1 + N2"
44906
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5711
      have *:"\<And>i0 i i1 g. \<bar>i0 - g\<bar> < r \<longrightarrow> \<bar>i1 - g\<bar> < r \<longrightarrow> i0 \<le> i \<longrightarrow> i \<le> i1 \<longrightarrow> \<bar>i - g\<bar> < r" by arith
8f3625167c76 simplify proofs using LIMSEQ lemmas
huffman
parents: 44890
diff changeset
  5712
      show "norm (integral s (f n) - integral s g) < r" unfolding real_norm_def
36243
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5713
        apply(rule *[rule_format,OF N1[rule_format] N2[rule_format], of n n])
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5714
      proof- show "integral s (\<lambda>x. Inf {f j x |j. n \<le> j}) \<le> integral s (f n)"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5715
        proof(rule integral_le[OF dec1(1) assms(1)],safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5716
          fix x assume x:"x \<in> s" have *:"\<And>x y::real. x \<ge> - y \<Longrightarrow> - x \<le> y" by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5717
          show "Inf {f j x |j. n \<le> j} \<le> f n x" apply(rule Inf_lower[where z="- h x"]) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5718
            apply(rule *) using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5719
        qed show "integral s (f n) \<le> integral s (\<lambda>x. Sup {f j x |j. n \<le> j})"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5720
        proof(rule integral_le[OF assms(1) inc1(1)],safe) 
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5721
          fix x assume x:"x \<in> s"
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5722
          show "f n x \<le> Sup {f j x |j. n \<le> j}" apply(rule Sup_upper[where z="h x"]) defer
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5723
            using assms(3)[rule_format,OF x] unfolding real_norm_def abs_le_iff by auto
027ae62681be Translated remaining theorems about integration from HOL light.
himmelma
parents: 36081
diff changeset
  5724
        qed qed(insert n,auto) qed qed qed
35752
c8a8df426666 reset smt_certificates
himmelma
parents: 35751
diff changeset
  5725
47152
446cfc760ccf renamed "smt_fixed" to "smt_read_only_certificates"
blanchet
parents: 46905
diff changeset
  5726
declare [[smt_certificates = ""]]
446cfc760ccf renamed "smt_fixed" to "smt_read_only_certificates"
blanchet
parents: 46905
diff changeset
  5727
declare [[smt_read_only_certificates = false]]
35752
c8a8df426666 reset smt_certificates
himmelma
parents: 35751
diff changeset
  5728
35173
9b24bfca8044 Renamed Multivariate-Analysis/Integration to Multivariate-Analysis/Integration_MV to avoid name clash with Integration.
hoelzl
parents: 35172
diff changeset
  5729
end