| author | nipkow | 
| Tue, 17 Nov 2015 12:01:19 +0100 | |
| changeset 61693 | f6b9f528c89c | 
| parent 61518 | ff12606337e9 | 
| child 61694 | 6571c78c9667 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Multivariate_Analysis/Path_Connected.thy | 
| 60303 | 2 | Author: Robert Himmelmann, TU Muenchen, and LCP with material from HOL Light | 
| 36583 | 3 | *) | 
| 4 | ||
| 60420 | 5 | section \<open>Continuous paths and path-connected sets\<close> | 
| 36583 | 6 | |
| 7 | theory Path_Connected | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Convex_Euclidean_Space | 
| 36583 | 9 | begin | 
| 10 | ||
| 60303 | 11 | (*FIXME move up?*) | 
| 12 | lemma image_affinity_interval: | |
| 13 | fixes c :: "'a::ordered_real_vector" | |
| 14 |   shows "((\<lambda>x. m *\<^sub>R x + c) ` {a..b}) = (if {a..b}={} then {}
 | |
| 15 |             else if 0 <= m then {m *\<^sub>R a + c .. m  *\<^sub>R b + c}
 | |
| 16 |             else {m *\<^sub>R b + c .. m *\<^sub>R a + c})"
 | |
| 17 | apply (case_tac "m=0", force) | |
| 18 | apply (auto simp: scaleR_left_mono) | |
| 19 | apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: pos_le_divideR_eq le_diff_eq scaleR_left_mono_neg) | |
| 20 | apply (metis diff_le_eq inverse_inverse_eq order.not_eq_order_implies_strict pos_le_divideR_eq positive_imp_inverse_positive) | |
| 21 | apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: not_le neg_le_divideR_eq diff_le_eq) | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 22 | using le_diff_eq scaleR_le_cancel_left_neg | 
| 60303 | 23 | apply fastforce | 
| 24 | done | |
| 25 | ||
| 60420 | 26 | subsection \<open>Paths and Arcs\<close> | 
| 36583 | 27 | |
| 49653 | 28 | definition path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | 
| 53640 | 29 |   where "path g \<longleftrightarrow> continuous_on {0..1} g"
 | 
| 36583 | 30 | |
| 49653 | 31 | definition pathstart :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | 
| 36583 | 32 | where "pathstart g = g 0" | 
| 33 | ||
| 49653 | 34 | definition pathfinish :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a" | 
| 36583 | 35 | where "pathfinish g = g 1" | 
| 36 | ||
| 49653 | 37 | definition path_image :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> 'a set" | 
| 36583 | 38 |   where "path_image g = g ` {0 .. 1}"
 | 
| 39 | ||
| 53640 | 40 | definition reversepath :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> real \<Rightarrow> 'a" | 
| 36583 | 41 | where "reversepath g = (\<lambda>x. g(1 - x))" | 
| 42 | ||
| 53640 | 43 | definition joinpaths :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a" | 
| 36583 | 44 | (infixr "+++" 75) | 
| 45 | where "g1 +++ g2 = (\<lambda>x. if x \<le> 1/2 then g1 (2 * x) else g2 (2 * x - 1))" | |
| 46 | ||
| 49653 | 47 | definition simple_path :: "(real \<Rightarrow> 'a::topological_space) \<Rightarrow> bool" | 
| 36583 | 48 | where "simple_path g \<longleftrightarrow> | 
| 60303 | 49 |      path g \<and> (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | 
| 36583 | 50 | |
| 60303 | 51 | definition arc :: "(real \<Rightarrow> 'a :: topological_space) \<Rightarrow> bool" | 
| 52 |   where "arc g \<longleftrightarrow> path g \<and> inj_on g {0..1}"
 | |
| 36583 | 53 | |
| 49653 | 54 | |
| 60420 | 55 | subsection\<open>Invariance theorems\<close> | 
| 60303 | 56 | |
| 57 | lemma path_eq: "path p \<Longrightarrow> (\<And>t. t \<in> {0..1} \<Longrightarrow> p t = q t) \<Longrightarrow> path q"
 | |
| 58 | using continuous_on_eq path_def by blast | |
| 59 | ||
| 60 | lemma path_continuous_image: "path g \<Longrightarrow> continuous_on (path_image g) f \<Longrightarrow> path(f o g)" | |
| 61 | unfolding path_def path_image_def | |
| 62 | using continuous_on_compose by blast | |
| 63 | ||
| 64 | lemma path_translation_eq: | |
| 65 | fixes g :: "real \<Rightarrow> 'a :: real_normed_vector" | |
| 66 | shows "path((\<lambda>x. a + x) o g) = path g" | |
| 67 | proof - | |
| 68 | have g: "g = (\<lambda>x. -a + x) o ((\<lambda>x. a + x) o g)" | |
| 69 | by (rule ext) simp | |
| 70 | show ?thesis | |
| 71 | unfolding path_def | |
| 72 | apply safe | |
| 73 | apply (subst g) | |
| 74 | apply (rule continuous_on_compose) | |
| 75 | apply (auto intro: continuous_intros) | |
| 76 | done | |
| 77 | qed | |
| 78 | ||
| 79 | lemma path_linear_image_eq: | |
| 80 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | |
| 81 | assumes "linear f" "inj f" | |
| 82 | shows "path(f o g) = path g" | |
| 83 | proof - | |
| 84 | from linear_injective_left_inverse [OF assms] | |
| 85 | obtain h where h: "linear h" "h \<circ> f = id" | |
| 86 | by blast | |
| 87 | then have g: "g = h o (f o g)" | |
| 88 | by (metis comp_assoc id_comp) | |
| 89 | show ?thesis | |
| 90 | unfolding path_def | |
| 91 | using h assms | |
| 92 | by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear) | |
| 93 | qed | |
| 94 | ||
| 95 | lemma pathstart_translation: "pathstart((\<lambda>x. a + x) o g) = a + pathstart g" | |
| 96 | by (simp add: pathstart_def) | |
| 97 | ||
| 98 | lemma pathstart_linear_image_eq: "linear f \<Longrightarrow> pathstart(f o g) = f(pathstart g)" | |
| 99 | by (simp add: pathstart_def) | |
| 100 | ||
| 101 | lemma pathfinish_translation: "pathfinish((\<lambda>x. a + x) o g) = a + pathfinish g" | |
| 102 | by (simp add: pathfinish_def) | |
| 103 | ||
| 104 | lemma pathfinish_linear_image: "linear f \<Longrightarrow> pathfinish(f o g) = f(pathfinish g)" | |
| 105 | by (simp add: pathfinish_def) | |
| 106 | ||
| 107 | lemma path_image_translation: "path_image((\<lambda>x. a + x) o g) = (\<lambda>x. a + x) ` (path_image g)" | |
| 108 | by (simp add: image_comp path_image_def) | |
| 109 | ||
| 110 | lemma path_image_linear_image: "linear f \<Longrightarrow> path_image(f o g) = f ` (path_image g)" | |
| 111 | by (simp add: image_comp path_image_def) | |
| 112 | ||
| 113 | lemma reversepath_translation: "reversepath((\<lambda>x. a + x) o g) = (\<lambda>x. a + x) o reversepath g" | |
| 114 | by (rule ext) (simp add: reversepath_def) | |
| 36583 | 115 | |
| 60303 | 116 | lemma reversepath_linear_image: "linear f \<Longrightarrow> reversepath(f o g) = f o reversepath g" | 
| 117 | by (rule ext) (simp add: reversepath_def) | |
| 118 | ||
| 119 | lemma joinpaths_translation: | |
| 120 | "((\<lambda>x. a + x) o g1) +++ ((\<lambda>x. a + x) o g2) = (\<lambda>x. a + x) o (g1 +++ g2)" | |
| 121 | by (rule ext) (simp add: joinpaths_def) | |
| 122 | ||
| 123 | lemma joinpaths_linear_image: "linear f \<Longrightarrow> (f o g1) +++ (f o g2) = f o (g1 +++ g2)" | |
| 124 | by (rule ext) (simp add: joinpaths_def) | |
| 125 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 126 | lemma simple_path_translation_eq: | 
| 60303 | 127 | fixes g :: "real \<Rightarrow> 'a::euclidean_space" | 
| 128 | shows "simple_path((\<lambda>x. a + x) o g) = simple_path g" | |
| 129 | by (simp add: simple_path_def path_translation_eq) | |
| 130 | ||
| 131 | lemma simple_path_linear_image_eq: | |
| 132 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | |
| 133 | assumes "linear f" "inj f" | |
| 134 | shows "simple_path(f o g) = simple_path g" | |
| 135 | using assms inj_on_eq_iff [of f] | |
| 136 | by (auto simp: path_linear_image_eq simple_path_def path_translation_eq) | |
| 137 | ||
| 138 | lemma arc_translation_eq: | |
| 139 | fixes g :: "real \<Rightarrow> 'a::euclidean_space" | |
| 140 | shows "arc((\<lambda>x. a + x) o g) = arc g" | |
| 141 | by (auto simp: arc_def inj_on_def path_translation_eq) | |
| 142 | ||
| 143 | lemma arc_linear_image_eq: | |
| 144 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | |
| 145 | assumes "linear f" "inj f" | |
| 146 | shows "arc(f o g) = arc g" | |
| 147 | using assms inj_on_eq_iff [of f] | |
| 148 | by (auto simp: arc_def inj_on_def path_linear_image_eq) | |
| 149 | ||
| 60420 | 150 | subsection\<open>Basic lemmas about paths\<close> | 
| 60303 | 151 | |
| 152 | lemma arc_imp_simple_path: "arc g \<Longrightarrow> simple_path g" | |
| 153 | by (simp add: arc_def inj_on_def simple_path_def) | |
| 154 | ||
| 155 | lemma arc_imp_path: "arc g \<Longrightarrow> path g" | |
| 156 | using arc_def by blast | |
| 157 | ||
| 158 | lemma simple_path_imp_path: "simple_path g \<Longrightarrow> path g" | |
| 159 | using simple_path_def by blast | |
| 160 | ||
| 161 | lemma simple_path_cases: "simple_path g \<Longrightarrow> arc g \<or> pathfinish g = pathstart g" | |
| 162 | unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def | |
| 163 | by (force) | |
| 164 | ||
| 165 | lemma simple_path_imp_arc: "simple_path g \<Longrightarrow> pathfinish g \<noteq> pathstart g \<Longrightarrow> arc g" | |
| 166 | using simple_path_cases by auto | |
| 167 | ||
| 168 | lemma arc_distinct_ends: "arc g \<Longrightarrow> pathfinish g \<noteq> pathstart g" | |
| 169 | unfolding arc_def inj_on_def pathfinish_def pathstart_def | |
| 170 | by fastforce | |
| 171 | ||
| 172 | lemma arc_simple_path: "arc g \<longleftrightarrow> simple_path g \<and> pathfinish g \<noteq> pathstart g" | |
| 173 | using arc_distinct_ends arc_imp_simple_path simple_path_cases by blast | |
| 174 | ||
| 175 | lemma simple_path_eq_arc: "pathfinish g \<noteq> pathstart g \<Longrightarrow> (simple_path g = arc g)" | |
| 176 | by (simp add: arc_simple_path) | |
| 36583 | 177 | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60809diff
changeset | 178 | lemma path_image_nonempty [simp]: "path_image g \<noteq> {}"
 | 
| 56188 | 179 | unfolding path_image_def image_is_empty box_eq_empty | 
| 53640 | 180 | by auto | 
| 36583 | 181 | |
| 53640 | 182 | lemma pathstart_in_path_image[intro]: "pathstart g \<in> path_image g" | 
| 183 | unfolding pathstart_def path_image_def | |
| 184 | by auto | |
| 36583 | 185 | |
| 53640 | 186 | lemma pathfinish_in_path_image[intro]: "pathfinish g \<in> path_image g" | 
| 187 | unfolding pathfinish_def path_image_def | |
| 188 | by auto | |
| 189 | ||
| 190 | lemma connected_path_image[intro]: "path g \<Longrightarrow> connected (path_image g)" | |
| 36583 | 191 | unfolding path_def path_image_def | 
| 60303 | 192 | using connected_continuous_image connected_Icc by blast | 
| 36583 | 193 | |
| 53640 | 194 | lemma compact_path_image[intro]: "path g \<Longrightarrow> compact (path_image g)" | 
| 36583 | 195 | unfolding path_def path_image_def | 
| 60303 | 196 | using compact_continuous_image connected_Icc by blast | 
| 36583 | 197 | |
| 53640 | 198 | lemma reversepath_reversepath[simp]: "reversepath (reversepath g) = g" | 
| 199 | unfolding reversepath_def | |
| 200 | by auto | |
| 36583 | 201 | |
| 53640 | 202 | lemma pathstart_reversepath[simp]: "pathstart (reversepath g) = pathfinish g" | 
| 203 | unfolding pathstart_def reversepath_def pathfinish_def | |
| 204 | by auto | |
| 36583 | 205 | |
| 53640 | 206 | lemma pathfinish_reversepath[simp]: "pathfinish (reversepath g) = pathstart g" | 
| 207 | unfolding pathstart_def reversepath_def pathfinish_def | |
| 208 | by auto | |
| 36583 | 209 | |
| 49653 | 210 | lemma pathstart_join[simp]: "pathstart (g1 +++ g2) = pathstart g1" | 
| 53640 | 211 | unfolding pathstart_def joinpaths_def pathfinish_def | 
| 212 | by auto | |
| 36583 | 213 | |
| 49653 | 214 | lemma pathfinish_join[simp]: "pathfinish (g1 +++ g2) = pathfinish g2" | 
| 53640 | 215 | unfolding pathstart_def joinpaths_def pathfinish_def | 
| 216 | by auto | |
| 36583 | 217 | |
| 53640 | 218 | lemma path_image_reversepath[simp]: "path_image (reversepath g) = path_image g" | 
| 49653 | 219 | proof - | 
| 53640 | 220 | have *: "\<And>g. path_image (reversepath g) \<subseteq> path_image g" | 
| 49653 | 221 | unfolding path_image_def subset_eq reversepath_def Ball_def image_iff | 
| 60303 | 222 | by force | 
| 49653 | 223 | show ?thesis | 
| 224 | using *[of g] *[of "reversepath g"] | |
| 53640 | 225 | unfolding reversepath_reversepath | 
| 226 | by auto | |
| 49653 | 227 | qed | 
| 36583 | 228 | |
| 53640 | 229 | lemma path_reversepath [simp]: "path (reversepath g) \<longleftrightarrow> path g" | 
| 49653 | 230 | proof - | 
| 231 | have *: "\<And>g. path g \<Longrightarrow> path (reversepath g)" | |
| 232 | unfolding path_def reversepath_def | |
| 233 | apply (rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"]) | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 234 | apply (intro continuous_intros) | 
| 53640 | 235 |     apply (rule continuous_on_subset[of "{0..1}"])
 | 
| 236 | apply assumption | |
| 49653 | 237 | apply auto | 
| 238 | done | |
| 239 | show ?thesis | |
| 240 | using *[of "reversepath g"] *[of g] | |
| 241 | unfolding reversepath_reversepath | |
| 242 | by (rule iffI) | |
| 243 | qed | |
| 244 | ||
| 60303 | 245 | lemma arc_reversepath: | 
| 246 | assumes "arc g" shows "arc(reversepath g)" | |
| 247 | proof - | |
| 248 |   have injg: "inj_on g {0..1}"
 | |
| 249 | using assms | |
| 250 | by (simp add: arc_def) | |
| 251 | have **: "\<And>x y::real. 1-x = 1-y \<Longrightarrow> x = y" | |
| 252 | by simp | |
| 253 | show ?thesis | |
| 254 | apply (auto simp: arc_def inj_on_def path_reversepath) | |
| 255 | apply (simp add: arc_imp_path assms) | |
| 256 | apply (rule **) | |
| 257 | apply (rule inj_onD [OF injg]) | |
| 258 | apply (auto simp: reversepath_def) | |
| 259 | done | |
| 260 | qed | |
| 261 | ||
| 262 | lemma simple_path_reversepath: "simple_path g \<Longrightarrow> simple_path (reversepath g)" | |
| 263 | apply (simp add: simple_path_def) | |
| 264 | apply (force simp: reversepath_def) | |
| 265 | done | |
| 266 | ||
| 49653 | 267 | lemmas reversepath_simps = | 
| 268 | path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath | |
| 36583 | 269 | |
| 49653 | 270 | lemma path_join[simp]: | 
| 271 | assumes "pathfinish g1 = pathstart g2" | |
| 272 | shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2" | |
| 273 | unfolding path_def pathfinish_def pathstart_def | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 274 | proof safe | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 275 |   assume cont: "continuous_on {0..1} (g1 +++ g2)"
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 276 |   have g1: "continuous_on {0..1} g1 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2))"
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 277 | by (intro continuous_on_cong refl) (auto simp: joinpaths_def) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 278 |   have g2: "continuous_on {0..1} g2 \<longleftrightarrow> continuous_on {0..1} ((g1 +++ g2) \<circ> (\<lambda>x. x / 2 + 1/2))"
 | 
| 53640 | 279 | using assms | 
| 280 | by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def) | |
| 281 |   show "continuous_on {0..1} g1" and "continuous_on {0..1} g2"
 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51478diff
changeset | 282 | unfolding g1 g2 | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 283 | by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del: o_apply) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 284 | next | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 285 |   assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 286 |   have 01: "{0 .. 1} = {0..1/2} \<union> {1/2 .. 1::real}"
 | 
| 36583 | 287 | by auto | 
| 53640 | 288 |   {
 | 
| 289 | fix x :: real | |
| 290 | assume "0 \<le> x" and "x \<le> 1" | |
| 291 |     then have "x \<in> (\<lambda>x. x * 2) ` {0..1 / 2}"
 | |
| 292 | by (intro image_eqI[where x="x/2"]) auto | |
| 293 | } | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 294 | note 1 = this | 
| 53640 | 295 |   {
 | 
| 296 | fix x :: real | |
| 297 | assume "0 \<le> x" and "x \<le> 1" | |
| 298 |     then have "x \<in> (\<lambda>x. x * 2 - 1) ` {1 / 2..1}"
 | |
| 299 | by (intro image_eqI[where x="x/2 + 1/2"]) auto | |
| 300 | } | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
50935diff
changeset | 301 | note 2 = this | 
| 49653 | 302 |   show "continuous_on {0..1} (g1 +++ g2)"
 | 
| 53640 | 303 | using assms | 
| 304 | unfolding joinpaths_def 01 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 305 | apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_intros) | 
| 53640 | 306 | apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2) | 
| 307 | done | |
| 49653 | 308 | qed | 
| 36583 | 309 | |
| 60420 | 310 | section \<open>Path Images\<close> | 
| 60303 | 311 | |
| 312 | lemma bounded_path_image: "path g \<Longrightarrow> bounded(path_image g)" | |
| 313 | by (simp add: compact_imp_bounded compact_path_image) | |
| 314 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 315 | lemma closed_path_image: | 
| 60303 | 316 | fixes g :: "real \<Rightarrow> 'a::t2_space" | 
| 317 | shows "path g \<Longrightarrow> closed(path_image g)" | |
| 318 | by (metis compact_path_image compact_imp_closed) | |
| 319 | ||
| 320 | lemma connected_simple_path_image: "simple_path g \<Longrightarrow> connected(path_image g)" | |
| 321 | by (metis connected_path_image simple_path_imp_path) | |
| 322 | ||
| 323 | lemma compact_simple_path_image: "simple_path g \<Longrightarrow> compact(path_image g)" | |
| 324 | by (metis compact_path_image simple_path_imp_path) | |
| 325 | ||
| 326 | lemma bounded_simple_path_image: "simple_path g \<Longrightarrow> bounded(path_image g)" | |
| 327 | by (metis bounded_path_image simple_path_imp_path) | |
| 328 | ||
| 329 | lemma closed_simple_path_image: | |
| 330 | fixes g :: "real \<Rightarrow> 'a::t2_space" | |
| 331 | shows "simple_path g \<Longrightarrow> closed(path_image g)" | |
| 332 | by (metis closed_path_image simple_path_imp_path) | |
| 333 | ||
| 334 | lemma connected_arc_image: "arc g \<Longrightarrow> connected(path_image g)" | |
| 335 | by (metis connected_path_image arc_imp_path) | |
| 336 | ||
| 337 | lemma compact_arc_image: "arc g \<Longrightarrow> compact(path_image g)" | |
| 338 | by (metis compact_path_image arc_imp_path) | |
| 339 | ||
| 340 | lemma bounded_arc_image: "arc g \<Longrightarrow> bounded(path_image g)" | |
| 341 | by (metis bounded_path_image arc_imp_path) | |
| 342 | ||
| 343 | lemma closed_arc_image: | |
| 344 | fixes g :: "real \<Rightarrow> 'a::t2_space" | |
| 345 | shows "arc g \<Longrightarrow> closed(path_image g)" | |
| 346 | by (metis closed_path_image arc_imp_path) | |
| 347 | ||
| 53640 | 348 | lemma path_image_join_subset: "path_image (g1 +++ g2) \<subseteq> path_image g1 \<union> path_image g2" | 
| 349 | unfolding path_image_def joinpaths_def | |
| 350 | by auto | |
| 36583 | 351 | |
| 352 | lemma subset_path_image_join: | |
| 53640 | 353 | assumes "path_image g1 \<subseteq> s" | 
| 354 | and "path_image g2 \<subseteq> s" | |
| 355 | shows "path_image (g1 +++ g2) \<subseteq> s" | |
| 356 | using path_image_join_subset[of g1 g2] and assms | |
| 357 | by auto | |
| 36583 | 358 | |
| 359 | lemma path_image_join: | |
| 60303 | 360 | "pathfinish g1 = pathstart g2 \<Longrightarrow> path_image(g1 +++ g2) = path_image g1 \<union> path_image g2" | 
| 361 | apply (rule subset_antisym [OF path_image_join_subset]) | |
| 362 | apply (auto simp: pathfinish_def pathstart_def path_image_def joinpaths_def image_def) | |
| 363 | apply (drule sym) | |
| 364 | apply (rule_tac x="xa/2" in bexI, auto) | |
| 365 | apply (rule ccontr) | |
| 366 | apply (drule_tac x="(xa+1)/2" in bspec) | |
| 367 | apply (auto simp: field_simps) | |
| 368 | apply (drule_tac x="1/2" in bspec, auto) | |
| 369 | done | |
| 36583 | 370 | |
| 371 | lemma not_in_path_image_join: | |
| 53640 | 372 | assumes "x \<notin> path_image g1" | 
| 373 | and "x \<notin> path_image g2" | |
| 374 | shows "x \<notin> path_image (g1 +++ g2)" | |
| 375 | using assms and path_image_join_subset[of g1 g2] | |
| 376 | by auto | |
| 36583 | 377 | |
| 60303 | 378 | lemma pathstart_compose: "pathstart(f o p) = f(pathstart p)" | 
| 379 | by (simp add: pathstart_def) | |
| 380 | ||
| 381 | lemma pathfinish_compose: "pathfinish(f o p) = f(pathfinish p)" | |
| 382 | by (simp add: pathfinish_def) | |
| 383 | ||
| 384 | lemma path_image_compose: "path_image (f o p) = f ` (path_image p)" | |
| 385 | by (simp add: image_comp path_image_def) | |
| 386 | ||
| 387 | lemma path_compose_join: "f o (p +++ q) = (f o p) +++ (f o q)" | |
| 388 | by (rule ext) (simp add: joinpaths_def) | |
| 389 | ||
| 390 | lemma path_compose_reversepath: "f o reversepath p = reversepath(f o p)" | |
| 391 | by (rule ext) (simp add: reversepath_def) | |
| 392 | ||
| 393 | lemma join_paths_eq: | |
| 394 |   "(\<And>t. t \<in> {0..1} \<Longrightarrow> p t = p' t) \<Longrightarrow>
 | |
| 395 |    (\<And>t. t \<in> {0..1} \<Longrightarrow> q t = q' t)
 | |
| 396 |    \<Longrightarrow>  t \<in> {0..1} \<Longrightarrow> (p +++ q) t = (p' +++ q') t"
 | |
| 397 | by (auto simp: joinpaths_def) | |
| 398 | ||
| 399 | lemma simple_path_inj_on: "simple_path g \<Longrightarrow> inj_on g {0<..<1}"
 | |
| 400 | by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def) | |
| 401 | ||
| 402 | ||
| 60420 | 403 | subsection\<open>Simple paths with the endpoints removed\<close> | 
| 60303 | 404 | |
| 405 | lemma simple_path_endless: | |
| 406 |     "simple_path c \<Longrightarrow> path_image c - {pathstart c,pathfinish c} = c ` {0<..<1}"
 | |
| 407 | apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def Ball_def Bex_def image_def) | |
| 408 | apply (metis eq_iff le_less_linear) | |
| 409 | apply (metis leD linear) | |
| 410 | using less_eq_real_def zero_le_one apply blast | |
| 411 | using less_eq_real_def zero_le_one apply blast | |
| 49653 | 412 | done | 
| 36583 | 413 | |
| 60303 | 414 | lemma connected_simple_path_endless: | 
| 415 |     "simple_path c \<Longrightarrow> connected(path_image c - {pathstart c,pathfinish c})"
 | |
| 416 | apply (simp add: simple_path_endless) | |
| 417 | apply (rule connected_continuous_image) | |
| 418 | apply (meson continuous_on_subset greaterThanLessThan_subseteq_atLeastAtMost_iff le_numeral_extra(3) le_numeral_extra(4) path_def simple_path_imp_path) | |
| 419 | by auto | |
| 420 | ||
| 421 | lemma nonempty_simple_path_endless: | |
| 422 |     "simple_path c \<Longrightarrow> path_image c - {pathstart c,pathfinish c} \<noteq> {}"
 | |
| 423 | by (simp add: simple_path_endless) | |
| 424 | ||
| 425 | ||
| 60420 | 426 | subsection\<open>The operations on paths\<close> | 
| 60303 | 427 | |
| 428 | lemma path_image_subset_reversepath: "path_image(reversepath g) \<le> path_image g" | |
| 429 | by (auto simp: path_image_def reversepath_def) | |
