| author | wenzelm | 
| Mon, 27 Feb 2012 16:56:25 +0100 | |
| changeset 46711 | f745bcc4a1e5 | 
| parent 32960 | 69916a850301 | 
| child 46820 | c656222c4dc1 | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/OrderType.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 435 | 3 | Copyright 1994 University of Cambridge | 
| 4 | *) | |
| 5 | ||
| 13356 | 6 | header{*Order Types and Ordinal Arithmetic*}
 | 
| 7 | ||
| 26056 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 krauss parents: 
24893diff
changeset | 8 | theory OrderType imports OrderArith OrdQuant Nat_ZF begin | 
| 13221 | 9 | |
| 13356 | 10 | text{*The order type of a well-ordering is the least ordinal isomorphic to it.
 | 
| 11 | Ordinal arithmetic is traditionally defined in terms of order types, as it is | |
| 12 | here. But a definition by transfinite recursion would be much simpler!*} | |
| 13 | ||
| 24893 | 14 | definition | 
| 15 | ordermap :: "[i,i]=>i" where | |
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 16 | "ordermap(A,r) == lam x:A. wfrec[A](r, x, %x f. f `` pred(A,x,r))" | 
| 435 | 17 | |
| 24893 | 18 | definition | 
| 19 | ordertype :: "[i,i]=>i" where | |
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 20 | "ordertype(A,r) == ordermap(A,r)``A" | 
| 850 | 21 | |
| 24893 | 22 | definition | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 23 | (*alternative definition of ordinal numbers*) | 
| 24893 | 24 | Ord_alt :: "i => o" where | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 25 | "Ord_alt(X) == well_ord(X, Memrel(X)) & (ALL u:X. u=pred(X, u, Memrel(X)))" | 
| 435 | 26 | |
| 24893 | 27 | definition | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 28 | (*coercion to ordinal: if not, just 0*) | 
| 24893 | 29 | ordify :: "i=>i" where | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 30 | "ordify(x) == if Ord(x) then x else 0" | 
| 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 31 | |
| 24893 | 32 | definition | 
| 850 | 33 | (*ordinal multiplication*) | 
| 24893 | 34 | omult :: "[i,i]=>i" (infixl "**" 70) where | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 35 | "i ** j == ordertype(j*i, rmult(j,Memrel(j),i,Memrel(i)))" | 
| 850 | 36 | |
| 24893 | 37 | definition | 
| 850 | 38 | (*ordinal addition*) | 
| 24893 | 39 | raw_oadd :: "[i,i]=>i" where | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 40 | "raw_oadd(i,j) == ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))" | 
| 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 41 | |
| 24893 | 42 | definition | 
| 43 | oadd :: "[i,i]=>i" (infixl "++" 65) where | |
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 44 | "i ++ j == raw_oadd(ordify(i),ordify(j))" | 
| 850 | 45 | |
| 24893 | 46 | definition | 
| 1033 | 47 | (*ordinal subtraction*) | 
| 24893 | 48 | odiff :: "[i,i]=>i" (infixl "--" 65) where | 
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 49 | "i -- j == ordertype(i-j, Memrel(i))" | 
| 1033 | 50 | |
| 13125 
be50e0b050b2
ordinal addition now coerces its arguments to ordinals
 paulson parents: 
12114diff
changeset | 51 | |
| 24826 | 52 | notation (xsymbols) | 
| 53 | omult (infixl "\<times>\<times>" 70) | |
| 9964 | 54 | |
| 24826 | 55 | notation (HTML output) | 
| 56 | omult (infixl "\<times>\<times>" 70) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 57 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 58 | |
| 13269 | 59 | subsection{*Proofs needing the combination of Ordinal.thy and Order.thy*}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 60 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 61 | lemma le_well_ord_Memrel: "j le i ==> well_ord(j, Memrel(i))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 62 | apply (rule well_ordI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 63 | apply (rule wf_Memrel [THEN wf_imp_wf_on]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 64 | apply (simp add: ltD lt_Ord linear_def | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 65 | ltI [THEN lt_trans2 [of _ j i]]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 66 | apply (intro ballI Ord_linear) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 67 | apply (blast intro: Ord_in_Ord lt_Ord)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 68 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 69 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 70 | (*"Ord(i) ==> well_ord(i, Memrel(i))"*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 71 | lemmas well_ord_Memrel = le_refl [THEN le_well_ord_Memrel] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 72 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 73 | (*Kunen's Theorem 7.3 (i), page 16; see also Ordinal/Ord_in_Ord | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 74 | The smaller ordinal is an initial segment of the larger *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 75 | lemma lt_pred_Memrel: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 76 | "j<i ==> pred(i, j, Memrel(i)) = j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 77 | apply (unfold pred_def lt_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 78 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 79 | apply (blast intro: Ord_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 80 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 81 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 82 | lemma pred_Memrel: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 83 | "x:A ==> pred(A, x, Memrel(A)) = A Int x" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 84 | by (unfold pred_def Memrel_def, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 85 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 86 | lemma Ord_iso_implies_eq_lemma: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 87 | "[| j<i; f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 88 | apply (frule lt_pred_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 89 | apply (erule ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 90 | apply (rule well_ord_Memrel [THEN well_ord_iso_predE, of i f j], auto) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 91 | apply (unfold ord_iso_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 92 | (*Combining the two simplifications causes looping*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 93 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 94 | apply (blast intro: bij_is_fun [THEN apply_type] Ord_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 95 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 96 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 97 | (*Kunen's Theorem 7.3 (ii), page 16. Isomorphic ordinals are equal*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 98 | lemma Ord_iso_implies_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 99 | "[| Ord(i); Ord(j); f: ord_iso(i,Memrel(i),j,Memrel(j)) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 100 | ==> i=j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 101 | apply (rule_tac i = i and j = j in Ord_linear_lt) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 102 | apply (blast intro: ord_iso_sym Ord_iso_implies_eq_lemma)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 103 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 104 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 105 | |