| 430 | ||
| 431 | lemma continuous_on_op_minus: "continuous_on (s::real set) (op - x)" | |
| 432 | by (rule continuous_intros | simp)+ | |
| 433 | ||
| 434 | lemma path_imp_reversepath: "path g \<Longrightarrow> path(reversepath g)" | |
| 435 | apply (auto simp: path_def reversepath_def) | |
| 436 |   using continuous_on_compose [of "{0..1}" "\<lambda>x. 1 - x" g]
 | |
| 437 | apply (auto simp: continuous_on_op_minus) | |
| 438 | done | |
| 439 | ||
| 61204 | 440 | lemma half_bounded_equal: "1 \<le> x * 2 \<Longrightarrow> x * 2 \<le> 1 \<longleftrightarrow> x = (1/2::real)" | 
| 441 | by simp | |
| 60303 | 442 | |
| 443 | lemma continuous_on_joinpaths: | |
| 444 |   assumes "continuous_on {0..1} g1" "continuous_on {0..1} g2" "pathfinish g1 = pathstart g2"
 | |
| 445 |     shows "continuous_on {0..1} (g1 +++ g2)"
 | |
| 446 | proof - | |
| 447 |   have *: "{0..1::real} = {0..1/2} \<union> {1/2..1}"
 | |
| 448 | by auto | |
| 449 | have gg: "g2 0 = g1 1" | |
| 450 | by (metis assms(3) pathfinish_def pathstart_def) | |
| 61204 | 451 |   have 1: "continuous_on {0..1/2} (g1 +++ g2)"
 | 
| 60303 | 452 | apply (rule continuous_on_eq [of _ "g1 o (\<lambda>x. 2*x)"]) | 
| 61204 | 453 | apply (rule continuous_intros | simp add: joinpaths_def assms)+ | 
| 60303 | 454 | done | 
| 61204 | 455 |   have "continuous_on {1/2..1} (g2 o (\<lambda>x. 2*x-1))"
 | 
| 456 |     apply (rule continuous_on_subset [of "{1/2..1}"])
 | |
| 457 | apply (rule continuous_intros | simp add: image_affinity_atLeastAtMost_diff assms)+ | |
| 458 | done | |
| 459 |   then have 2: "continuous_on {1/2..1} (g1 +++ g2)"
 | |
| 460 |     apply (rule continuous_on_eq [of "{1/2..1}" "g2 o (\<lambda>x. 2*x-1)"])
 | |
| 461 | apply (rule assms continuous_intros | simp add: joinpaths_def mult.commute half_bounded_equal gg)+ | |
| 60303 | 462 | done | 
| 463 | show ?thesis | |
| 464 | apply (subst *) | |
| 465 | apply (rule continuous_on_union) | |
| 466 | using 1 2 | |
| 467 | apply auto | |
| 468 | done | |
| 469 | qed | |
| 470 | ||
| 471 | lemma path_join_imp: "\<lbrakk>path g1; path g2; pathfinish g1 = pathstart g2\<rbrakk> \<Longrightarrow> path(g1 +++ g2)" | |
| 472 | by (simp add: path_join) | |
| 473 | ||
| 474 | lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join | |
| 475 | ||
| 36583 | 476 | lemma simple_path_join_loop: | 
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 477 | assumes "arc g1" "arc g2" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 478 | "pathfinish g1 = pathstart g2" "pathfinish g2 = pathstart g1" | 
| 60303 | 479 |           "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g1, pathstart g2}"
 | 
| 480 | shows "simple_path(g1 +++ g2)" | |
| 481 | proof - | |
| 482 |   have injg1: "inj_on g1 {0..1}"
 | |
| 483 | using assms | |
| 484 | by (simp add: arc_def) | |
| 485 |   have injg2: "inj_on g2 {0..1}"
 | |
| 486 | using assms | |
| 487 | by (simp add: arc_def) | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 488 | have g12: "g1 1 = g2 0" | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 489 | and g21: "g2 1 = g1 0" | 
| 60303 | 490 |    and sb:  "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g1 0, g2 0}"
 | 
| 491 | using assms | |
| 492 | by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) | |
| 493 |   { fix x and y::real
 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 494 | assume xyI: "x = 1 \<longrightarrow> y \<noteq> 0" | 
| 60303 | 495 | and xy: "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1" "g2 (2 * x - 1) = g1 (2 * y)" | 
| 496 |     have g1im: "g1 (2 * y) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}"
 | |
| 497 | using xy | |
| 498 | apply simp | |
| 499 | apply (rule_tac x="2 * x - 1" in image_eqI, auto) | |
| 500 | done | |
| 501 | have False | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 502 | using subsetD [OF sb g1im] xy | 
| 60303 | 503 | apply auto | 
| 504 | apply (drule inj_onD [OF injg1]) | |
| 505 | using g21 [symmetric] xyI | |
| 506 | apply (auto dest: inj_onD [OF injg2]) | |
| 507 | done | |
| 508 | } note * = this | |
| 509 |   { fix x and y::real
 | |
| 510 | assume xy: "y \<le> 1" "0 \<le> x" "\<not> y * 2 \<le> 1" "x * 2 \<le> 1" "g1 (2 * x) = g2 (2 * y - 1)" | |
| 511 |     have g1im: "g1 (2 * x) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}"
 | |
| 512 | using xy | |
| 513 | apply simp | |
| 514 | apply (rule_tac x="2 * x" in image_eqI, auto) | |
| 515 | done | |
| 516 | have "x = 0 \<and> y = 1" | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 517 | using subsetD [OF sb g1im] xy | 
| 60303 | 518 | apply auto | 
| 519 | apply (force dest: inj_onD [OF injg1]) | |
| 520 | using g21 [symmetric] | |
| 521 | apply (auto dest: inj_onD [OF injg2]) | |
| 522 | done | |
| 523 | } note ** = this | |
| 524 | show ?thesis | |
| 525 | using assms | |
| 526 | apply (simp add: arc_def simple_path_def path_join, clarify) | |
| 527 | apply (simp add: joinpaths_def split: split_if_asm) | |
| 528 | apply (force dest: inj_onD [OF injg1]) | |
| 529 | apply (metis *) | |
| 530 | apply (metis **) | |
| 531 | apply (force dest: inj_onD [OF injg2]) | |
| 532 | done | |
| 533 | qed | |
| 534 | ||
| 535 | lemma arc_join: | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 536 | assumes "arc g1" "arc g2" | 
| 60303 | 537 | "pathfinish g1 = pathstart g2" | 
| 538 |           "path_image g1 \<inter> path_image g2 \<subseteq> {pathstart g2}"
 | |
| 539 | shows "arc(g1 +++ g2)" | |
| 540 | proof - | |
| 541 |   have injg1: "inj_on g1 {0..1}"
 | |
| 542 | using assms | |
| 543 | by (simp add: arc_def) | |
| 544 |   have injg2: "inj_on g2 {0..1}"
 | |
| 545 | using assms | |
| 546 | by (simp add: arc_def) | |
| 547 | have g11: "g1 1 = g2 0" | |
| 548 |    and sb:  "g1 ` {0..1} \<inter> g2 ` {0..1} \<subseteq> {g2 0}"
 | |
| 549 | using assms | |
| 550 | by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def) | |
| 551 |   { fix x and y::real
 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 552 | assume xy: "x \<le> 1" "0 \<le> y" " y * 2 \<le> 1" "\<not> x * 2 \<le> 1" "g2 (2 * x - 1) = g1 (2 * y)" | 
| 60303 | 553 |     have g1im: "g1 (2 * y) \<in> g1 ` {0..1} \<inter> g2 ` {0..1}"
 | 
| 554 | using xy | |
| 555 | apply simp | |
| 556 | apply (rule_tac x="2 * x - 1" in image_eqI, auto) | |
| 557 | done | |
| 558 | have False | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 559 | using subsetD [OF sb g1im] xy | 
| 60303 | 560 | by (auto dest: inj_onD [OF injg2]) | 
| 561 | } note * = this | |
| 562 | show ?thesis | |
| 563 | apply (simp add: arc_def inj_on_def) | |
| 564 | apply (clarsimp simp add: arc_imp_path assms path_join) | |
| 565 | apply (simp add: joinpaths_def split: split_if_asm) | |
| 566 | apply (force dest: inj_onD [OF injg1]) | |
| 567 | apply (metis *) | |
| 568 | apply (metis *) | |
| 569 | apply (force dest: inj_onD [OF injg2]) | |
| 570 | done | |
| 571 | qed | |
| 572 | ||
| 573 | lemma reversepath_joinpaths: | |
| 574 | "pathfinish g1 = pathstart g2 \<Longrightarrow> reversepath(g1 +++ g2) = reversepath g2 +++ reversepath g1" | |
| 575 | unfolding reversepath_def pathfinish_def pathstart_def joinpaths_def | |
| 576 | by (rule ext) (auto simp: mult.commute) | |
| 577 | ||
| 578 | ||
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 579 | section\<open>Choosing a subpath of an existing path\<close> | 
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 580 | |
| 60303 | 581 | definition subpath :: "real \<Rightarrow> real \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> real \<Rightarrow> 'a::real_normed_vector" | 
| 582 | where "subpath a b g \<equiv> \<lambda>x. g((b - a) * x + a)" | |
| 583 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 584 | lemma path_image_subpath_gen [simp]: | 
| 60303 | 585 | fixes g :: "real \<Rightarrow> 'a::real_normed_vector" | 
| 586 | shows "path_image(subpath u v g) = g ` (closed_segment u v)" | |
| 587 | apply (simp add: closed_segment_real_eq path_image_def subpath_def) | |
| 588 | apply (subst o_def [of g, symmetric]) | |
| 589 | apply (simp add: image_comp [symmetric]) | |
| 590 | done | |
| 591 | ||
| 592 | lemma path_image_subpath [simp]: | |
| 593 | fixes g :: "real \<Rightarrow> 'a::real_normed_vector" | |
| 594 |   shows "path_image(subpath u v g) = (if u \<le> v then g ` {u..v} else g ` {v..u})"
 | |
| 595 | by (simp add: closed_segment_eq_real_ivl) | |
| 596 | ||
| 597 | lemma path_subpath [simp]: | |
| 598 | fixes g :: "real \<Rightarrow> 'a::real_normed_vector" | |
| 599 |   assumes "path g" "u \<in> {0..1}" "v \<in> {0..1}"
 | |
| 600 | shows "path(subpath u v g)" | |
| 601 | proof - | |
| 602 |   have "continuous_on {0..1} (g o (\<lambda>x. ((v-u) * x+ u)))"
 | |
| 603 | apply (rule continuous_intros | simp)+ | |
| 604 | apply (simp add: image_affinity_atLeastAtMost [where c=u]) | |
| 605 | using assms | |
| 606 | apply (auto simp: path_def continuous_on_subset) | |
| 607 | done | |
| 608 | then show ?thesis | |
| 609 | by (simp add: path_def subpath_def) | |
| 49653 | 610 | qed | 
| 36583 | 611 | |
| 60303 | 612 | lemma pathstart_subpath [simp]: "pathstart(subpath u v g) = g(u)" | 
| 613 | by (simp add: pathstart_def subpath_def) | |
| 614 | ||
| 615 | lemma pathfinish_subpath [simp]: "pathfinish(subpath u v g) = g(v)" | |
| 616 | by (simp add: pathfinish_def subpath_def) | |
| 617 | ||
| 618 | lemma subpath_trivial [simp]: "subpath 0 1 g = g" | |
| 619 | by (simp add: subpath_def) | |
| 620 | ||
| 621 | lemma subpath_reversepath: "subpath 1 0 g = reversepath g" | |
| 622 | by (simp add: reversepath_def subpath_def) | |
| 623 | ||
| 624 | lemma reversepath_subpath: "reversepath(subpath u v g) = subpath v u g" | |
| 625 | by (simp add: reversepath_def subpath_def algebra_simps) | |
| 626 | ||
| 627 | lemma subpath_translation: "subpath u v ((\<lambda>x. a + x) o g) = (\<lambda>x. a + x) o subpath u v g" | |
| 628 | by (rule ext) (simp add: subpath_def) | |
| 629 | ||
| 630 | lemma subpath_linear_image: "linear f \<Longrightarrow> subpath u v (f o g) = f o subpath u v g" | |
| 631 | by (rule ext) (simp add: subpath_def) | |
| 632 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 633 | lemma affine_ineq: | 
| 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 634 | fixes x :: "'a::linordered_idom" | 
| 60303 | 635 | assumes "x \<le> 1" "v < u" | 
| 636 | shows "v + x * u \<le> u + x * v" | |
| 637 | proof - | |
| 638 | have "(1-x)*(u-v) \<ge> 0" | |
| 639 | using assms by auto | |
| 640 | then show ?thesis | |
| 641 | by (simp add: algebra_simps) | |
| 49653 | 642 | qed | 
| 36583 | 643 | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 644 | lemma simple_path_subpath_eq: | 
| 60303 | 645 | "simple_path(subpath u v g) \<longleftrightarrow> | 
| 646 | path(subpath u v g) \<and> u\<noteq>v \<and> | |
| 647 | (\<forall>x y. x \<in> closed_segment u v \<and> y \<in> closed_segment u v \<and> g x = g y | |
| 648 | \<longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u)" | |
| 649 | (is "?lhs = ?rhs") | |
| 650 | proof (rule iffI) | |
| 651 | assume ?lhs | |
| 652 | then have p: "path (\<lambda>x. g ((v - u) * x + u))" | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 653 |         and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk>
 | 
| 60303 | 654 | \<Longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)" | 
| 655 | by (auto simp: simple_path_def subpath_def) | |
| 656 |   { fix x y
 | |
| 657 | assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y" | |
| 658 | then have "x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" | |
| 659 | using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 660 | by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost divide_simps | 
| 60303 | 661 | split: split_if_asm) | 
| 662 | } moreover | |
| 663 | have "path(subpath u v g) \<and> u\<noteq>v" | |
| 664 | using sim [of "1/3" "2/3"] p | |
| 665 | by (auto simp: subpath_def) | |
| 666 | ultimately show ?rhs | |
| 667 | by metis | |
| 668 | next | |
| 669 | assume ?rhs | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 670 | then | 
| 60303 | 671 | have d1: "\<And>x y. \<lbrakk>g x = g y; u \<le> x; x \<le> v; u \<le> y; y \<le> v\<rbrakk> \<Longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" | 
| 672 | and d2: "\<And>x y. \<lbrakk>g x = g y; v \<le> x; x \<le> u; v \<le> y; y \<le> u\<rbrakk> \<Longrightarrow> x = y \<or> x = u \<and> y = v \<or> x = v \<and> y = u" | |
| 673 | and ne: "u < v \<or> v < u" | |
| 674 | and psp: "path (subpath u v g)" | |
| 675 | by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost) | |
| 676 | have [simp]: "\<And>x. u + x * v = v + x * u \<longleftrightarrow> u=v \<or> x=1" | |
| 677 | by algebra | |
| 678 | show ?lhs using psp ne | |
| 679 | unfolding simple_path_def subpath_def | |
| 680 | by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2) | |
| 681 | qed | |
| 682 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 683 | lemma arc_subpath_eq: | 
| 60303 | 684 | "arc(subpath u v g) \<longleftrightarrow> path(subpath u v g) \<and> u\<noteq>v \<and> inj_on g (closed_segment u v)" | 
| 685 | (is "?lhs = ?rhs") | |
| 686 | proof (rule iffI) | |
| 687 | assume ?lhs | |
| 688 | then have p: "path (\<lambda>x. g ((v - u) * x + u))" | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 689 |         and sim: "(\<And>x y. \<lbrakk>x\<in>{0..1}; y\<in>{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)\<rbrakk>
 | 
| 60303 | 690 | \<Longrightarrow> x = y)" | 
| 691 | by (auto simp: arc_def inj_on_def subpath_def) | |
| 692 |   { fix x y
 | |
| 693 | assume "x \<in> closed_segment u v" "y \<in> closed_segment u v" "g x = g y" | |
| 694 | then have "x = y" | |
| 695 | using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 696 | by (force simp add: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost divide_simps | 
| 60303 | 697 | split: split_if_asm) | 
| 698 | } moreover | |
| 699 | have "path(subpath u v g) \<and> u\<noteq>v" | |
| 700 | using sim [of "1/3" "2/3"] p | |
| 701 | by (auto simp: subpath_def) | |
| 702 | ultimately show ?rhs | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 703 | unfolding inj_on_def | 
| 60303 | 704 | by metis | 
| 705 | next | |
| 706 | assume ?rhs | |
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 707 | then | 
| 60303 | 708 | have d1: "\<And>x y. \<lbrakk>g x = g y; u \<le> x; x \<le> v; u \<le> y; y \<le> v\<rbrakk> \<Longrightarrow> x = y" | 
| 709 | and d2: "\<And>x y. \<lbrakk>g x = g y; v \<le> x; x \<le> u; v \<le> y; y \<le> u\<rbrakk> \<Longrightarrow> x = y" | |
| 710 | and ne: "u < v \<or> v < u" | |
| 711 | and psp: "path (subpath u v g)" | |
| 712 | by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost) | |
| 713 | show ?lhs using psp ne | |
| 714 | unfolding arc_def subpath_def inj_on_def | |
| 715 | by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2) | |
| 716 | qed | |
| 717 | ||
| 718 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 719 | lemma simple_path_subpath: | 
| 60303 | 720 |   assumes "simple_path g" "u \<in> {0..1}" "v \<in> {0..1}" "u \<noteq> v"
 | 
| 721 | shows "simple_path(subpath u v g)" | |
| 722 | using assms | |
| 723 | apply (simp add: simple_path_subpath_eq simple_path_imp_path) | |
| 724 | apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce) | |
| 725 | done | |
| 726 | ||
| 727 | lemma arc_simple_path_subpath: | |
| 728 |     "\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; g u \<noteq> g v\<rbrakk> \<Longrightarrow> arc(subpath u v g)"
 | |
| 729 | by (force intro: simple_path_subpath simple_path_imp_arc) | |
| 730 | ||
| 731 | lemma arc_subpath_arc: | |
| 732 |     "\<lbrakk>arc g; u \<in> {0..1}; v \<in> {0..1}; u \<noteq> v\<rbrakk> \<Longrightarrow> arc(subpath u v g)"
 | |
| 733 | by (meson arc_def arc_imp_simple_path arc_simple_path_subpath inj_onD) | |
| 734 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 735 | lemma arc_simple_path_subpath_interior: | 
| 60303 | 736 |     "\<lbrakk>simple_path g; u \<in> {0..1}; v \<in> {0..1}; u \<noteq> v; \<bar>u-v\<bar> < 1\<rbrakk> \<Longrightarrow> arc(subpath u v g)"
 | 
| 737 | apply (rule arc_simple_path_subpath) | |
| 738 | apply (force simp: simple_path_def)+ | |
| 739 | done | |
| 740 | ||
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 741 | lemma path_image_subpath_subset: | 
| 60303 | 742 |     "\<lbrakk>path g; u \<in> {0..1}; v \<in> {0..1}\<rbrakk> \<Longrightarrow> path_image(subpath u v g) \<subseteq> path_image g"
 | 
| 743 | apply (simp add: closed_segment_real_eq image_affinity_atLeastAtMost) | |
| 744 | apply (auto simp: path_image_def) | |
| 745 | done | |
| 746 | ||
| 747 | lemma join_subpaths_middle: "subpath (0) ((1 / 2)) p +++ subpath ((1 / 2)) 1 p = p" | |
| 748 | by (rule ext) (simp add: joinpaths_def subpath_def divide_simps) | |
| 53640 | 749 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 750 | subsection\<open>There is a subpath to the frontier\<close> | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 751 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 752 | lemma subpath_to_frontier_explicit: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 753 | fixes S :: "'a::metric_space set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 754 | assumes g: "path g" and "pathfinish g \<notin> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 755 | obtains u where "0 \<le> u" "u \<le> 1" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 756 | "\<And>x. 0 \<le> x \<and> x < u \<Longrightarrow> g x \<in> interior S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 757 | "(g u \<notin> interior S)" "(u = 0 \<or> g u \<in> closure S)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 758 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 759 |   have gcon: "continuous_on {0..1} g"     using g by (simp add: path_def)
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 760 |   then have com: "compact ({0..1} \<inter> {u. g u \<in> closure (- S)})"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 761 |     apply (simp add: Int_commute [of "{0..1}"] compact_eq_bounded_closed closed_vimage_Int [unfolded vimage_def])
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 762 | using compact_eq_bounded_closed apply fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 763 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 764 |   have "1 \<in> {u. g u \<in> closure (- S)}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 765 | using assms by (simp add: pathfinish_def closure_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 766 |   then have dis: "{0..1} \<inter> {u. g u \<in> closure (- S)} \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 767 | using atLeastAtMost_iff zero_le_one by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 768 | then obtain u where "0 \<le> u" "u \<le> 1" and gu: "g u \<in> closure (- S)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 769 | and umin: "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1; g t \<in> closure (- S)\<rbrakk> \<Longrightarrow> u \<le> t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 770 | using compact_attains_inf [OF com dis] by fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 771 | then have umin': "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1; t < u\<rbrakk> \<Longrightarrow> g t \<in> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 772 | using closure_def by fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 773 |   { assume "u \<noteq> 0"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 774 | then have "u > 0" using `0 \<le> u` by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 775 |     { fix e::real assume "e > 0"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 776 |       obtain d where "d>0" and d: "\<And>x'. \<lbrakk>x' \<in> {0..1}; dist x' u < d\<rbrakk> \<Longrightarrow> dist (g x') (g u) < e"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 777 | using continuous_onD [OF gcon _ `e > 0`] `0 \<le> _` `_ \<le> 1` atLeastAtMost_iff by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 778 | have *: "dist (max 0 (u - d / 2)) u < d" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 779 | using `0 \<le> u` `u \<le> 1` `d > 0` by (simp add: dist_real_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 780 | have "\<exists>y\<in>S. dist y (g u) < e" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 781 | using `0 < u` `u \<le> 1` `d > 0` | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 782 | by (force intro: d [OF _ *] umin') | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 783 | } | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 784 | then have "g u \<in> closure S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 785 | by (simp add: frontier_def closure_approachable) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 786 | } | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 787 | then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 788 | apply (rule_tac u=u in that) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 789 | apply (auto simp: `0 \<le> u` `u \<le> 1` gu interior_closure umin) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 790 | using `_ \<le> 1` interior_closure umin apply fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 791 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 792 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 793 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 794 | lemma subpath_to_frontier_strong: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 795 | assumes g: "path g" and "pathfinish g \<notin> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 796 | obtains u where "0 \<le> u" "u \<le> 1" "g u \<notin> interior S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 797 | "u = 0 \<or> (\<forall>x. 0 \<le> x \<and> x < 1 \<longrightarrow> subpath 0 u g x \<in> interior S) \<and> g u \<in> closure S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 798 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 799 | obtain u where "0 \<le> u" "u \<le> 1" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 800 | and gxin: "\<And>x. 0 \<le> x \<and> x < u \<Longrightarrow> g x \<in> interior S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 801 | and gunot: "(g u \<notin> interior S)" and u0: "(u = 0 \<or> g u \<in> closure S)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 802 | using subpath_to_frontier_explicit [OF assms] by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 803 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 804 | apply (rule that [OF `0 \<le> u` `u \<le> 1`]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 805 | apply (simp add: gunot) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 806 | using `0 \<le> u` u0 by (force simp: subpath_def gxin) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 807 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 808 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 809 | lemma subpath_to_frontier: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 810 | assumes g: "path g" and g0: "pathstart g \<in> closure S" and g1: "pathfinish g \<notin> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 811 |     obtains u where "0 \<le> u" "u \<le> 1" "g u \<in> frontier S" "(path_image(subpath 0 u g) - {g u}) \<subseteq> interior S"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 812 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 813 | obtain u where "0 \<le> u" "u \<le> 1" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 814 | and notin: "g u \<notin> interior S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 815 | and disj: "u = 0 \<or> | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 816 | (\<forall>x. 0 \<le> x \<and> x < 1 \<longrightarrow> subpath 0 u g x \<in> interior S) \<and> g u \<in> closure S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 817 | using subpath_to_frontier_strong [OF g g1] by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 818 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 819 | apply (rule that [OF `0 \<le> u` `u \<le> 1`]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 820 | apply (metis DiffI disj frontier_def g0 notin pathstart_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 821 | using `0 \<le> u` g0 disj | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 822 | apply (simp add:) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 823 | apply (auto simp: closed_segment_eq_real_ivl pathstart_def pathfinish_def subpath_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 824 | apply (rename_tac y) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 825 | apply (drule_tac x="y/u" in spec) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 826 | apply (auto split: split_if_asm) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 827 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 828 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 829 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 830 | lemma exists_path_subpath_to_frontier: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 831 | fixes S :: "'a::real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 832 | assumes "path g" "pathstart g \<in> closure S" "pathfinish g \<notin> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 833 | obtains h where "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 834 |                     "path_image h - {pathfinish h} \<subseteq> interior S"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 835 | "pathfinish h \<in> frontier S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 836 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 837 |   obtain u where u: "0 \<le> u" "u \<le> 1" "g u \<in> frontier S" "(path_image(subpath 0 u g) - {g u}) \<subseteq> interior S"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 838 | using subpath_to_frontier [OF assms] by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 839 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 840 | apply (rule that [of "subpath 0 u g"]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 841 | using assms u | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 842 | apply simp_all | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 843 | apply (simp add: pathstart_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 844 | apply (force simp: closed_segment_eq_real_ivl path_image_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 845 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 846 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 847 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 848 | lemma exists_path_subpath_to_frontier_closed: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 849 | fixes S :: "'a::real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 850 | assumes S: "closed S" and g: "path g" and g0: "pathstart g \<in> S" and g1: "pathfinish g \<notin> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 851 | obtains h where "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g \<inter> S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 852 | "pathfinish h \<in> frontier S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 853 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 854 | obtain h where h: "path h" "pathstart h = pathstart g" "path_image h \<subseteq> path_image g" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 855 |                     "path_image h - {pathfinish h} \<subseteq> interior S"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 856 | "pathfinish h \<in> frontier S" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 857 | using exists_path_subpath_to_frontier [OF g _ g1] closure_closed [OF S] g0 by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 858 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 859 | apply (rule that [OF `path h`]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 860 | using assms h | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 861 | apply auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 862 | apply (metis diff_single_insert frontier_subset_eq insert_iff interior_subset subset_iff) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 863 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 864 | qed | 
| 49653 | 865 | |
| 60420 | 866 | subsection \<open>Reparametrizing a closed curve to start at some chosen point\<close> | 
| 36583 | 867 | |
| 53640 | 868 | definition shiftpath :: "real \<Rightarrow> (real \<Rightarrow> 'a::topological_space) \<Rightarrow> real \<Rightarrow> 'a" | 
| 869 | where "shiftpath a f = (\<lambda>x. if (a + x) \<le> 1 then f (a + x) else f (a + x - 1))" | |
| 36583 | 870 | |
| 53640 | 871 | lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart (shiftpath a g) = g a" | 
| 36583 | 872 | unfolding pathstart_def shiftpath_def by auto | 
| 873 | ||
| 49653 | 874 | lemma pathfinish_shiftpath: | 
| 53640 | 875 | assumes "0 \<le> a" | 
| 876 | and "pathfinish g = pathstart g" | |
| 877 | shows "pathfinish (shiftpath a g) = g a" | |
| 878 | using assms | |
| 879 | unfolding pathstart_def pathfinish_def shiftpath_def | |
| 36583 | 880 | by auto | 
| 881 | ||
| 882 | lemma endpoints_shiftpath: | |
| 53640 | 883 | assumes "pathfinish g = pathstart g" | 
| 884 |     and "a \<in> {0 .. 1}"
 | |
| 885 | shows "pathfinish (shiftpath a g) = g a" | |
| 886 | and "pathstart (shiftpath a g) = g a" | |
| 887 | using assms | |
| 888 | by (auto intro!: pathfinish_shiftpath pathstart_shiftpath) | |
| 36583 | 889 | |
| 890 | lemma closed_shiftpath: | |
| 53640 | 891 | assumes "pathfinish g = pathstart g" | 
| 892 |     and "a \<in> {0..1}"
 | |
| 893 | shows "pathfinish (shiftpath a g) = pathstart (shiftpath a g)" | |
| 894 | using endpoints_shiftpath[OF assms] | |
| 895 | by auto | |
| 36583 | 896 | |
| 897 | lemma path_shiftpath: | |
| 53640 | 898 | assumes "path g" | 
| 899 | and "pathfinish g = pathstart g" | |
| 900 |     and "a \<in> {0..1}"
 | |
| 901 | shows "path (shiftpath a g)" | |
| 49653 | 902 | proof - | 
| 53640 | 903 |   have *: "{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}"
 | 
| 904 | using assms(3) by auto | |
| 49653 | 905 | have **: "\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)" | 
| 53640 | 906 | using assms(2)[unfolded pathfinish_def pathstart_def] | 
| 907 | by auto | |
| 49653 | 908 | show ?thesis | 
| 909 | unfolding path_def shiftpath_def * | |
| 910 | apply (rule continuous_on_union) | |
| 911 | apply (rule closed_real_atLeastAtMost)+ | |
| 53640 | 912 | apply (rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) | 
| 913 | prefer 3 | |
| 914 | apply (rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) | |
| 915 | prefer 3 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 916 | apply (rule continuous_intros)+ | 
| 53640 | 917 | prefer 2 | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 918 | apply (rule continuous_intros)+ | 
| 49653 | 919 | apply (rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) | 
| 920 | using assms(3) and ** | |
| 53640 | 921 | apply auto | 
| 922 | apply (auto simp add: field_simps) | |
| 49653 | 923 | done | 
| 924 | qed | |
| 36583 | 925 | |
| 49653 | 926 | lemma shiftpath_shiftpath: | 
| 53640 | 927 | assumes "pathfinish g = pathstart g" | 
| 928 |     and "a \<in> {0..1}"
 | |
| 929 |     and "x \<in> {0..1}"
 | |
| 36583 | 930 | shows "shiftpath (1 - a) (shiftpath a g) x = g x" | 
| 53640 | 931 | using assms | 
| 932 | unfolding pathfinish_def pathstart_def shiftpath_def | |
| 933 | by auto | |
| 36583 | 934 | |
| 935 | lemma path_image_shiftpath: | |
| 53640 | 936 |   assumes "a \<in> {0..1}"
 | 
| 937 | and "pathfinish g = pathstart g" | |
| 938 | shows "path_image (shiftpath a g) = path_image g" | |
| 49653 | 939 | proof - | 
| 940 |   { fix x
 | |
| 53640 | 941 |     assume as: "g 1 = g 0" "x \<in> {0..1::real}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a + x \<le> 1}. g x \<noteq> g (a + y - 1)"
 | 
| 49654 | 942 |     then have "\<exists>y\<in>{0..1} \<inter> {x. a + x \<le> 1}. g x = g (a + y)"
 | 
| 49653 | 943 | proof (cases "a \<le> x") | 
| 944 | case False | |
| 49654 | 945 | then show ?thesis | 
| 49653 | 946 | apply (rule_tac x="1 + x - a" in bexI) | 
| 36583 | 947 | using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1) | 
| 49653 | 948 | apply (auto simp add: field_simps atomize_not) | 
| 949 | done | |
| 950 | next | |
| 951 | case True | |
| 53640 | 952 | then show ?thesis | 
| 953 | using as(1-2) and assms(1) | |
| 954 | apply (rule_tac x="x - a" in bexI) | |
| 955 | apply (auto simp add: field_simps) | |
| 956 | done | |
| 49653 | 957 | qed | 
| 958 | } | |
| 49654 | 959 | then show ?thesis | 
| 53640 | 960 | using assms | 
| 961 | unfolding shiftpath_def path_image_def pathfinish_def pathstart_def | |
| 962 | by (auto simp add: image_iff) | |
| 49653 | 963 | qed | 
| 964 | ||
| 36583 | 965 | |
| 60420 | 966 | subsection \<open>Special case of straight-line paths\<close> | 
| 36583 | 967 | |
| 49653 | 968 | definition linepath :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> real \<Rightarrow> 'a" | 
| 969 | where "linepath a b = (\<lambda>x. (1 - x) *\<^sub>R a + x *\<^sub>R b)" | |
| 36583 | 970 | |
| 53640 | 971 | lemma pathstart_linepath[simp]: "pathstart (linepath a b) = a" | 
| 972 | unfolding pathstart_def linepath_def | |
| 973 | by auto | |
| 36583 | 974 | |
| 53640 | 975 | lemma pathfinish_linepath[simp]: "pathfinish (linepath a b) = b" | 
| 976 | unfolding pathfinish_def linepath_def | |
| 977 | by auto | |
| 36583 | 978 | |
| 979 | lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" | |
| 53640 | 980 | unfolding linepath_def | 
| 981 | by (intro continuous_intros) | |
| 36583 | 982 | |
| 983 | lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)" | |
| 53640 | 984 | using continuous_linepath_at | 
| 985 | by (auto intro!: continuous_at_imp_continuous_on) | |
| 36583 | 986 | |
| 53640 | 987 | lemma path_linepath[intro]: "path (linepath a b)" | 
| 988 | unfolding path_def | |
| 989 | by (rule continuous_on_linepath) | |
| 36583 | 990 | |
| 53640 | 991 | lemma path_image_linepath[simp]: "path_image (linepath a b) = closed_segment a b" | 
| 49653 | 992 | unfolding path_image_def segment linepath_def | 
| 60303 | 993 | by auto | 
| 49653 | 994 | |
| 53640 | 995 | lemma reversepath_linepath[simp]: "reversepath (linepath a b) = linepath b a" | 
| 49653 | 996 | unfolding reversepath_def linepath_def | 
| 36583 | 997 | by auto | 
| 998 | ||
| 60303 | 999 | lemma arc_linepath: | 
| 49653 | 1000 | assumes "a \<noteq> b" | 
| 60303 | 1001 | shows "arc (linepath a b)" | 
| 36583 | 1002 | proof - | 
| 53640 | 1003 |   {
 | 
| 1004 | fix x y :: "real" | |
| 36583 | 1005 | assume "x *\<^sub>R b + y *\<^sub>R a = x *\<^sub>R a + y *\<^sub>R b" | 
| 53640 | 1006 | then have "(x - y) *\<^sub>R a = (x - y) *\<^sub>R b" | 
| 1007 | by (simp add: algebra_simps) | |
| 1008 | with assms have "x = y" | |
| 1009 | by simp | |
| 1010 | } | |
| 49654 | 1011 | then show ?thesis | 
| 60809 
457abb82fb9e
the Cauchy integral theorem and related material
 paulson <lp15@cam.ac.uk> parents: 
60420diff
changeset | 1012 | unfolding arc_def inj_on_def | 
| 60303 | 1013 | by (simp add: path_linepath) (force simp: algebra_simps linepath_def) | 
| 49653 | 1014 | qed | 
| 36583 | 1015 | |
| 53640 | 1016 | lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path (linepath a b)" | 
| 60303 | 1017 | by (simp add: arc_imp_simple_path arc_linepath) | 
| 49653 | 1018 | |
| 36583 | 1019 | |
| 60420 | 1020 | subsection \<open>Bounding a point away from a path\<close> | 
| 36583 | 1021 | |
| 1022 | lemma not_on_path_ball: | |
| 1023 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 53640 | 1024 | assumes "path g" | 
| 1025 | and "z \<notin> path_image g" | |
| 1026 |   shows "\<exists>e > 0. ball z e \<inter> path_image g = {}"
 | |
| 49653 | 1027 | proof - | 
| 1028 | obtain a where "a \<in> path_image g" "\<forall>y \<in> path_image g. dist z a \<le> dist z y" | |
| 36583 | 1029 | using distance_attains_inf[OF _ path_image_nonempty, of g z] | 
| 1030 | using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto | |
| 49654 | 1031 | then show ?thesis | 
| 49653 | 1032 | apply (rule_tac x="dist z a" in exI) | 
| 1033 | using assms(2) | |
| 1034 | apply (auto intro!: dist_pos_lt) | |
| 1035 | done | |
| 1036 | qed | |
| 36583 | 1037 | |
| 1038 | lemma not_on_path_cball: | |
| 1039 | fixes g :: "real \<Rightarrow> 'a::heine_borel" | |
| 53640 | 1040 | assumes "path g" | 
| 1041 | and "z \<notin> path_image g" | |
| 49653 | 1042 |   shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}"
 | 
| 1043 | proof - | |
| 53640 | 1044 |   obtain e where "ball z e \<inter> path_image g = {}" "e > 0"
 | 
| 49653 | 1045 | using not_on_path_ball[OF assms] by auto | 
| 53640 | 1046 | moreover have "cball z (e/2) \<subseteq> ball z e" | 
| 60420 | 1047 | using \<open>e > 0\<close> by auto | 
| 53640 | 1048 | ultimately show ?thesis | 
| 1049 | apply (rule_tac x="e/2" in exI) | |
| 1050 | apply auto | |
| 1051 | done | |
| 49653 | 1052 | qed | 
| 1053 | ||
| 36583 | 1054 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1055 | section \<open>Path component, considered as a "joinability" relation (from Tom Hales)\<close> | 
| 36583 | 1056 | |
| 49653 | 1057 | definition "path_component s x y \<longleftrightarrow> | 
| 1058 | (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 36583 | 1059 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1060 | abbreviation | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1061 | "path_component_set s x \<equiv> Collect (path_component s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1062 | |
| 53640 | 1063 | lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def | 
| 36583 | 1064 | |
| 49653 | 1065 | lemma path_component_mem: | 
| 1066 | assumes "path_component s x y" | |
| 53640 | 1067 | shows "x \<in> s" and "y \<in> s" | 
| 1068 | using assms | |
| 1069 | unfolding path_defs | |
| 1070 | by auto | |
| 36583 | 1071 | |
| 49653 | 1072 | lemma path_component_refl: | 
| 1073 | assumes "x \<in> s" | |
| 1074 | shows "path_component s x x" | |
| 1075 | unfolding path_defs | |
| 1076 | apply (rule_tac x="\<lambda>u. x" in exI) | |
| 53640 | 1077 | using assms | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 1078 | apply (auto intro!: continuous_intros) | 
| 53640 | 1079 | done | 
| 36583 | 1080 | |
| 1081 | lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s" | |
| 49653 | 1082 | by (auto intro!: path_component_mem path_component_refl) | 
| 36583 | 1083 | |
| 1084 | lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x" | |
| 49653 | 1085 | using assms | 
| 1086 | unfolding path_component_def | |
| 1087 | apply (erule exE) | |
| 1088 | apply (rule_tac x="reversepath g" in exI) | |
| 1089 | apply auto | |
| 1090 | done | |
| 36583 | 1091 | |
| 49653 | 1092 | lemma path_component_trans: | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1093 | assumes "path_component s x y" and "path_component s y z" | 
| 49653 | 1094 | shows "path_component s x z" | 
| 1095 | using assms | |
| 1096 | unfolding path_component_def | |
| 53640 | 1097 | apply (elim exE) | 
| 49653 | 1098 | apply (rule_tac x="g +++ ga" in exI) | 
| 1099 | apply (auto simp add: path_image_join) | |
| 1100 | done | |
| 36583 | 1101 | |
| 53640 | 1102 | lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y" | 
| 36583 | 1103 | unfolding path_component_def by auto | 
| 1104 | ||
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1105 | lemma path_connected_linepath: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1106 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1107 | shows "closed_segment a b \<subseteq> s \<Longrightarrow> path_component s a b" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1108 | apply (simp add: path_component_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1109 | apply (rule_tac x="linepath a b" in exI, auto) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1110 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1111 | |
| 49653 | 1112 | |
| 60420 | 1113 | text \<open>Can also consider it as a set, as the name suggests.\<close> | 
| 36583 | 1114 | |
| 49653 | 1115 | lemma path_component_set: | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1116 | "path_component_set s x = | 
| 49653 | 1117 |     {y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)}"
 | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1118 | by (auto simp: path_component_def) | 
| 36583 | 1119 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1120 | lemma path_component_subset: "path_component_set s x \<subseteq> s" | 
| 60303 | 1121 | by (auto simp add: path_component_mem(2)) | 
| 36583 | 1122 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1123 | lemma path_component_eq_empty: "path_component_set s x = {} \<longleftrightarrow> x \<notin> s"
 | 
| 60303 | 1124 | using path_component_mem path_component_refl_eq | 
| 1125 | by fastforce | |
| 36583 | 1126 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1127 | lemma path_component_mono: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1128 | "s \<subseteq> t \<Longrightarrow> (path_component_set s x) \<subseteq> (path_component_set t x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1129 | by (simp add: Collect_mono path_component_of_subset) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1130 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1131 | lemma path_component_eq: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1132 | "y \<in> path_component_set s x \<Longrightarrow> path_component_set s y = path_component_set s x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1133 | by (metis (no_types, lifting) Collect_cong mem_Collect_eq path_component_sym path_component_trans) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1134 | |
| 60420 | 1135 | subsection \<open>Path connectedness of a space\<close> | 
| 36583 | 1136 | |
| 49653 | 1137 | definition "path_connected s \<longleftrightarrow> | 
| 53640 | 1138 | (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | 
| 36583 | 1139 | |
| 1140 | lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)" | |
| 1141 | unfolding path_connected_def path_component_def by auto | |
| 1142 | ||
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1143 | lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component_set s x = s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1144 | unfolding path_connected_component path_component_subset | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1145 | using path_component_mem by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1146 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1147 | lemma path_component_maximal: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1148 | "\<lbrakk>x \<in> t; path_connected t; t \<subseteq> s\<rbrakk> \<Longrightarrow> t \<subseteq> (path_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1149 | by (metis path_component_mono path_connected_component_set) | 
| 36583 | 1150 | |
| 60420 | 1151 | subsection \<open>Some useful lemmas about path-connectedness\<close> | 
| 36583 | 1152 | |
| 1153 | lemma convex_imp_path_connected: | |
| 1154 | fixes s :: "'a::real_normed_vector set" | |
| 53640 | 1155 | assumes "convex s" | 
| 1156 | shows "path_connected s" | |
| 49653 | 1157 | unfolding path_connected_def | 
| 53640 | 1158 | apply rule | 
| 1159 | apply rule | |
| 1160 | apply (rule_tac x = "linepath x y" in exI) | |
| 49653 | 1161 | unfolding path_image_linepath | 
| 1162 | using assms [unfolded convex_contains_segment] | |
| 1163 | apply auto | |
| 1164 | done | |
| 36583 | 1165 | |
| 49653 | 1166 | lemma path_connected_imp_connected: | 
| 1167 | assumes "path_connected s" | |
| 1168 | shows "connected s" | |
| 1169 | unfolding connected_def not_ex | |
| 53640 | 1170 | apply rule | 
| 1171 | apply rule | |
| 1172 | apply (rule ccontr) | |
| 49653 | 1173 | unfolding not_not | 
| 53640 | 1174 | apply (elim conjE) | 
| 49653 | 1175 | proof - | 
| 1176 | fix e1 e2 | |
| 1177 |   assume as: "open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 53640 | 1178 | then obtain x1 x2 where obt:"x1 \<in> e1 \<inter> s" "x2 \<in> e2 \<inter> s" | 
| 1179 | by auto | |
| 1180 | then obtain g where g: "path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2" | |
| 36583 | 1181 | using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto | 
| 49653 | 1182 |   have *: "connected {0..1::real}"
 | 