| 13269 | 106 | subsection{*Ordermap and ordertype*}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 107 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 108 | lemma ordermap_type: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 109 | "ordermap(A,r) : A -> ordertype(A,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 110 | apply (unfold ordermap_def ordertype_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 111 | apply (rule lam_type) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 112 | apply (rule lamI [THEN imageI], assumption+) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 113 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 114 | |
| 13356 | 115 | subsubsection{*Unfolding of ordermap *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 116 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 117 | (*Useful for cardinality reasoning; see CardinalArith.ML*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 118 | lemma ordermap_eq_image: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 119 | "[| wf[A](r); x:A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 120 | ==> ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 121 | apply (unfold ordermap_def pred_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 122 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 123 | apply (erule wfrec_on [THEN trans], assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 124 | apply (simp (no_asm_simp) add: subset_iff image_lam vimage_singleton_iff) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 125 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 126 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 127 | (*Useful for rewriting PROVIDED pred is not unfolded until later!*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 128 | lemma ordermap_pred_unfold: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 129 | "[| wf[A](r); x:A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 130 |       ==> ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}"
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 131 | by (simp add: ordermap_eq_image pred_subset ordermap_type [THEN image_fun]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 132 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 133 | (*pred-unfolded version. NOT suitable for rewriting -- loops!*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 134 | lemmas ordermap_unfold = ordermap_pred_unfold [simplified pred_def] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 135 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 136 | (*The theorem above is | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 137 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 138 | [| wf[A](r); x : A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 139 | ==> ordermap(A,r) ` x = {ordermap(A,r) ` y . y: {y: A . <y,x> : r}}
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 140 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 141 | NOTE: the definition of ordermap used here delivers ordinals only if r is | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 142 | transitive. If r is the predecessor relation on the naturals then | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 143 | ordermap(nat,predr) ` n equals {n-1} and not n.  A more complicated definition,
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 144 | like | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 145 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 146 |   ordermap(A,r) ` x = Union{succ(ordermap(A,r) ` y) . y: {y: A . <y,x> : r}},
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 147 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 148 | might eliminate the need for r to be transitive. | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 149 | *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 150 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 151 | |
| 13356 | 152 | subsubsection{*Showing that ordermap, ordertype yield ordinals *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 153 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 154 | lemma Ord_ordermap: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 155 | "[| well_ord(A,r); x:A |] ==> Ord(ordermap(A,r) ` x)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 156 | apply (unfold well_ord_def tot_ord_def part_ord_def, safe) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 157 | apply (rule_tac a=x in wf_on_induct, assumption+) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 158 | apply (simp (no_asm_simp) add: ordermap_pred_unfold) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 159 | apply (rule OrdI [OF _ Ord_is_Transset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 160 | apply (unfold pred_def Transset_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 161 | apply (blast intro: trans_onD | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26056diff
changeset | 162 | dest!: ordermap_unfold [THEN equalityD1])+ | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 163 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 164 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 165 | lemma Ord_ordertype: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 166 | "well_ord(A,r) ==> Ord(ordertype(A,r))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 167 | apply (unfold ordertype_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 168 | apply (subst image_fun [OF ordermap_type subset_refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 169 | apply (rule OrdI [OF _ Ord_is_Transset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 170 | prefer 2 apply (blast intro: Ord_ordermap) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 171 | apply (unfold Transset_def well_ord_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 172 | apply (blast intro: trans_onD | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26056diff
changeset | 173 | dest!: ordermap_unfold [THEN equalityD1]) | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 174 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 175 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 176 | |
| 13356 | 177 | subsubsection{*ordermap preserves the orderings in both directions *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 178 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 179 | lemma ordermap_mono: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 180 | "[| <w,x>: r; wf[A](r); w: A; x: A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 181 | ==> ordermap(A,r)`w : ordermap(A,r)`x" | 
| 13163 | 182 | apply (erule_tac x1 = x in ordermap_unfold [THEN ssubst], assumption, blast) | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 183 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 184 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 185 | (*linearity of r is crucial here*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 186 | lemma converse_ordermap_mono: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 187 | "[| ordermap(A,r)`w : ordermap(A,r)`x; well_ord(A,r); w: A; x: A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 188 | ==> <w,x>: r" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 189 | apply (unfold well_ord_def tot_ord_def, safe) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 190 | apply (erule_tac x=w and y=x in linearE, assumption+) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 191 | apply (blast elim!: mem_not_refl [THEN notE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 192 | apply (blast dest: ordermap_mono intro: mem_asym) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 193 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 194 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 195 | lemmas ordermap_surj = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 196 | ordermap_type [THEN surj_image, unfolded ordertype_def [symmetric]] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 197 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 198 | lemma ordermap_bij: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 199 | "well_ord(A,r) ==> ordermap(A,r) : bij(A, ordertype(A,r))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 200 | apply (unfold well_ord_def tot_ord_def bij_def inj_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 201 | apply (force intro!: ordermap_type ordermap_surj | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 202 | elim: linearE dest: ordermap_mono | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 203 | simp add: mem_not_refl) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 204 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 205 | |
| 13356 | 206 | subsubsection{*Isomorphisms involving ordertype *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 207 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 208 | lemma ordertype_ord_iso: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 209 | "well_ord(A,r) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 210 | ==> ordermap(A,r) : ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 211 | apply (unfold ord_iso_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 212 | apply (safe elim!: well_ord_is_wf | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 213 | intro!: ordermap_type [THEN apply_type] ordermap_mono ordermap_bij) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 214 | apply (blast dest!: converse_ordermap_mono) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 215 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 216 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 217 | lemma ordertype_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 218 | "[| f: ord_iso(A,r,B,s); well_ord(B,s) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 219 | ==> ordertype(A,r) = ordertype(B,s)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 220 | apply (frule well_ord_ord_iso, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 221 | apply (rule Ord_iso_implies_eq, (erule Ord_ordertype)+) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 222 | apply (blast intro: ord_iso_trans ord_iso_sym ordertype_ord_iso) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 223 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 224 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 225 | lemma ordertype_eq_imp_ord_iso: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 226 | "[| ordertype(A,r) = ordertype(B,s); well_ord(A,r); well_ord(B,s) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 227 | ==> EX f. f: ord_iso(A,r,B,s)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 228 | apply (rule exI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 229 | apply (rule ordertype_ord_iso [THEN ord_iso_trans], assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 230 | apply (erule ssubst) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 231 | apply (erule ordertype_ord_iso [THEN ord_iso_sym]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 232 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 233 | |
| 13356 | 234 | subsubsection{*Basic equalities for ordertype *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 235 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 236 | (*Ordertype of Memrel*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 237 | lemma le_ordertype_Memrel: "j le i ==> ordertype(j,Memrel(i)) = j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 238 | apply (rule Ord_iso_implies_eq [symmetric]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 239 | apply (erule ltE, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 240 | apply (blast intro: le_well_ord_Memrel Ord_ordertype) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 241 | apply (rule ord_iso_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 242 | apply (erule_tac [2] le_well_ord_Memrel [THEN ordertype_ord_iso]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 243 | apply (rule id_bij [THEN ord_isoI]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 244 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 245 | apply (fast elim: ltE Ord_in_Ord Ord_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 246 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 247 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 248 | (*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 249 | lemmas ordertype_Memrel = le_refl [THEN le_ordertype_Memrel] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 250 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 251 | lemma ordertype_0 [simp]: "ordertype(0,r) = 0" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 252 | apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq, THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 253 | apply (erule emptyE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 254 | apply (rule well_ord_0) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 255 | apply (rule Ord_0 [THEN ordertype_Memrel]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 256 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 257 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 258 | (*Ordertype of rvimage: [| f: bij(A,B); well_ord(B,s) |] ==> | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 259 | ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 260 | lemmas bij_ordertype_vimage = ord_iso_rvimage [THEN ordertype_eq] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 261 | |