| 1183 | by (auto intro!: convex_connected convex_real_interval) | |
| 1184 |   have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}"
 | |
| 1185 | using as(3) g(2)[unfolded path_defs] by blast | |
| 1186 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}"
 | |
| 53640 | 1187 | using as(4) g(2)[unfolded path_defs] | 
| 1188 | unfolding subset_eq | |
| 1189 | by auto | |
| 49653 | 1190 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}"
 | 
| 53640 | 1191 | using g(3,4)[unfolded path_defs] | 
| 1192 | using obt | |
| 36583 | 1193 | by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl) | 
| 49653 | 1194 | ultimately show False | 
| 53640 | 1195 | using *[unfolded connected_local not_ex, rule_format, | 
| 1196 |       of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1197 | using continuous_openin_preimage[OF g(1)[unfolded path_def] as(1)] | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1198 | using continuous_openin_preimage[OF g(1)[unfolded path_def] as(2)] | 
| 49653 | 1199 | by auto | 
| 1200 | qed | |
| 36583 | 1201 | |
| 1202 | lemma open_path_component: | |
| 53593 | 1203 | fixes s :: "'a::real_normed_vector set" | 
| 49653 | 1204 | assumes "open s" | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1205 | shows "open (path_component_set s x)" | 
| 49653 | 1206 | unfolding open_contains_ball | 
| 1207 | proof | |
| 1208 | fix y | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1209 | assume as: "y \<in> path_component_set s x" | 
| 49654 | 1210 | then have "y \<in> s" | 
| 49653 | 1211 | apply - | 
| 1212 | apply (rule path_component_mem(2)) | |
| 1213 | unfolding mem_Collect_eq | |
| 1214 | apply auto | |
| 1215 | done | |
| 53640 | 1216 | then obtain e where e: "e > 0" "ball y e \<subseteq> s" | 
| 1217 | using assms[unfolded open_contains_ball] | |
| 1218 | by auto | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1219 | show "\<exists>e > 0. ball y e \<subseteq> path_component_set s x" | 
| 49653 | 1220 | apply (rule_tac x=e in exI) | 
| 60420 | 1221 | apply (rule,rule \<open>e>0\<close>) | 
| 53640 | 1222 | apply rule | 
| 49653 | 1223 | unfolding mem_ball mem_Collect_eq | 
| 1224 | proof - | |
| 1225 | fix z | |
| 1226 | assume "dist y z < e" | |
| 49654 | 1227 | then show "path_component s x z" | 
| 53640 | 1228 | apply (rule_tac path_component_trans[of _ _ y]) | 
| 1229 | defer | |
| 49653 | 1230 | apply (rule path_component_of_subset[OF e(2)]) | 
| 1231 | apply (rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) | |
| 60420 | 1232 | using \<open>e > 0\<close> as | 
| 49653 | 1233 | apply auto | 
| 1234 | done | |
| 1235 | qed | |
| 1236 | qed | |
| 36583 | 1237 | |
| 1238 | lemma open_non_path_component: | |
| 53593 | 1239 | fixes s :: "'a::real_normed_vector set" | 
| 49653 | 1240 | assumes "open s" | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1241 | shows "open (s - path_component_set s x)" | 
| 49653 | 1242 | unfolding open_contains_ball | 
| 1243 | proof | |
| 1244 | fix y | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1245 | assume as: "y \<in> s - path_component_set s x" | 
| 53640 | 1246 | then obtain e where e: "e > 0" "ball y e \<subseteq> s" | 
| 1247 | using assms [unfolded open_contains_ball] | |
| 1248 | by auto | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1249 | show "\<exists>e>0. ball y e \<subseteq> s - path_component_set s x" | 
| 49653 | 1250 | apply (rule_tac x=e in exI) | 
| 53640 | 1251 | apply rule | 
| 60420 | 1252 | apply (rule \<open>e>0\<close>) | 
| 53640 | 1253 | apply rule | 
| 1254 | apply rule | |
| 1255 | defer | |
| 49653 | 1256 | proof (rule ccontr) | 
| 1257 | fix z | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1258 | assume "z \<in> ball y e" "\<not> z \<notin> path_component_set s x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1259 | then have "y \<in> path_component_set s x" | 
| 60420 | 1260 | unfolding not_not mem_Collect_eq using \<open>e>0\<close> | 
| 49653 | 1261 | apply - | 
| 1262 | apply (rule path_component_trans, assumption) | |
| 1263 | apply (rule path_component_of_subset[OF e(2)]) | |
| 1264 | apply (rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) | |
| 1265 | apply auto | |
| 1266 | done | |
| 53640 | 1267 | then show False | 
| 1268 | using as by auto | |
| 49653 | 1269 | qed (insert e(2), auto) | 
| 1270 | qed | |
| 36583 | 1271 | |
| 1272 | lemma connected_open_path_connected: | |
| 53593 | 1273 | fixes s :: "'a::real_normed_vector set" | 
| 53640 | 1274 | assumes "open s" | 
| 1275 | and "connected s" | |
| 49653 | 1276 | shows "path_connected s" | 
| 1277 | unfolding path_connected_component_set | |
| 1278 | proof (rule, rule, rule path_component_subset, rule) | |
| 1279 | fix x y | |
| 53640 | 1280 | assume "x \<in> s" and "y \<in> s" | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1281 | show "y \<in> path_component_set s x" | 
| 49653 | 1282 | proof (rule ccontr) | 
| 53640 | 1283 | assume "\<not> ?thesis" | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1284 |     moreover have "path_component_set s x \<inter> s \<noteq> {}"
 | 
| 60420 | 1285 | using \<open>x \<in> s\<close> path_component_eq_empty path_component_subset[of s x] | 
| 53640 | 1286 | by auto | 
| 49653 | 1287 | ultimately | 
| 1288 | show False | |
| 60420 | 1289 | using \<open>y \<in> s\<close> open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] | 
| 53640 | 1290 | using assms(2)[unfolded connected_def not_ex, rule_format, | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1291 | of "path_component_set s x" "s - path_component_set s x"] | 
| 49653 | 1292 | by auto | 
| 1293 | qed | |
| 1294 | qed | |
| 36583 | 1295 | |
| 1296 | lemma path_connected_continuous_image: | |
| 53640 | 1297 | assumes "continuous_on s f" | 
| 1298 | and "path_connected s" | |
| 49653 | 1299 | shows "path_connected (f ` s)" | 
| 1300 | unfolding path_connected_def | |
| 1301 | proof (rule, rule) | |
| 1302 | fix x' y' | |
| 1303 | assume "x' \<in> f ` s" "y' \<in> f ` s" | |
| 53640 | 1304 | then obtain x y where x: "x \<in> s" and y: "y \<in> s" and x': "x' = f x" and y': "y' = f y" | 
| 1305 | by auto | |
| 1306 | from x y obtain g where "path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y" | |
| 1307 | using assms(2)[unfolded path_connected_def] by fast | |
| 49654 | 1308 | then show "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'" | 
| 53640 | 1309 | unfolding x' y' | 
| 49653 | 1310 | apply (rule_tac x="f \<circ> g" in exI) | 
| 1311 | unfolding path_defs | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51478diff
changeset | 1312 | apply (intro conjI continuous_on_compose continuous_on_subset[OF assms(1)]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51478diff
changeset | 1313 | apply auto | 
| 49653 | 1314 | done | 
| 1315 | qed | |
| 36583 | 1316 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1317 | lemma path_connected_segment: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1318 | fixes a :: "'a::real_normed_vector" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1319 | shows "path_connected (closed_segment a b)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1320 | by (simp add: convex_imp_path_connected) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1321 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1322 | lemma path_connected_open_segment: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1323 | fixes a :: "'a::real_normed_vector" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1324 | shows "path_connected (open_segment a b)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1325 | by (simp add: convex_imp_path_connected) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1326 | |
| 36583 | 1327 | lemma homeomorphic_path_connectedness: | 
| 53640 | 1328 | "s homeomorphic t \<Longrightarrow> path_connected s \<longleftrightarrow> path_connected t" | 
| 49653 | 1329 | unfolding homeomorphic_def homeomorphism_def | 
| 53640 | 1330 | apply (erule exE|erule conjE)+ | 
| 49653 | 1331 | apply rule | 
| 53640 | 1332 | apply (drule_tac f=f in path_connected_continuous_image) | 
| 1333 | prefer 3 | |
| 49653 | 1334 | apply (drule_tac f=g in path_connected_continuous_image) | 
| 1335 | apply auto | |
| 1336 | done | |
| 36583 | 1337 | |
| 1338 | lemma path_connected_empty: "path_connected {}"
 | |
| 1339 | unfolding path_connected_def by auto | |
| 1340 | ||
| 1341 | lemma path_connected_singleton: "path_connected {a}"
 | |
| 1342 | unfolding path_connected_def pathstart_def pathfinish_def path_image_def | |
| 53640 | 1343 | apply clarify | 
| 1344 | apply (rule_tac x="\<lambda>x. a" in exI) | |
| 1345 | apply (simp add: image_constant_conv) | |
| 36583 | 1346 | apply (simp add: path_def continuous_on_const) | 
| 1347 | done | |
| 1348 | ||
| 49653 | 1349 | lemma path_connected_Un: | 
| 53640 | 1350 | assumes "path_connected s" | 
| 1351 | and "path_connected t" | |
| 1352 |     and "s \<inter> t \<noteq> {}"
 | |
| 49653 | 1353 | shows "path_connected (s \<union> t)" | 
| 1354 | unfolding path_connected_component | |
| 1355 | proof (rule, rule) | |
| 1356 | fix x y | |
| 1357 | assume as: "x \<in> s \<union> t" "y \<in> s \<union> t" | |
| 53640 | 1358 | from assms(3) obtain z where "z \<in> s \<inter> t" | 
| 1359 | by auto | |
| 49654 | 1360 | then show "path_component (s \<union> t) x y" | 
| 49653 | 1361 | using as and assms(1-2)[unfolded path_connected_component] | 
| 53640 | 1362 | apply - | 
| 49653 | 1363 | apply (erule_tac[!] UnE)+ | 
| 1364 | apply (rule_tac[2-3] path_component_trans[of _ _ z]) | |
| 1365 | apply (auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) | |
| 1366 | done | |
| 1367 | qed | |
| 36583 | 1368 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1369 | lemma path_connected_UNION: | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1370 | assumes "\<And>i. i \<in> A \<Longrightarrow> path_connected (S i)" | 
| 49653 | 1371 | and "\<And>i. i \<in> A \<Longrightarrow> z \<in> S i" | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1372 | shows "path_connected (\<Union>i\<in>A. S i)" | 
| 49653 | 1373 | unfolding path_connected_component | 
| 1374 | proof clarify | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1375 | fix x i y j | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1376 | assume *: "i \<in> A" "x \<in> S i" "j \<in> A" "y \<in> S j" | 
| 49654 | 1377 | then have "path_component (S i) x z" and "path_component (S j) z y" | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1378 | using assms by (simp_all add: path_connected_component) | 
| 49654 | 1379 | then have "path_component (\<Union>i\<in>A. S i) x z" and "path_component (\<Union>i\<in>A. S i) z y" | 
| 48125 
602dc0215954
tuned proofs -- prefer direct "rotated" instead of old-style COMP;
 wenzelm parents: 
44647diff
changeset | 1380 | using *(1,3) by (auto elim!: path_component_of_subset [rotated]) | 
| 49654 | 1381 | then show "path_component (\<Union>i\<in>A. S i) x y" | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1382 | by (rule path_component_trans) | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1383 | qed | 
| 36583 | 1384 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1385 | lemma path_component_path_image_pathstart: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1386 | assumes p: "path p" and x: "x \<in> path_image p" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1387 | shows "path_component (path_image p) (pathstart p) x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1388 | using x | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1389 | proof (clarsimp simp add: path_image_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1390 | fix y | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1391 | assume "x = p y" and y: "0 \<le> y" "y \<le> 1" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1392 |   show "path_component (p ` {0..1}) (pathstart p) (p y)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1393 | proof (cases "y=0") | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1394 | case True then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1395 | by (simp add: path_component_refl_eq pathstart_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1396 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1397 |     case False have "continuous_on {0..1} (p o (op*y))"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1398 | apply (rule continuous_intros)+ | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1399 | using p [unfolded path_def] y | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1400 | apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1401 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1402 | then have "path (\<lambda>u. p (y * u))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1403 | by (simp add: path_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1404 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1405 | apply (simp add: path_component_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1406 | apply (rule_tac x = "\<lambda>u. p (y * u)" in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1407 | apply (intro conjI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1408 | using y False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1409 | apply (auto simp: mult_le_one pathstart_def pathfinish_def path_image_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1410 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1411 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1412 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1413 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1414 | lemma path_connected_path_image: "path p \<Longrightarrow> path_connected(path_image p)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1415 | unfolding path_connected_component | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1416 | by (meson path_component_path_image_pathstart path_component_sym path_component_trans) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1417 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1418 | lemma path_connected_path_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1419 | "path_connected (path_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1420 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1421 |   { fix y z
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1422 | assume pa: "path_component s x y" "path_component s x z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1423 | then have pae: "path_component_set s x = path_component_set s y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1424 | using path_component_eq by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1425 | have yz: "path_component s y z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1426 | using pa path_component_sym path_component_trans by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1427 | then have "\<exists>g. path g \<and> path_image g \<subseteq> path_component_set s x \<and> pathstart g = y \<and> pathfinish g = z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1428 | apply (simp add: path_component_def, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1429 | apply (rule_tac x=g in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1430 | by (simp add: pae path_component_maximal path_connected_path_image pathstart_in_path_image) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1431 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1432 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1433 | by (simp add: path_connected_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1434 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1435 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1436 | lemma path_component: "path_component s x y \<longleftrightarrow> (\<exists>t. path_connected t \<and> t \<subseteq> s \<and> x \<in> t \<and> y \<in> t)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1437 | apply (intro iffI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1438 | apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image pathstart_in_path_image) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1439 | using path_component_of_subset path_connected_component by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1440 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1441 | lemma path_component_path_component [simp]: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1442 | "path_component_set (path_component_set s x) x = path_component_set s x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1443 | proof (cases "x \<in> s") | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1444 | case True show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1445 | apply (rule subset_antisym) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1446 | apply (simp add: path_component_subset) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1447 | by (simp add: True path_component_maximal path_component_refl path_connected_path_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1448 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1449 | case False then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1450 | by (metis False empty_iff path_component_eq_empty) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1451 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1452 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1453 | lemma path_component_subset_connected_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1454 | "(path_component_set s x) \<subseteq> (connected_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1455 | proof (cases "x \<in> s") | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1456 | case True show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1457 | apply (rule connected_component_maximal) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1458 | apply (auto simp: True path_component_subset path_component_refl path_connected_imp_connected path_connected_path_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1459 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1460 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1461 | case False then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1462 | using path_component_eq_empty by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1463 | qed | 
| 49653 | 1464 | |
| 60420 | 1465 | subsection \<open>Sphere is path-connected\<close> | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36583diff
changeset | 1466 | |
| 36583 | 1467 | lemma path_connected_punctured_universe: | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1468 |   assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1469 |   shows "path_connected (- {a::'a})"
 | 
| 49653 | 1470 | proof - | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1471 |   let ?A = "{x::'a. \<exists>i\<in>Basis. x \<bullet> i < a \<bullet> i}"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1472 |   let ?B = "{x::'a. \<exists>i\<in>Basis. a \<bullet> i < x \<bullet> i}"
 | 
| 36583 | 1473 | |
| 49653 | 1474 | have A: "path_connected ?A" | 
| 1475 | unfolding Collect_bex_eq | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1476 | proof (rule path_connected_UNION) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1477 | fix i :: 'a | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1478 | assume "i \<in> Basis" | 
| 53640 | 1479 |     then show "(\<Sum>i\<in>Basis. (a \<bullet> i - 1)*\<^sub>R i) \<in> {x::'a. x \<bullet> i < a \<bullet> i}"
 | 
| 1480 | by simp | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1481 |     show "path_connected {x. x \<bullet> i < a \<bullet> i}"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1482 | using convex_imp_path_connected [OF convex_halfspace_lt, of i "a \<bullet> i"] | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1483 | by (simp add: inner_commute) | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1484 | qed | 
| 53640 | 1485 | have B: "path_connected ?B" | 
| 1486 | unfolding Collect_bex_eq | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1487 | proof (rule path_connected_UNION) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1488 | fix i :: 'a | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1489 | assume "i \<in> Basis" | 
| 53640 | 1490 |     then show "(\<Sum>i\<in>Basis. (a \<bullet> i + 1) *\<^sub>R i) \<in> {x::'a. a \<bullet> i < x \<bullet> i}"
 | 
| 1491 | by simp | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1492 |     show "path_connected {x. a \<bullet> i < x \<bullet> i}"
 | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1493 | using convex_imp_path_connected [OF convex_halfspace_gt, of "a \<bullet> i" i] | 
| 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1494 | by (simp add: inner_commute) | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1495 | qed | 
| 53640 | 1496 | obtain S :: "'a set" where "S \<subseteq> Basis" and "card S = Suc (Suc 0)" | 
| 1497 | using ex_card[OF assms] | |
| 1498 | by auto | |
| 1499 | then obtain b0 b1 :: 'a where "b0 \<in> Basis" and "b1 \<in> Basis" and "b0 \<noteq> b1" | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1500 | unfolding card_Suc_eq by auto | 
| 53640 | 1501 | then have "a + b0 - b1 \<in> ?A \<inter> ?B" | 
| 1502 | by (auto simp: inner_simps inner_Basis) | |
| 1503 |   then have "?A \<inter> ?B \<noteq> {}"
 | |
| 1504 | by fast | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1505 | with A B have "path_connected (?A \<union> ?B)" | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1506 | by (rule path_connected_Un) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
49654diff
changeset | 1507 |   also have "?A \<union> ?B = {x. \<exists>i\<in>Basis. x \<bullet> i \<noteq> a \<bullet> i}"
 | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1508 | unfolding neq_iff bex_disj_distrib Collect_disj_eq .. | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1509 |   also have "\<dots> = {x. x \<noteq> a}"
 | 
| 53640 | 1510 | unfolding euclidean_eq_iff [where 'a='a] | 
| 1511 | by (simp add: Bex_def) | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1512 |   also have "\<dots> = - {a}"
 | 
| 53640 | 1513 | by auto | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1514 | finally show ?thesis . | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1515 | qed | 
| 36583 | 1516 | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1517 | lemma path_connected_sphere: | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1518 |   assumes "2 \<le> DIM('a::euclidean_space)"
 | 
| 53640 | 1519 |   shows "path_connected {x::'a. norm (x - a) = r}"
 | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1520 | proof (rule linorder_cases [of r 0]) | 
| 49653 | 1521 | assume "r < 0" | 
| 53640 | 1522 |   then have "{x::'a. norm(x - a) = r} = {}"
 | 
| 1523 | by auto | |
| 1524 | then show ?thesis | |
| 1525 | using path_connected_empty by simp | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1526 | next | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1527 | assume "r = 0" | 
| 53640 | 1528 | then show ?thesis | 
| 1529 | using path_connected_singleton by simp | |
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1530 | next | 
| 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1531 | assume r: "0 < r" | 
| 53640 | 1532 |   have *: "{x::'a. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}"
 | 
| 1533 | apply (rule set_eqI) | |
| 1534 | apply rule | |
| 49653 | 1535 | unfolding image_iff | 
| 1536 | apply (rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) | |
| 1537 | unfolding mem_Collect_eq norm_scaleR | |
| 53640 | 1538 | using r | 
| 49653 | 1539 | apply (auto simp add: scaleR_right_diff_distrib) | 
| 1540 | done | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1541 |   have **: "{x::'a. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (- {0})"
 | 
| 53640 | 1542 | apply (rule set_eqI) | 
| 1543 | apply rule | |
| 49653 | 1544 | unfolding image_iff | 
| 1545 | apply (rule_tac x=x in bexI) | |
| 1546 | unfolding mem_Collect_eq | |
| 53640 | 1547 | apply (auto split: split_if_asm) | 
| 49653 | 1548 | done | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1549 |   have "continuous_on (- {0}) (\<lambda>x::'a. 1 / norm x)"
 | 
| 59557 | 1550 | by (auto intro!: continuous_intros) | 
| 53640 | 1551 | then show ?thesis | 
| 1552 | unfolding * ** | |
| 1553 | using path_connected_punctured_universe[OF assms] | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56188diff
changeset | 1554 | by (auto intro!: path_connected_continuous_image continuous_intros) | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 1555 | qed | 
| 36583 | 1556 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1557 | corollary connected_sphere: "2 \<le> DIM('a::euclidean_space) \<Longrightarrow> connected {x::'a. norm (x - a) = r}"
 | 
| 53640 | 1558 | using path_connected_sphere path_connected_imp_connected | 
| 1559 | by auto | |
| 36583 | 1560 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1561 | corollary path_connected_complement_bounded_convex: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1562 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1563 |     assumes "bounded s" "convex s" and 2: "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1564 | shows "path_connected (- s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1565 | proof (cases "s={}")
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1566 | case True then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1567 | using convex_imp_path_connected by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1568 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1569 | case False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1570 | then obtain a where "a \<in> s" by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1571 |   { fix x y assume "x \<notin> s" "y \<notin> s"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1572 | then have "x \<noteq> a" "y \<noteq> a" using `a \<in> s` by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1573 | then have bxy: "bounded(insert x (insert y s))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1574 | by (simp add: `bounded s`) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1575 | then obtain B::real where B: "0 < B" and Bx: "norm (a - x) < B" and By: "norm (a - y) < B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1576 | and "s \<subseteq> ball a B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1577 | using bounded_subset_ballD [OF bxy, of a] by (auto simp: dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1578 | def C == "B / norm(x - a)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1579 |     { fix u
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1580 | assume u: "(1 - u) *\<^sub>R x + u *\<^sub>R (a + C *\<^sub>R (x - a)) \<in> s" and "0 \<le> u" "u \<le> 1" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1581 | have CC: "1 \<le> 1 + (C - 1) * u" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1582 | using `x \<noteq> a` `0 \<le> u` | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1583 | apply (simp add: C_def divide_simps norm_minus_commute) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1584 | by (metis Bx diff_le_iff(1) less_eq_real_def mult_nonneg_nonneg) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1585 | have *: "\<And>v. (1 - u) *\<^sub>R x + u *\<^sub>R (a + v *\<^sub>R (x - a)) = a + (1 + (v - 1) * u) *\<^sub>R (x - a)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1586 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1587 | have "a + ((1 / (1 + C * u - u)) *\<^sub>R x + ((u / (1 + C * u - u)) *\<^sub>R a + (C * u / (1 + C * u - u)) *\<^sub>R x)) = | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1588 | (1 + (u / (1 + C * u - u))) *\<^sub>R a + ((1 / (1 + C * u - u)) + (C * u / (1 + C * u - u))) *\<^sub>R x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1589 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1590 | also have "... = (1 + (u / (1 + C * u - u))) *\<^sub>R a + (1 + (u / (1 + C * u - u))) *\<^sub>R x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1591 | using CC by (simp add: field_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1592 | also have "... = x + (1 + (u / (1 + C * u - u))) *\<^sub>R a + (u / (1 + C * u - u)) *\<^sub>R x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1593 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1594 | also have "... = x + ((1 / (1 + C * u - u)) *\<^sub>R a + | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1595 | ((u / (1 + C * u - u)) *\<^sub>R x + (C * u / (1 + C * u - u)) *\<^sub>R a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1596 | using CC by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1597 | finally have xeq: "(1 - 1 / (1 + (C - 1) * u)) *\<^sub>R a + (1 / (1 + (C - 1) * u)) *\<^sub>R (a + (1 + (C - 1) * u) *\<^sub>R (x - a)) = x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1598 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1599 | have False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1600 | using `convex s` | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1601 | apply (simp add: convex_alt) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1602 | apply (drule_tac x=a in bspec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1603 | apply (rule `a \<in> s`) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1604 | apply (drule_tac x="a + (1 + (C - 1) * u) *\<^sub>R (x - a)" in bspec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1605 | using u apply (simp add: *) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1606 | apply (drule_tac x="1 / (1 + (C - 1) * u)" in spec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1607 | using `x \<noteq> a` `x \<notin> s` `0 \<le> u` CC | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1608 | apply (auto simp: xeq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1609 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1610 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1611 | then have pcx: "path_component (- s) x (a + C *\<^sub>R (x - a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1612 | by (force simp: closed_segment_def intro!: path_connected_linepath) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1613 |     def D == "B / norm(y - a)"  --{*massive duplication with the proof above*}
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1614 |     { fix u
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1615 | assume u: "(1 - u) *\<^sub>R y + u *\<^sub>R (a + D *\<^sub>R (y - a)) \<in> s" and "0 \<le> u" "u \<le> 1" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1616 | have DD: "1 \<le> 1 + (D - 1) * u" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1617 | using `y \<noteq> a` `0 \<le> u` | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1618 | apply (simp add: D_def divide_simps norm_minus_commute) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1619 | by (metis By diff_le_iff(1) less_eq_real_def mult_nonneg_nonneg) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1620 | have *: "\<And>v. (1 - u) *\<^sub>R y + u *\<^sub>R (a + v *\<^sub>R (y - a)) = a + (1 + (v - 1) * u) *\<^sub>R (y - a)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1621 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1622 | have "a + ((1 / (1 + D * u - u)) *\<^sub>R y + ((u / (1 + D * u - u)) *\<^sub>R a + (D * u / (1 + D * u - u)) *\<^sub>R y)) = | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1623 | (1 + (u / (1 + D * u - u))) *\<^sub>R a + ((1 / (1 + D * u - u)) + (D * u / (1 + D * u - u))) *\<^sub>R y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1624 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1625 | also have "... = (1 + (u / (1 + D * u - u))) *\<^sub>R a + (1 + (u / (1 + D * u - u))) *\<^sub>R y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1626 | using DD by (simp add: field_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1627 | also have "... = y + (1 + (u / (1 + D * u - u))) *\<^sub>R a + (u / (1 + D * u - u)) *\<^sub>R y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1628 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1629 | also have "... = y + ((1 / (1 + D * u - u)) *\<^sub>R a + | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1630 | ((u / (1 + D * u - u)) *\<^sub>R y + (D * u / (1 + D * u - u)) *\<^sub>R a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1631 | using DD by (simp add: field_simps) (simp add: add_divide_distrib scaleR_add_left) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1632 | finally have xeq: "(1 - 1 / (1 + (D - 1) * u)) *\<^sub>R a + (1 / (1 + (D - 1) * u)) *\<^sub>R (a + (1 + (D - 1) * u) *\<^sub>R (y - a)) = y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1633 | by (simp add: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1634 | have False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1635 | using `convex s` | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1636 | apply (simp add: convex_alt) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1637 | apply (drule_tac x=a in bspec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1638 | apply (rule `a \<in> s`) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1639 | apply (drule_tac x="a + (1 + (D - 1) * u) *\<^sub>R (y - a)" in bspec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1640 | using u apply (simp add: *) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1641 | apply (drule_tac x="1 / (1 + (D - 1) * u)" in spec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1642 | using `y \<noteq> a` `y \<notin> s` `0 \<le> u` DD | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1643 | apply (auto simp: xeq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1644 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1645 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1646 | then have pdy: "path_component (- s) y (a + D *\<^sub>R (y - a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1647 | by (force simp: closed_segment_def intro!: path_connected_linepath) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1648 | have pyx: "path_component (- s) (a + D *\<^sub>R (y - a)) (a + C *\<^sub>R (x - a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1649 |       apply (rule path_component_of_subset [of "{x. norm(x - a) = B}"])
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1650 | using `s \<subseteq> ball a B` | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1651 | apply (force simp: ball_def dist_norm norm_minus_commute) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1652 | apply (rule path_connected_sphere [OF 2, of a B, simplified path_connected_component, rule_format]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1653 | using `x \<noteq> a` using `y \<noteq> a` B apply (auto simp: C_def D_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1654 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1655 | have "path_component (- s) x y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1656 | by (metis path_component_trans path_component_sym pcx pdy pyx) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1657 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1658 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1659 | by (auto simp: path_connected_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1660 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1661 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1662 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1663 | lemma connected_complement_bounded_convex: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1664 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1665 |     assumes "bounded s" "convex s" "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1666 | shows "connected (- s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1667 | using path_connected_complement_bounded_convex [OF assms] path_connected_imp_connected by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1668 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1669 | lemma connected_diff_ball: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1670 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1671 |     assumes "connected s" "cball a r \<subseteq> s" "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1672 | shows "connected (s - ball a r)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1673 | apply (rule connected_diff_open_from_closed [OF ball_subset_cball]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1674 | using assms connected_sphere | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1675 | apply (auto simp: cball_diff_eq_sphere dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1676 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1677 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1678 | subsection\<open>Relations between components and path components\<close> | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1679 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1680 | lemma open_connected_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1681 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1682 | shows "open s \<Longrightarrow> open (connected_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1683 | apply (simp add: open_contains_ball, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1684 | apply (rename_tac y) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1685 | apply (drule_tac x=y in bspec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1686 | apply (simp add: connected_component_in, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1687 | apply (rule_tac x=e in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1688 | by (metis mem_Collect_eq connected_component_eq connected_component_maximal centre_in_ball connected_ball) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1689 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1690 | corollary open_components: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1691 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1692 | shows "\<lbrakk>open u; s \<in> components u\<rbrakk> \<Longrightarrow> open s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1693 | by (simp add: components_iff) (metis open_connected_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1694 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1695 | lemma in_closure_connected_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1696 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1697 | assumes x: "x \<in> s" and s: "open s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1698 | shows "x \<in> closure (connected_component_set s y) \<longleftrightarrow> x \<in> connected_component_set s y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1699 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1700 |   { assume "x \<in> closure (connected_component_set s y)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1701 | moreover have "x \<in> connected_component_set s x" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1702 | using x by simp | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1703 | ultimately have "x \<in> connected_component_set s y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1704 | using s by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint disjoint_eq_subset_Compl open_connected_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1705 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1706 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1707 | by (auto simp: closure_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1708 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1709 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1710 | subsection\<open>Existence of unbounded components\<close> | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1711 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1712 | lemma cobounded_unbounded_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1713 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1714 | assumes "bounded (-s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1715 | shows "\<exists>x. x \<in> s \<and> ~ bounded (connected_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1716 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1717 | obtain i::'a where i: "i \<in> Basis" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1718 | using nonempty_Basis by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1719 | obtain B where B: "B>0" "-s \<subseteq> ball 0 B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1720 | using bounded_subset_ballD [OF assms, of 0] by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1721 | then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1722 | by (force simp add: ball_def dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1723 |   have unbounded_inner: "~ bounded {x. inner i x \<ge> B}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1724 | apply (auto simp: bounded_def dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1725 | apply (rule_tac x="x + (max B e + 1 + \<bar>i \<bullet> x\<bar>) *\<^sub>R i" in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1726 | apply simp | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1727 | using i | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1728 | apply (auto simp: algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1729 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1730 |   have **: "{x. B \<le> i \<bullet> x} \<subseteq> connected_component_set s (B *\<^sub>R i)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1731 | apply (rule connected_component_maximal) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1732 | apply (auto simp: i intro: convex_connected convex_halfspace_ge [of B]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1733 | apply (rule *) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1734 | apply (rule order_trans [OF _ Basis_le_norm [OF i]]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1735 | by (simp add: inner_commute) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1736 | have "B *\<^sub>R i \<in> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1737 | by (rule *) (simp add: norm_Basis [OF i]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1738 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1739 | apply (rule_tac x="B *\<^sub>R i" in exI, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1740 |     apply (frule bounded_subset [of _ "{x. B \<le> i \<bullet> x}", OF _ **])