| 13356 | 262 | subsubsection{*A fundamental unfolding law for ordertype. *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 263 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 264 | (*Ordermap returns the same result if applied to an initial segment*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 265 | lemma ordermap_pred_eq_ordermap: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 266 | "[| well_ord(A,r); y:A; z: pred(A,y,r) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 267 | ==> ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 268 | apply (frule wf_on_subset_A [OF well_ord_is_wf pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 269 | apply (rule_tac a=z in wf_on_induct, assumption+) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 270 | apply (safe elim!: predE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 271 | apply (simp (no_asm_simp) add: ordermap_pred_unfold well_ord_is_wf pred_iff) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 272 | (*combining these two simplifications LOOPS! *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 273 | apply (simp (no_asm_simp) add: pred_pred_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 274 | apply (simp add: pred_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 275 | apply (rule RepFun_cong [OF _ refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 276 | apply (drule well_ord_is_trans_on) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 277 | apply (fast elim!: trans_onD) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 278 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 279 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 280 | lemma ordertype_unfold: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 281 |     "ordertype(A,r) = {ordermap(A,r)`y . y : A}"
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 282 | apply (unfold ordertype_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 283 | apply (rule image_fun [OF ordermap_type subset_refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 284 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 285 | |
| 14046 | 286 | text{*Theorems by Krzysztof Grabczewski; proofs simplified by lcp *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 287 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 288 | lemma ordertype_pred_subset: "[| well_ord(A,r); x:A |] ==> | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 289 | ordertype(pred(A,x,r),r) <= ordertype(A,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 290 | apply (simp add: ordertype_unfold well_ord_subset [OF _ pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 291 | apply (fast intro: ordermap_pred_eq_ordermap elim: predE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 292 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 293 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 294 | lemma ordertype_pred_lt: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 295 | "[| well_ord(A,r); x:A |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 296 | ==> ordertype(pred(A,x,r),r) < ordertype(A,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 297 | apply (rule ordertype_pred_subset [THEN subset_imp_le, THEN leE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 298 | apply (simp_all add: Ord_ordertype well_ord_subset [OF _ pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 299 | apply (erule sym [THEN ordertype_eq_imp_ord_iso, THEN exE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 300 | apply (erule_tac [3] well_ord_iso_predE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 301 | apply (simp_all add: well_ord_subset [OF _ pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 302 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 303 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 304 | (*May rewrite with this -- provided no rules are supplied for proving that | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 305 | well_ord(pred(A,x,r), r) *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 306 | lemma ordertype_pred_unfold: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 307 | "well_ord(A,r) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 308 |       ==> ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}"
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 309 | apply (rule equalityI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 310 | apply (safe intro!: ordertype_pred_lt [THEN ltD]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 311 | apply (auto simp add: ordertype_def well_ord_is_wf [THEN ordermap_eq_image] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 312 | ordermap_type [THEN image_fun] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 313 | ordermap_pred_eq_ordermap pred_subset) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 314 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 315 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 316 | |
| 13269 | 317 | subsection{*Alternative definition of ordinal*}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 318 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 319 | (*proof by Krzysztof Grabczewski*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 320 | lemma Ord_is_Ord_alt: "Ord(i) ==> Ord_alt(i)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 321 | apply (unfold Ord_alt_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 322 | apply (rule conjI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 323 | apply (erule well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 324 | apply (unfold Ord_def Transset_def pred_def Memrel_def, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 325 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 326 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 327 | (*proof by lcp*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 328 | lemma Ord_alt_is_Ord: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 329 | "Ord_alt(i) ==> Ord(i)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 330 | apply (unfold Ord_alt_def Ord_def Transset_def well_ord_def | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 331 | tot_ord_def part_ord_def trans_on_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 332 | apply (simp add: pred_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 333 | apply (blast elim!: equalityE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 334 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 335 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 336 | |
| 13269 | 337 | subsection{*Ordinal Addition*}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 338 | |
| 13356 | 339 | subsubsection{*Order Type calculations for radd *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 340 | |