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1741 | using unbounded_inner apply blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1742 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1743 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1744 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1745 | lemma cobounded_unique_unbounded_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1746 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1747 |     assumes bs: "bounded (-s)" and "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1748 | and bo: "~ bounded(connected_component_set s x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1749 | "~ bounded(connected_component_set s y)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1750 | shows "connected_component_set s x = connected_component_set s y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1751 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1752 | obtain i::'a where i: "i \<in> Basis" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1753 | using nonempty_Basis by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1754 | obtain B where B: "B>0" "-s \<subseteq> ball 0 B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1755 | using bounded_subset_ballD [OF bs, of 0] by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1756 | then have *: "\<And>x. B \<le> norm x \<Longrightarrow> x \<in> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1757 | by (force simp add: ball_def dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1758 | have ccb: "connected (- ball 0 B :: 'a set)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1759 | using assms by (auto intro: connected_complement_bounded_convex) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1760 | obtain x' where x': "connected_component s x x'" "norm x' > B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1761 | using bo [unfolded bounded_def dist_norm, simplified, rule_format] | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1762 | by (metis diff_zero norm_minus_commute not_less) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1763 | obtain y' where y': "connected_component s y y'" "norm y' > B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1764 | using bo [unfolded bounded_def dist_norm, simplified, rule_format] | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1765 | by (metis diff_zero norm_minus_commute not_less) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1766 | have x'y': "connected_component s x' y'" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1767 | apply (simp add: connected_component_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1768 | apply (rule_tac x="- ball 0 B" in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1769 | using x' y' | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1770 | apply (auto simp: ccb dist_norm *) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1771 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1772 | show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1773 | apply (rule connected_component_eq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1774 | using x' y' x'y' | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1775 | by (metis (no_types, lifting) connected_component_eq_empty connected_component_eq_eq connected_component_idemp connected_component_in) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1776 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1777 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1778 | lemma cobounded_unbounded_components: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1779 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1780 | shows "bounded (-s) \<Longrightarrow> \<exists>c. c \<in> components s \<and> ~bounded c" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1781 | by (metis cobounded_unbounded_component components_def imageI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1782 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1783 | lemma cobounded_unique_unbounded_components: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1784 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1785 |     shows  "\<lbrakk>bounded (- s); c \<in> components s; \<not> bounded c; c' \<in> components s; \<not> bounded c'; 2 \<le> DIM('a)\<rbrakk> \<Longrightarrow> c' = c"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1786 | unfolding components_iff | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1787 | by (metis cobounded_unique_unbounded_component) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1788 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1789 | lemma cobounded_has_bounded_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1790 | fixes s :: "'a :: euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1791 |     shows "\<lbrakk>bounded (- s); ~connected s; 2 \<le> DIM('a)\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> components s \<and> bounded c"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1792 | by (meson cobounded_unique_unbounded_components connected_eq_connected_components_eq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1793 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1794 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 1795 | section\<open>The "inside" and "outside" of a set\<close> | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1796 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1797 | text\<open>The inside comprises the points in a bounded connected component of the set's complement. | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1798 | The outside comprises the points in unbounded connected component of the complement.\<close> | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1799 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1800 | definition inside where | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1801 |   "inside s \<equiv> {x. (x \<notin> s) \<and> bounded(connected_component_set ( - s) x)}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1802 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1803 | definition outside where | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1804 |   "outside s \<equiv> -s \<inter> {x. ~ bounded(connected_component_set (- s) x)}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1805 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1806 | lemma outside: "outside s = {x. ~ bounded(connected_component_set (- s) x)}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1807 | by (auto simp: outside_def) (metis Compl_iff bounded_empty connected_component_eq_empty) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1808 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1809 | lemma inside_no_overlap [simp]: "inside s \<inter> s = {}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1810 | by (auto simp: inside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1811 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1812 | lemma outside_no_overlap [simp]: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1813 |    "outside s \<inter> s = {}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1814 | by (auto simp: outside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1815 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1816 | lemma inside_inter_outside [simp]: "inside s \<inter> outside s = {}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1817 | by (auto simp: inside_def outside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1818 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1819 | lemma inside_union_outside [simp]: "inside s \<union> outside s = (- s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1820 | by (auto simp: inside_def outside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1821 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1822 | lemma inside_eq_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1823 | "inside s = outside s \<longleftrightarrow> s = UNIV" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1824 | by (auto simp: inside_def outside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1825 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1826 | lemma inside_outside: "inside s = (- (s \<union> outside s))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1827 | by (force simp add: inside_def outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1828 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1829 | lemma outside_inside: "outside s = (- (s \<union> inside s))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1830 | by (auto simp: inside_outside) (metis IntI equals0D outside_no_overlap) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1831 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1832 | lemma union_with_inside: "s \<union> inside s = - outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1833 | by (auto simp: inside_outside) (simp add: outside_inside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1834 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1835 | lemma union_with_outside: "s \<union> outside s = - inside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1836 | by (simp add: inside_outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1837 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1838 | lemma outside_mono: "s \<subseteq> t \<Longrightarrow> outside t \<subseteq> outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1839 | by (auto simp: outside bounded_subset connected_component_mono) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1840 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1841 | lemma inside_mono: "s \<subseteq> t \<Longrightarrow> inside s - t \<subseteq> inside t" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1842 | by (auto simp: inside_def bounded_subset connected_component_mono) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1843 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1844 | lemma segment_bound_lemma: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1845 | fixes u::real | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1846 | assumes "x \<ge> B" "y \<ge> B" "0 \<le> u" "u \<le> 1" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1847 | shows "(1 - u) * x + u * y \<ge> B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1848 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1849 | obtain dx dy where "dx \<ge> 0" "dy \<ge> 0" "x = B + dx" "y = B + dy" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1850 | using assms by auto (metis add.commute diff_add_cancel) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1851 | with `0 \<le> u` `u \<le> 1` show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1852 | by (simp add: add_increasing2 mult_left_le field_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1853 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1854 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1855 | lemma cobounded_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1856 | fixes s :: "'a :: real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1857 | assumes "bounded s" shows "bounded (- outside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1858 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1859 | obtain B where B: "B>0" "s \<subseteq> ball 0 B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1860 | using bounded_subset_ballD [OF assms, of 0] by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1861 |   { fix x::'a and C::real
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1862 | assume Bno: "B \<le> norm x" and C: "0 < C" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1863 | have "\<exists>y. connected_component (- s) x y \<and> norm y > C" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1864 | proof (cases "x = 0") | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1865 | case True with B Bno show ?thesis by force | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1866 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1867 | case False with B C show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1868 | apply (rule_tac x="((B+C)/norm x) *\<^sub>R x" in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1869 | apply (simp add: connected_component_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1870 | apply (rule_tac x="closed_segment x (((B+C)/norm x) *\<^sub>R x)" in exI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1871 | apply simp | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1872 | apply (rule_tac y="- ball 0 B" in order_trans) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1873 | prefer 2 apply force | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1874 | apply (simp add: closed_segment_def ball_def dist_norm, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1875 | apply (simp add: real_vector_class.scaleR_add_left [symmetric] divide_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1876 | using segment_bound_lemma [of B "norm x" "B+C" ] Bno | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1877 | by (meson le_add_same_cancel1 less_eq_real_def not_le) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1878 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1879 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1880 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1881 | apply (simp add: outside_def assms) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1882 | apply (rule bounded_subset [OF bounded_ball [of 0 B]]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1883 | apply (force simp add: dist_norm not_less bounded_pos) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1884 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1885 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1886 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1887 | lemma unbounded_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1888 |     fixes s :: "'a::{real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1889 | shows "bounded s \<Longrightarrow> ~ bounded(outside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1890 | using cobounded_imp_unbounded cobounded_outside by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1891 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1892 | lemma bounded_inside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1893 |     fixes s :: "'a::{real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1894 | shows "bounded s \<Longrightarrow> bounded(inside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1895 | by (simp add: bounded_Int cobounded_outside inside_outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1896 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1897 | lemma connected_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1898 | fixes s :: "'a::euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1899 |     assumes "bounded s" "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1900 | shows "connected(outside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1901 | apply (simp add: connected_iff_connected_component, clarify) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1902 | apply (simp add: outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1903 | apply (rule_tac s="connected_component_set (- s) x" in connected_component_of_subset) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1904 | apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1905 | apply clarify | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1906 | apply (metis connected_component_eq_eq connected_component_in) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1907 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1908 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1909 | lemma outside_connected_component_lt: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1910 |     "outside s = {x. \<forall>B. \<exists>y. B < norm(y) \<and> connected_component (- s) x y}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1911 | apply (auto simp: outside bounded_def dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1912 | apply (metis diff_0 norm_minus_cancel not_less) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1913 | by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6)) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1914 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1915 | lemma outside_connected_component_le: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1916 | "outside s = | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1917 |             {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and>
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1918 | connected_component (- s) x y}" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1919 | apply (simp add: outside_connected_component_lt) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1920 | apply (simp add: Set.set_eq_iff) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1921 | by (meson gt_ex leD le_less_linear less_imp_le order.trans) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1922 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1923 | lemma not_outside_connected_component_lt: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1924 | fixes s :: "'a::euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1925 |     assumes s: "bounded s" and "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1926 |       shows "- (outside s) = {x. \<forall>B. \<exists>y. B < norm(y) \<and> ~ (connected_component (- s) x y)}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1927 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1928 | obtain B::real where B: "0 < B" and Bno: "\<And>x. x \<in> s \<Longrightarrow> norm x \<le> B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1929 | using s [simplified bounded_pos] by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1930 |   { fix y::'a and z::'a
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1931 | assume yz: "B < norm z" "B < norm y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1932 | have "connected_component (- cball 0 B) y z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1933 | apply (rule connected_componentI [OF _ subset_refl]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1934 | apply (rule connected_complement_bounded_convex) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1935 | using assms yz | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1936 | by (auto simp: dist_norm) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1937 | then have "connected_component (- s) y z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1938 | apply (rule connected_component_of_subset) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1939 | apply (metis Bno Compl_anti_mono mem_cball_0 subset_iff) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1940 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1941 | } note cyz = this | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1942 | show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1943 | apply (auto simp: outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1944 | apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1945 | apply (simp add: bounded_pos) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1946 | by (metis B connected_component_trans cyz not_le) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1947 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1948 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1949 | lemma not_outside_connected_component_le: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1950 | fixes s :: "'a::euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1951 |     assumes s: "bounded s"  "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1952 |       shows "- (outside s) = {x. \<forall>B. \<exists>y. B \<le> norm(y) \<and> ~ (connected_component (- s) x y)}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1953 | apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1954 | by (meson gt_ex less_le_trans) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1955 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1956 | lemma inside_connected_component_lt: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1957 | fixes s :: "'a::euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1958 |     assumes s: "bounded s"  "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1959 |       shows "inside s = {x. (x \<notin> s) \<and> (\<forall>B. \<exists>y. B < norm(y) \<and> ~(connected_component (- s) x y))}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1960 | by (auto simp: inside_outside not_outside_connected_component_lt [OF assms]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1961 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1962 | lemma inside_connected_component_le: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1963 | fixes s :: "'a::euclidean_space set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1964 |     assumes s: "bounded s"  "2 \<le> DIM('a)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1965 |       shows "inside s = {x. (x \<notin> s) \<and> (\<forall>B. \<exists>y. B \<le> norm(y) \<and> ~(connected_component (- s) x y))}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1966 | by (auto simp: inside_outside not_outside_connected_component_le [OF assms]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1967 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1968 | lemma inside_subset: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1969 | assumes "connected u" and "~bounded u" and "t \<union> u = - s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1970 | shows "inside s \<subseteq> t" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1971 | apply (auto simp: inside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1972 | by (metis bounded_subset [of "connected_component_set (- s) _"] connected_component_maximal | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1973 | Compl_iff Un_iff assms subsetI) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1974 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1975 | lemma frontier_interiors: "frontier s = - interior(s) - interior(-s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1976 | by (simp add: Int_commute frontier_def interior_closure) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1977 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1978 | lemma connected_inter_frontier: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1979 |      "\<lbrakk>connected s; s \<inter> t \<noteq> {}; s - t \<noteq> {}\<rbrakk> \<Longrightarrow> (s \<inter> frontier t \<noteq> {})"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1980 | apply (simp add: frontier_interiors connected_open_in, safe) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1981 | apply (drule_tac x="s \<inter> interior t" in spec, safe) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1982 | apply (drule_tac [2] x="s \<inter> interior (-t)" in spec) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1983 | apply (auto simp: disjoint_eq_subset_Compl dest: interior_subset [THEN subsetD]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1984 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1985 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1986 | lemma connected_component_UNIV: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1987 | fixes x :: "'a::real_normed_vector" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1988 | shows "connected_component_set UNIV x = UNIV" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1989 | using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIV | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1990 | by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1991 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1992 | lemma connected_component_eq_UNIV: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1993 | fixes x :: "'a::real_normed_vector" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1994 | shows "connected_component_set s x = UNIV \<longleftrightarrow> s = UNIV" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1995 | using connected_component_in connected_component_UNIV by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1996 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1997 | lemma components_univ [simp]: "components UNIV = {UNIV :: 'a::real_normed_vector set}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1998 | by (auto simp: components_eq_sing_iff) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 1999 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2000 | lemma interior_inside_frontier: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2001 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2002 | assumes "bounded s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2003 | shows "interior s \<subseteq> inside (frontier s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2004 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2005 |   { fix x y
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2006 | assume x: "x \<in> interior s" and y: "y \<notin> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2007 | and cc: "connected_component (- frontier s) x y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2008 |     have "connected_component_set (- frontier s) x \<inter> frontier s \<noteq> {}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2009 | apply (rule connected_inter_frontier, simp) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2010 | apply (metis IntI cc connected_component_in connected_component_refl empty_iff interiorE mem_Collect_eq set_rev_mp x) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2011 | using y cc | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2012 | by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2013 | then have "bounded (connected_component_set (- frontier s) x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2014 | using connected_component_in by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2015 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2016 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2017 | apply (auto simp: inside_def frontier_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2018 | apply (rule classical) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2019 | apply (rule bounded_subset [OF assms], blast) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2020 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2021 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2022 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2023 | lemma inside_empty [simp]: "inside {} = ({} :: 'a :: {real_normed_vector, perfect_space} set)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2024 | by (simp add: inside_def connected_component_UNIV) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2025 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2026 | lemma outside_empty [simp]: "outside {} = (UNIV :: 'a :: {real_normed_vector, perfect_space} set)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2027 | using inside_empty inside_union_outside by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2028 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2029 | lemma inside_same_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2030 | "\<lbrakk>connected_component (- s) x y; x \<in> inside s\<rbrakk> \<Longrightarrow> y \<in> inside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2031 | using connected_component_eq connected_component_in | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2032 | by (fastforce simp add: inside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2033 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2034 | lemma outside_same_component: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2035 | "\<lbrakk>connected_component (- s) x y; x \<in> outside s\<rbrakk> \<Longrightarrow> y \<in> outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2036 | using connected_component_eq connected_component_in | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2037 | by (fastforce simp add: outside_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2038 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2039 | lemma convex_in_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2040 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2041 | assumes s: "convex s" and z: "z \<notin> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2042 | shows "z \<in> outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2043 | proof (cases "s={}")
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2044 | case True then show ?thesis by simp | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2045 | next | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2046 | case False then obtain a where "a \<in> s" by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2047 | with z have zna: "z \<noteq> a" by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2048 |   { assume "bounded (connected_component_set (- s) z)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2049 | with bounded_pos_less obtain B where "B>0" and B: "\<And>x. connected_component (- s) z x \<Longrightarrow> norm x < B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2050 | by (metis mem_Collect_eq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2051 | def C \<equiv> "((B + 1 + norm z) / norm (z-a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2052 | have "C > 0" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2053 | using `0 < B` zna by (simp add: C_def divide_simps add_strict_increasing) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2054 | have "\<bar>norm (z + C *\<^sub>R (z-a)) - norm (C *\<^sub>R (z-a))\<bar> \<le> norm z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2055 | by (metis add_diff_cancel norm_triangle_ineq3) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2056 | moreover have "norm (C *\<^sub>R (z-a)) > norm z + B" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2057 | using zna `B>0` by (simp add: C_def le_max_iff_disj field_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2058 | ultimately have C: "norm (z + C *\<^sub>R (z-a)) > B" by linarith | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2059 |     { fix u::real
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2060 | assume u: "0\<le>u" "u\<le>1" and ins: "(1 - u) *\<^sub>R z + u *\<^sub>R (z + C *\<^sub>R (z - a)) \<in> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2061 | then have Cpos: "1 + u * C > 0" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2062 | by (meson `0 < C` add_pos_nonneg less_eq_real_def zero_le_mult_iff zero_less_one) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2063 | then have *: "(1 / (1 + u * C)) *\<^sub>R z + (u * C / (1 + u * C)) *\<^sub>R z = z" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2064 | by (simp add: scaleR_add_left [symmetric] divide_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2065 | then have False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2066 | using convexD_alt [OF s `a \<in> s` ins, of "1/(u*C + 1)"] `C>0` `z \<notin> s` Cpos u | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2067 | by (simp add: * divide_simps algebra_simps) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2068 | } note contra = this | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2069 | have "connected_component (- s) z (z + C *\<^sub>R (z-a))" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2070 | apply (rule connected_componentI [OF connected_segment [of z "z + C *\<^sub>R (z-a)"]]) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2071 | apply (simp add: closed_segment_def) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2072 | using contra | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2073 | apply auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2074 | done | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2075 | then have False | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2076 | using zna B [of "z + C *\<^sub>R (z-a)"] C | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2077 | by (auto simp: divide_simps max_mult_distrib_right) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2078 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2079 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2080 | by (auto simp: outside_def z) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2081 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2082 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2083 | lemma outside_convex: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2084 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2085 | assumes "convex s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2086 | shows "outside s = - s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2087 | by (metis ComplD assms convex_in_outside equalityI inside_union_outside subsetI sup.cobounded2) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2088 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2089 | lemma inside_convex: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2090 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2091 |   shows "convex s \<Longrightarrow> inside s = {}"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2092 | by (simp add: inside_outside outside_convex) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2093 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2094 | lemma outside_subset_convex: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2095 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2096 | shows "\<lbrakk>convex t; s \<subseteq> t\<rbrakk> \<Longrightarrow> - t \<subseteq> outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2097 | using outside_convex outside_mono by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2098 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2099 | lemma outside_frontier_misses_closure: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2100 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2101 | assumes "bounded s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2102 | shows "outside(frontier s) \<subseteq> - closure s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2103 | unfolding outside_inside Lattices.boolean_algebra_class.compl_le_compl_iff | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2104 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2105 |   { assume "interior s \<subseteq> inside (frontier s)"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2106 | hence "interior s \<union> inside (frontier s) = inside (frontier s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2107 | by (simp add: subset_Un_eq) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2108 | then have "closure s \<subseteq> frontier s \<union> inside (frontier s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2109 | using frontier_def by auto | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2110 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2111 | then show "closure s \<subseteq> frontier s \<union> inside (frontier s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2112 | using interior_inside_frontier [OF assms] by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2113 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2114 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2115 | lemma outside_frontier_eq_complement_closure: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2116 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2117 | assumes "bounded s" "convex s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2118 | shows "outside(frontier s) = - closure s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2119 | by (metis Diff_subset assms convex_closure frontier_def outside_frontier_misses_closure | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2120 | outside_subset_convex subset_antisym) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2121 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2122 | lemma inside_frontier_eq_interior: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2123 |      fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2124 | shows "\<lbrakk>bounded s; convex s\<rbrakk> \<Longrightarrow> inside(frontier s) = interior s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2125 | apply (simp add: inside_outside outside_frontier_eq_complement_closure) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2126 | using closure_subset interior_subset | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2127 | apply (auto simp add: frontier_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2128 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2129 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2130 | lemma open_inside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2131 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2132 | assumes "closed s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2133 | shows "open (inside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2134 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2135 |   { fix x assume x: "x \<in> inside s"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2136 | have "open (connected_component_set (- s) x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2137 | using assms open_connected_component by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2138 | then obtain e where e: "e>0" and e: "\<And>y. dist y x < e \<longrightarrow> connected_component (- s) x y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2139 | using dist_not_less_zero | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2140 | apply (simp add: open_dist) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2141 | by (metis (no_types, lifting) Compl_iff connected_component_refl_eq inside_def mem_Collect_eq x) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2142 | then have "\<exists>e>0. ball x e \<subseteq> inside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2143 | by (metis e dist_commute inside_same_component mem_ball subsetI x) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2144 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2145 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2146 | by (simp add: open_contains_ball) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2147 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2148 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2149 | lemma open_outside: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2150 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2151 | assumes "closed s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2152 | shows "open (outside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2153 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2154 |   { fix x assume x: "x \<in> outside s"
 | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2155 | have "open (connected_component_set (- s) x)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2156 | using assms open_connected_component by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2157 | then obtain e where e: "e>0" and e: "\<And>y. dist y x < e \<longrightarrow> connected_component (- s) x y" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2158 | using dist_not_less_zero | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2159 | apply (simp add: open_dist) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2160 | by (metis Int_iff outside_def connected_component_refl_eq x) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2161 | then have "\<exists>e>0. ball x e \<subseteq> outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2162 | by (metis e dist_commute outside_same_component mem_ball subsetI x) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2163 | } | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2164 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2165 | by (simp add: open_contains_ball) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2166 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2167 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2168 | lemma closure_inside_subset: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2169 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2170 | assumes "closed s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2171 | shows "closure(inside s) \<subseteq> s \<union> inside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2172 | by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2173 | |
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2174 | lemma frontier_inside_subset: | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2175 | fixes s :: "'a::real_normed_vector set" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2176 | assumes "closed s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2177 | shows "frontier(inside s) \<subseteq> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2178 | proof - | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2179 | have "closure (inside s) \<inter> - inside s = closure (inside s) - interior (inside s)" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2180 | by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed open_inside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2181 | moreover have "- inside s \<inter> - outside s = s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2182 | by (metis (no_types) compl_sup double_compl inside_union_outside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2183 | moreover have "closure (inside s) \<subseteq> - outside s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2184 | by (metis (no_types) assms closure_inside_subset union_with_inside) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2185 | ultimately have "closure (inside s) - interior (inside s) \<subseteq> s" | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2186 | by blast | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2187 | then show ?thesis | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2188 | by (simp add: frontier_def open_inside interior_open) | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2189 | qed | 
| 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61204diff
changeset | 2190 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2191 | lemma closure_outside_subset: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2192 | fixes s :: "'a::real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2193 | assumes "closed s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2194 | shows "closure(outside s) \<subseteq> s \<union> outside s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2195 | apply (rule closure_minimal, simp) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2196 | by (metis assms closed_open inside_outside open_inside) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2197 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2198 | lemma frontier_outside_subset: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2199 | fixes s :: "'a::real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2200 | assumes "closed s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2201 | shows "frontier(outside s) \<subseteq> s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2202 | apply (simp add: frontier_def open_outside interior_open) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2203 | by (metis Diff_subset_conv assms closure_outside_subset interior_eq open_outside sup.commute) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2204 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2205 | lemma inside_complement_unbounded_connected_empty: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2206 |      "\<lbrakk>connected (- s); \<not> bounded (- s)\<rbrakk> \<Longrightarrow> inside s = {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2207 | apply (simp add: inside_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2208 | by (meson Compl_iff bounded_subset connected_component_maximal order_refl) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2209 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2210 | lemma inside_bounded_complement_connected_empty: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2211 |     fixes s :: "'a::{real_normed_vector, perfect_space} set"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2212 |     shows "\<lbrakk>connected (- s); bounded s\<rbrakk> \<Longrightarrow> inside s = {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2213 | by (metis inside_complement_unbounded_connected_empty cobounded_imp_unbounded) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2214 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2215 | lemma inside_inside: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2216 | assumes "s \<subseteq> inside t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2217 | shows "inside s - t \<subseteq> inside t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2218 | unfolding inside_def | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2219 | proof clarify | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2220 | fix x | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2221 | assume x: "x \<notin> t" "x \<notin> s" and bo: "bounded (connected_component_set (- s) x)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2222 | show "bounded (connected_component_set (- t) x)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2223 |   proof (cases "s \<inter> connected_component_set (- t) x = {}")