| 14046 | 341 | text{*Addition with 0 *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 342 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 343 | lemma bij_sum_0: "(lam z:A+0. case(%x. x, %y. y, z)) : bij(A+0, A)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 344 | apply (rule_tac d = Inl in lam_bijective, safe) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 345 | apply (simp_all (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 346 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 347 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 348 | lemma ordertype_sum_0_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 349 | "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 350 | apply (rule bij_sum_0 [THEN ord_isoI, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 351 | prefer 2 apply assumption | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 352 | apply force | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 353 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 354 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 355 | lemma bij_0_sum: "(lam z:0+A. case(%x. x, %y. y, z)) : bij(0+A, A)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 356 | apply (rule_tac d = Inr in lam_bijective, safe) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 357 | apply (simp_all (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 358 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 359 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 360 | lemma ordertype_0_sum_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 361 | "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 362 | apply (rule bij_0_sum [THEN ord_isoI, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 363 | prefer 2 apply assumption | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 364 | apply force | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 365 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 366 | |
| 14046 | 367 | text{*Initial segments of radd.  Statements by Grabczewski *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 368 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 369 | (*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 370 | lemma pred_Inl_bij: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 371 | "a:A ==> (lam x:pred(A,a,r). Inl(x)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 372 | : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 373 | apply (unfold pred_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 374 | apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 375 | apply auto | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 376 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 377 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 378 | lemma ordertype_pred_Inl_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 379 | "[| a:A; well_ord(A,r) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 380 | ==> ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 381 | ordertype(pred(A,a,r), r)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 382 | apply (rule pred_Inl_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 383 | apply (simp_all add: well_ord_subset [OF _ pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 384 | apply (simp add: pred_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 385 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 386 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 387 | lemma pred_Inr_bij: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 388 | "b:B ==> | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 389 | id(A+pred(B,b,s)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 390 | : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 391 | apply (unfold pred_def id_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 392 | apply (rule_tac d = "%z. z" in lam_bijective, auto) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 393 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 394 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 395 | lemma ordertype_pred_Inr_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 396 | "[| b:B; well_ord(A,r); well_ord(B,s) |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 397 | ==> ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 398 | ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 399 | apply (rule pred_Inr_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 400 | prefer 2 apply (force simp add: pred_def id_def, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 401 | apply (blast intro: well_ord_radd well_ord_subset [OF _ pred_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 402 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 403 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 404 | |
| 13356 | 405 | subsubsection{*ordify: trivial coercion to an ordinal *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 406 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 407 | lemma Ord_ordify [iff, TC]: "Ord(ordify(x))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 408 | by (simp add: ordify_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 409 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 410 | (*Collapsing*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 411 | lemma ordify_idem [simp]: "ordify(ordify(x)) = ordify(x)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 412 | by (simp add: ordify_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 413 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 414 | |
| 13356 | 415 | subsubsection{*Basic laws for ordinal addition *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 416 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 417 | lemma Ord_raw_oadd: "[|Ord(i); Ord(j)|] ==> Ord(raw_oadd(i,j))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 418 | by (simp add: raw_oadd_def ordify_def Ord_ordertype well_ord_radd | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 419 | well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 420 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 421 | lemma Ord_oadd [iff,TC]: "Ord(i++j)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 422 | by (simp add: oadd_def Ord_raw_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 423 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 424 | |
| 14046 | 425 | text{*Ordinal addition with zero *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 426 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 427 | lemma raw_oadd_0: "Ord(i) ==> raw_oadd(i,0) = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 428 | by (simp add: raw_oadd_def ordify_def ordertype_sum_0_eq | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 429 | ordertype_Memrel well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 430 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 431 | lemma oadd_0 [simp]: "Ord(i) ==> i++0 = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 432 | apply (simp (no_asm_simp) add: oadd_def raw_oadd_0 ordify_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 433 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 434 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 435 | lemma raw_oadd_0_left: "Ord(i) ==> raw_oadd(0,i) = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 436 | by (simp add: raw_oadd_def ordify_def ordertype_0_sum_eq ordertype_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 437 | well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 438 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 439 | lemma oadd_0_left [simp]: "Ord(i) ==> 0++i = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 440 | by (simp add: oadd_def raw_oadd_0_left ordify_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 441 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 442 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 443 | lemma oadd_eq_if_raw_oadd: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 444 | "i++j = (if Ord(i) then (if Ord(j) then raw_oadd(i,j) else i) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 445 | else (if Ord(j) then j else 0))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 446 | by (simp add: oadd_def ordify_def raw_oadd_0_left raw_oadd_0) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 447 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 448 | lemma raw_oadd_eq_oadd: "[|Ord(i); Ord(j)|] ==> raw_oadd(i,j) = i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 449 | by (simp add: oadd_def ordify_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 450 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 451 | (*** Further properties of ordinal addition. Statements by Grabczewski, | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 452 | proofs by lcp. ***) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 453 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 454 | (*Surely also provable by transfinite induction on j?*) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 455 | lemma lt_oadd1: "k<i ==> k < i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 456 | apply (simp add: oadd_def ordify_def lt_Ord2 raw_oadd_0, clarify) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 457 | apply (simp add: raw_oadd_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 458 | apply (rule ltE, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 459 | apply (rule ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 460 | apply (force simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 461 | ordertype_pred_Inl_eq lt_pred_Memrel leI [THEN le_ordertype_Memrel]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 462 | apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 463 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 464 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 465 | (*Thus also we obtain the rule i++j = k ==> i le k *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 466 | lemma oadd_le_self: "Ord(i) ==> i le i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 467 | apply (rule all_lt_imp_le) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 468 | apply (auto simp add: Ord_oadd lt_oadd1) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 469 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 470 | |
| 14046 | 471 | text{*Various other results *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 472 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 473 | lemma id_ord_iso_Memrel: "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 474 | apply (rule id_bij [THEN ord_isoI]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 475 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 476 | apply blast | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 477 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 478 | |
| 13221 | 479 | lemma subset_ord_iso_Memrel: | 
| 480 | "[| f: ord_iso(A,Memrel(B),C,r); A<=B |] ==> f: ord_iso(A,Memrel(A),C,r)" | |
| 481 | apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN fun_is_rel]) | |
| 482 | apply (frule ord_iso_trans [OF id_ord_iso_Memrel], assumption) | |
| 483 | apply (simp add: right_comp_id) | |
| 484 | done | |
| 485 | ||
| 486 | lemma restrict_ord_iso: | |
| 487 | "[| f \<in> ord_iso(i, Memrel(i), Order.pred(A,a,r), r); a \<in> A; j < i; | |
| 488 | trans[A](r) |] | |
| 489 | ==> restrict(f,j) \<in> ord_iso(j, Memrel(j), Order.pred(A,f`j,r), r)" | |
| 490 | apply (frule ltD) | |
| 491 | apply (frule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption) | |
| 492 | apply (frule ord_iso_restrict_pred, assumption) | |
| 493 | apply (simp add: pred_iff trans_pred_pred_eq lt_pred_Memrel) | |
| 494 | apply (blast intro!: subset_ord_iso_Memrel le_imp_subset [OF leI]) | |
| 495 | done | |
| 496 | ||
| 497 | lemma restrict_ord_iso2: | |
| 498 | "[| f \<in> ord_iso(Order.pred(A,a,r), r, i, Memrel(i)); a \<in> A; | |
| 499 | j < i; trans[A](r) |] | |
| 500 | ==> converse(restrict(converse(f), j)) | |
| 501 | \<in> ord_iso(Order.pred(A, converse(f)`j, r), r, j, Memrel(j))" | |
| 502 | by (blast intro: restrict_ord_iso ord_iso_sym ltI) | |
| 503 | ||
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 504 | lemma ordertype_sum_Memrel: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 505 | "[| well_ord(A,r); k<j |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 506 | ==> ordertype(A+k, radd(A, r, k, Memrel(j))) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 507 | ordertype(A+k, radd(A, r, k, Memrel(k)))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 508 | apply (erule ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 509 | apply (rule ord_iso_refl [THEN sum_ord_iso_cong, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 510 | apply (erule OrdmemD [THEN id_ord_iso_Memrel, THEN ord_iso_sym]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 511 | apply (simp_all add: well_ord_radd well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 512 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 513 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 514 | lemma oadd_lt_mono2: "k<j ==> i++k < i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 515 | apply (simp add: oadd_def ordify_def raw_oadd_0_left lt_Ord lt_Ord2, clarify) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 516 | apply (simp add: raw_oadd_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 517 | apply (rule ltE, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 518 | apply (rule ordertype_pred_unfold [THEN equalityD2, THEN subsetD, THEN ltI]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 519 | apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 520 | apply (rule bexI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 521 | apply (erule_tac [2] InrI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 522 | apply (simp add: ordertype_pred_Inr_eq well_ord_Memrel lt_pred_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 523 | leI [THEN le_ordertype_Memrel] ordertype_sum_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 524 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 525 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 526 | lemma oadd_lt_cancel2: "[| i++j < i++k; Ord(j) |] ==> j<k" | 
| 13611 | 527 | apply (simp (asm_lr) add: oadd_eq_if_raw_oadd split add: split_if_asm) | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 528 | prefer 2 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 529 | apply (frule_tac i = i and j = j in oadd_le_self) | 