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2224 | case True show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2225 | apply (rule bounded_subset [OF bo]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2226 | apply (rule connected_component_maximal) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2227 | using x True apply auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2228 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2229 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2230 | case False then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2231 | using assms [unfolded inside_def] x | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2232 | apply (simp add: disjoint_iff_not_equal, clarify) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2233 | apply (drule subsetD, assumption, auto) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2234 | by (metis (no_types, hide_lams) ComplI connected_component_eq_eq) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2235 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2236 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2237 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2238 | lemma inside_inside_subset: "inside(inside s) \<subseteq> s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2239 | using inside_inside union_with_outside by fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2240 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2241 | lemma inside_outside_intersect_connected: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2242 |       "\<lbrakk>connected t; inside s \<inter> t \<noteq> {}; outside s \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> s \<inter> t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2243 | apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl, clarify) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2244 | by (metis (no_types, hide_lams) Compl_anti_mono connected_component_eq connected_component_maximal contra_subsetD double_compl) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2245 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2246 | lemma outside_bounded_nonempty: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2247 |   fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2248 |     assumes "bounded s" shows "outside s \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2249 | by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV Diff_cancel | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2250 | Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside convex_ball | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2251 | double_complement order_refl outside_convex outside_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2252 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2253 | lemma outside_compact_in_open: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2254 |     fixes s :: "'a :: {real_normed_vector,perfect_space} set"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2255 |     assumes s: "compact s" and t: "open t" and "s \<subseteq> t" "t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2256 |       shows "outside s \<inter> t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2257 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2258 |   have "outside s \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2259 | by (simp add: compact_imp_bounded outside_bounded_nonempty s) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2260 | with assms obtain a b where a: "a \<in> outside s" and b: "b \<in> t" by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2261 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2262 | proof (cases "a \<in> t") | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2263 | case True with a show ?thesis by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2264 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2265 | case False | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2266 | have front: "frontier t \<subseteq> - s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2267 | using `s \<subseteq> t` frontier_disjoint_eq t by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2268 |       { fix \<gamma>
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2269 |         assume "path \<gamma>" and pimg_sbs: "path_image \<gamma> - {pathfinish \<gamma>} \<subseteq> interior (- t)"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2270 | and pf: "pathfinish \<gamma> \<in> frontier t" and ps: "pathstart \<gamma> = a" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2271 | def c \<equiv> "pathfinish \<gamma>" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2272 | have "c \<in> -s" unfolding c_def using front pf by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2273 | moreover have "open (-s)" using s compact_imp_closed by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2274 | ultimately obtain \<epsilon>::real where "\<epsilon> > 0" and \<epsilon>: "cball c \<epsilon> \<subseteq> -s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2275 | using open_contains_cball[of "-s"] s by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2276 | then obtain d where "d \<in> t" and d: "dist d c < \<epsilon>" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2277 | using closure_approachable [of c t] pf unfolding c_def | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2278 | by (metis Diff_iff frontier_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2279 | then have "d \<in> -s" using \<epsilon> | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2280 | using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2281 | have pimg_sbs_cos: "path_image \<gamma> \<subseteq> -s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2282 | using pimg_sbs apply (auto simp: path_image_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2283 | apply (drule subsetD) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2284 | using `c \<in> - s` `s \<subseteq> t` interior_subset apply (auto simp: c_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2285 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2286 | have "closed_segment c d \<le> cball c \<epsilon>" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2287 | apply (simp add: segment_convex_hull) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2288 | apply (rule hull_minimal) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2289 | using `\<epsilon> > 0` d apply (auto simp: dist_commute) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2290 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2291 | with \<epsilon> have "closed_segment c d \<subseteq> -s" by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2292 | moreover have con_gcd: "connected (path_image \<gamma> \<union> closed_segment c d)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2293 | by (rule connected_Un) (auto simp: c_def `path \<gamma>` connected_path_image) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2294 | ultimately have "connected_component (- s) a d" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2295 | unfolding connected_component_def using pimg_sbs_cos ps by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2296 |         then have "outside s \<inter> t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2297 | using outside_same_component [OF _ a] by (metis IntI `d \<in> t` empty_iff) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2298 | } note * = this | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2299 | have pal: "pathstart (linepath a b) \<in> closure (- t)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2300 | by (auto simp: False closure_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2301 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2302 | by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto simp: b) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2303 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2304 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2305 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2306 | lemma inside_inside_compact_connected: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2307 | fixes s :: "'a :: euclidean_space set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2308 | assumes s: "closed s" and t: "compact t" and "connected t" "s \<subseteq> inside t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2309 | shows "inside s \<subseteq> inside t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2310 | proof (cases "inside t = {}")
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2311 | case True with assms show ?thesis by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2312 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2313 | case False | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2314 |   consider "DIM('a) = 1" | "DIM('a) \<ge> 2"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2315 | using antisym not_less_eq_eq by fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2316 | then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2317 | proof cases | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2318 | case 1 then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2319 | using connected_convex_1_gen assms False inside_convex by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2320 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2321 | case 2 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2322 | have coms: "compact s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2323 | using assms apply (simp add: s compact_eq_bounded_closed) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2324 | by (meson bounded_inside bounded_subset compact_imp_bounded) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2325 | then have bst: "bounded (s \<union> t)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2326 | by (simp add: compact_imp_bounded t) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2327 | then obtain r where "0 < r" and r: "s \<union> t \<subseteq> ball 0 r" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2328 | using bounded_subset_ballD by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2329 |     have outst: "outside s \<inter> outside t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2330 | proof - | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2331 | have "- ball 0 r \<subseteq> outside s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2332 | apply (rule outside_subset_convex) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2333 | using r by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2334 | moreover have "- ball 0 r \<subseteq> outside t" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2335 | apply (rule outside_subset_convex) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2336 | using r by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2337 | ultimately show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2338 | by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE outside_bounded_nonempty outside_no_overlap) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2339 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2340 |     have "s \<inter> t = {}" using assms
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2341 | by (metis disjoint_iff_not_equal inside_no_overlap subsetCE) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2342 |     moreover have "outside s \<inter> inside t \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2343 | by (meson False assms(4) compact_eq_bounded_closed coms open_inside outside_compact_in_open t) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2344 |     ultimately have "inside s \<inter> t = {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2345 | using inside_outside_intersect_connected [OF `connected t`, of s] | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2346 | by (metis "2" compact_eq_bounded_closed coms connected_outside inf.commute inside_outside_intersect_connected outst) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2347 | then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2348 | using inside_inside [OF `s \<subseteq> inside t`] by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2349 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2350 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2351 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2352 | lemma connected_with_inside: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2353 | fixes s :: "'a :: real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2354 | assumes s: "closed s" and cons: "connected s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2355 | shows "connected(s \<union> inside s)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2356 | proof (cases "s \<union> inside s = UNIV") | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2357 | case True with assms show ?thesis by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2358 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2359 | case False | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2360 | then obtain b where b: "b \<notin> s" "b \<notin> inside s" by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2361 | have *: "\<exists>y t. y \<in> s \<and> connected t \<and> a \<in> t \<and> y \<in> t \<and> t \<subseteq> (s \<union> inside s)" if "a \<in> (s \<union> inside s)" for a | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2362 | using that proof | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2363 | assume "a \<in> s" then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2364 | apply (rule_tac x=a in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2365 |       apply (rule_tac x="{a}" in exI)
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2366 | apply (simp add:) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2367 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2368 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2369 | assume a: "a \<in> inside s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2370 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2371 | apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "inside s"]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2372 | using a apply (simp add: closure_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2373 | apply (simp add: b) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2374 | apply (rule_tac x="pathfinish h" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2375 | apply (rule_tac x="path_image h" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2376 | apply (simp add: pathfinish_in_path_image connected_path_image, auto) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2377 | using frontier_inside_subset s apply fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2378 | by (metis (no_types, lifting) frontier_inside_subset insertE insert_Diff interior_eq open_inside pathfinish_in_path_image s subsetCE) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2379 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2380 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2381 | apply (simp add: connected_iff_connected_component) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2382 | apply (simp add: connected_component_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2383 | apply (clarify dest!: *) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2384 | apply (rename_tac u u' t t') | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2385 | apply (rule_tac x="(s \<union> t \<union> t')" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2386 | apply (auto simp: intro!: connected_Un cons) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2387 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2388 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2389 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2390 | text\<open>The proof is virtually the same as that above.\<close> | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2391 | lemma connected_with_outside: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2392 | fixes s :: "'a :: real_normed_vector set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2393 | assumes s: "closed s" and cons: "connected s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2394 | shows "connected(s \<union> outside s)" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2395 | proof (cases "s \<union> outside s = UNIV") | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2396 | case True with assms show ?thesis by auto | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2397 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2398 | case False | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2399 | then obtain b where b: "b \<notin> s" "b \<notin> outside s" by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2400 | have *: "\<exists>y t. y \<in> s \<and> connected t \<and> a \<in> t \<and> y \<in> t \<and> t \<subseteq> (s \<union> outside s)" if "a \<in> (s \<union> outside s)" for a | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2401 | using that proof | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2402 | assume "a \<in> s" then show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2403 | apply (rule_tac x=a in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2404 |       apply (rule_tac x="{a}" in exI)
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2405 | apply (simp add:) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2406 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2407 | next | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2408 | assume a: "a \<in> outside s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2409 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2410 | apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "outside s"]) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2411 | using a apply (simp add: closure_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2412 | apply (simp add: b) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2413 | apply (rule_tac x="pathfinish h" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2414 | apply (rule_tac x="path_image h" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2415 | apply (simp add: pathfinish_in_path_image connected_path_image, auto) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2416 | using frontier_outside_subset s apply fastforce | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2417 | by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff interior_eq open_outside pathfinish_in_path_image s subsetCE) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2418 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2419 | show ?thesis | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2420 | apply (simp add: connected_iff_connected_component) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2421 | apply (simp add: connected_component_def) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2422 | apply (clarify dest!: *) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2423 | apply (rename_tac u u' t t') | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2424 | apply (rule_tac x="(s \<union> t \<union> t')" in exI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2425 | apply (auto simp: intro!: connected_Un cons) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2426 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2427 | qed | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2428 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2429 | lemma inside_inside_eq_empty [simp]: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2430 |     fixes s :: "'a :: {real_normed_vector, perfect_space} set"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2431 | assumes s: "closed s" and cons: "connected s" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2432 |       shows "inside (inside s) = {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2433 | by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2434 | inside_complement_unbounded_connected_empty unbounded_outside union_with_outside) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2435 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2436 | lemma inside_in_components: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2437 |      "inside s \<in> components (- s) \<longleftrightarrow> connected(inside s) \<and> inside s \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2438 | apply (simp add: in_components_maximal) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2439 | apply (auto intro: inside_same_component connected_componentI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2440 | apply (metis IntI empty_iff inside_no_overlap) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2441 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2442 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2443 | text\<open>The proof is virtually the same as that above.\<close> | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2444 | lemma outside_in_components: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2445 |      "outside s \<in> components (- s) \<longleftrightarrow> connected(outside s) \<and> outside s \<noteq> {}"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2446 | apply (simp add: in_components_maximal) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2447 | apply (auto intro: outside_same_component connected_componentI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2448 | apply (metis IntI empty_iff outside_no_overlap) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2449 | done | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2450 | |
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2451 | lemma bounded_unique_outside: | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2452 | fixes s :: "'a :: euclidean_space set" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2453 |     shows "\<lbrakk>bounded s; DIM('a) \<ge> 2\<rbrakk> \<Longrightarrow> (c \<in> components (- s) \<and> ~bounded c \<longleftrightarrow> c = outside s)"
 | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2454 | apply (rule iffI) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2455 | apply (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty outside_in_components unbounded_outside) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2456 | by (simp add: connected_outside outside_bounded_nonempty outside_in_components unbounded_outside) | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61426diff
changeset | 2457 | |
| 36583 | 2458 | end |