| 13611 | 530 | apply (simp (asm_lr) add: oadd_def ordify_def lt_Ord not_lt_iff_le [THEN iff_sym]) | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 531 | apply (rule Ord_linear_lt, auto) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 532 | apply (simp_all add: raw_oadd_eq_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 533 | apply (blast dest: oadd_lt_mono2 elim: lt_irrefl lt_asym)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 534 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 535 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 536 | lemma oadd_lt_iff2: "Ord(j) ==> i++j < i++k <-> j<k" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 537 | by (blast intro!: oadd_lt_mono2 dest!: oadd_lt_cancel2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 538 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 539 | lemma oadd_inject: "[| i++j = i++k; Ord(j); Ord(k) |] ==> j=k" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 540 | apply (simp add: oadd_eq_if_raw_oadd split add: split_if_asm) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 541 | apply (simp add: raw_oadd_eq_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 542 | apply (rule Ord_linear_lt, auto) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 543 | apply (force dest: oadd_lt_mono2 [of concl: i] simp add: lt_not_refl)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 544 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 545 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 546 | lemma lt_oadd_disj: "k < i++j ==> k<i | (EX l:j. k = i++l )" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 547 | apply (simp add: Ord_in_Ord' [of _ j] oadd_eq_if_raw_oadd | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 548 | split add: split_if_asm) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 549 | prefer 2 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 550 | apply (simp add: Ord_in_Ord' [of _ j] lt_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 551 | apply (simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel raw_oadd_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 552 | apply (erule ltD [THEN RepFunE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 553 | apply (force simp add: ordertype_pred_Inl_eq well_ord_Memrel ltI | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 554 | lt_pred_Memrel le_ordertype_Memrel leI | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 555 | ordertype_pred_Inr_eq ordertype_sum_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 556 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 557 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 558 | |
| 13356 | 559 | subsubsection{*Ordinal addition with successor -- via associativity! *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 560 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 561 | lemma oadd_assoc: "(i++j)++k = i++(j++k)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 562 | apply (simp add: oadd_eq_if_raw_oadd Ord_raw_oadd raw_oadd_0 raw_oadd_0_left, clarify) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 563 | apply (simp add: raw_oadd_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 564 | apply (rule ordertype_eq [THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 565 | apply (rule sum_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 566 | ord_iso_refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 567 | apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 568 | apply (rule sum_assoc_ord_iso [THEN ordertype_eq, THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 569 | apply (rule_tac [2] ordertype_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 570 | apply (rule_tac [2] sum_ord_iso_cong [OF ord_iso_refl ordertype_ord_iso]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 571 | apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 572 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 573 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 574 | lemma oadd_unfold: "[| Ord(i);  Ord(j) |] ==> i++j = i Un (\<Union>k\<in>j. {i++k})"
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 575 | apply (rule subsetI [THEN equalityI]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 576 | apply (erule ltI [THEN lt_oadd_disj, THEN disjE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 577 | apply (blast intro: Ord_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 578 | apply (blast elim!: ltE, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 579 | apply (force intro: lt_oadd1 oadd_lt_mono2 simp add: Ord_mem_iff_lt) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 580 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 581 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 582 | lemma oadd_1: "Ord(i) ==> i++1 = succ(i)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 583 | apply (simp (no_asm_simp) add: oadd_unfold Ord_1 oadd_0) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 584 | apply blast | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 585 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 586 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 587 | lemma oadd_succ [simp]: "Ord(j) ==> i++succ(j) = succ(i++j)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 588 | apply (simp add: oadd_eq_if_raw_oadd, clarify) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 589 | apply (simp add: raw_oadd_eq_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 590 | apply (simp add: oadd_1 [of j, symmetric] oadd_1 [of "i++j", symmetric] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 591 | oadd_assoc) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 592 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 593 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 594 | |
| 14046 | 595 | text{*Ordinal addition with limit ordinals *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 596 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 597 | lemma oadd_UN: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 598 | "[| !!x. x:A ==> Ord(j(x)); a:A |] | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 599 | ==> i ++ (\<Union>x\<in>A. j(x)) = (\<Union>x\<in>A. i++j(x))" | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 600 | by (blast intro: ltI Ord_UN Ord_oadd lt_oadd1 [THEN ltD] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 601 | oadd_lt_mono2 [THEN ltD] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 602 | elim!: ltE dest!: ltI [THEN lt_oadd_disj]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 603 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 604 | lemma oadd_Limit: "Limit(j) ==> i++j = (\<Union>k\<in>j. i++k)" | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 605 | apply (frule Limit_has_0 [THEN ltD]) | 
| 13356 | 606 | apply (simp add: Limit_is_Ord [THEN Ord_in_Ord] oadd_UN [symmetric] | 
| 607 | Union_eq_UN [symmetric] Limit_Union_eq) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 608 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 609 | |
| 13221 | 610 | lemma oadd_eq_0_iff: "[| Ord(i); Ord(j) |] ==> (i ++ j) = 0 <-> i=0 & j=0" | 
| 611 | apply (erule trans_induct3 [of j]) | |
| 612 | apply (simp_all add: oadd_Limit) | |
| 613 | apply (simp add: Union_empty_iff Limit_def lt_def, blast) | |
| 614 | done | |
| 615 | ||
| 616 | lemma oadd_eq_lt_iff: "[| Ord(i); Ord(j) |] ==> 0 < (i ++ j) <-> 0<i | 0<j" | |
| 617 | by (simp add: Ord_0_lt_iff [symmetric] oadd_eq_0_iff) | |
| 618 | ||
| 619 | lemma oadd_LimitI: "[| Ord(i); Limit(j) |] ==> Limit(i ++ j)" | |
| 620 | apply (simp add: oadd_Limit) | |
| 621 | apply (frule Limit_has_1 [THEN ltD]) | |
| 622 | apply (rule increasing_LimitI) | |
| 623 | apply (rule Ord_0_lt) | |
| 624 | apply (blast intro: Ord_in_Ord [OF Limit_is_Ord]) | |
| 625 | apply (force simp add: Union_empty_iff oadd_eq_0_iff | |
| 626 | Limit_is_Ord [of j, THEN Ord_in_Ord], auto) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
13269diff
changeset | 627 | apply (rule_tac x="succ(y)" in bexI) | 
| 13221 | 628 | apply (simp add: ltI Limit_is_Ord [of j, THEN Ord_in_Ord]) | 
| 629 | apply (simp add: Limit_def lt_def) | |
| 630 | done | |
| 631 | ||
| 14046 | 632 | text{*Order/monotonicity properties of ordinal addition *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 633 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 634 | lemma oadd_le_self2: "Ord(i) ==> i le j++i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 635 | apply (erule_tac i = i in trans_induct3) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 636 | apply (simp (no_asm_simp) add: Ord_0_le) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 637 | apply (simp (no_asm_simp) add: oadd_succ succ_leI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 638 | apply (simp (no_asm_simp) add: oadd_Limit) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 639 | apply (rule le_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 640 | apply (rule_tac [2] le_implies_UN_le_UN) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 641 | apply (erule_tac [2] bspec) | 
| 13356 | 642 | prefer 2 apply assumption | 
| 643 | apply (simp add: Union_eq_UN [symmetric] Limit_Union_eq le_refl Limit_is_Ord) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 644 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 645 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 646 | lemma oadd_le_mono1: "k le j ==> k++i le j++i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 647 | apply (frule lt_Ord) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 648 | apply (frule le_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 649 | apply (simp add: oadd_eq_if_raw_oadd, clarify) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 650 | apply (simp add: raw_oadd_eq_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 651 | apply (erule_tac i = i in trans_induct3) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 652 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 653 | apply (simp (no_asm_simp) add: oadd_succ succ_le_iff) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 654 | apply (simp (no_asm_simp) add: oadd_Limit) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 655 | apply (rule le_implies_UN_le_UN, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 656 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 657 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 658 | lemma oadd_lt_mono: "[| i' le i; j'<j |] ==> i'++j' < i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 659 | by (blast intro: lt_trans1 oadd_le_mono1 oadd_lt_mono2 Ord_succD elim: ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 660 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 661 | lemma oadd_le_mono: "[| i' le i; j' le j |] ==> i'++j' le i++j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 662 | by (simp del: oadd_succ add: oadd_succ [symmetric] le_Ord2 oadd_lt_mono) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 663 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 664 | lemma oadd_le_iff2: "[| Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 665 | by (simp del: oadd_succ add: oadd_lt_iff2 oadd_succ [symmetric] Ord_succ) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 666 | |
| 13221 | 667 | lemma oadd_lt_self: "[| Ord(i); 0<j |] ==> i < i++j" | 
| 668 | apply (rule lt_trans2) | |
| 669 | apply (erule le_refl) | |
| 670 | apply (simp only: lt_Ord2 oadd_1 [of i, symmetric]) | |
| 671 | apply (blast intro: succ_leI oadd_le_mono) | |
| 672 | done | |
| 673 | ||
| 13269 | 674 | text{*Every ordinal is exceeded by some limit ordinal.*}
 | 
| 675 | lemma Ord_imp_greater_Limit: "Ord(i) ==> \<exists>k. i<k & Limit(k)" | |
| 676 | apply (rule_tac x="i ++ nat" in exI) | |
| 677 | apply (blast intro: oadd_LimitI oadd_lt_self Limit_nat [THEN Limit_has_0]) | |
| 678 | done | |
| 679 | ||
| 680 | lemma Ord2_imp_greater_Limit: "[|Ord(i); Ord(j)|] ==> \<exists>k. i<k & j<k & Limit(k)" | |
| 681 | apply (insert Ord_Un [of i j, THEN Ord_imp_greater_Limit]) | |
| 682 | apply (simp add: Un_least_lt_iff) | |
| 683 | done | |
| 684 | ||
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 685 | |
| 14046 | 686 | subsection{*Ordinal Subtraction*}
 | 
| 687 | ||
| 688 | text{*The difference is @{term "ordertype(j-i, Memrel(j))"}.
 | |
| 689 | It's probably simpler to define the difference recursively!*} | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 690 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 691 | lemma bij_sum_Diff: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 692 | "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 693 | apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 694 | apply (blast intro!: if_type) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 695 | apply (fast intro!: case_type) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 696 | apply (erule_tac [2] sumE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 697 | apply (simp_all (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 698 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 699 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 700 | lemma ordertype_sum_Diff: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 701 | "i le j ==> | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 702 | ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 703 | ordertype(j, Memrel(j))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 704 | apply (safe dest!: le_subset_iff [THEN iffD1]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 705 | apply (rule bij_sum_Diff [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 706 | apply (erule_tac [3] well_ord_Memrel, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 707 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 708 | apply (frule_tac j = y in Ord_in_Ord, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 709 | apply (frule_tac j = x in Ord_in_Ord, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 710 | apply (simp (no_asm_simp) add: Ord_mem_iff_lt lt_Ord not_lt_iff_le) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 711 | apply (blast intro: lt_trans2 lt_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 712 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 713 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 714 | lemma Ord_odiff [simp,TC]: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 715 | "[| Ord(i); Ord(j) |] ==> Ord(i--j)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 716 | apply (unfold odiff_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 717 | apply (blast intro: Ord_ordertype Diff_subset well_ord_subset well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 718 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 719 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 720 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 721 | lemma raw_oadd_ordertype_Diff: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 722 | "i le j | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 723 | ==> raw_oadd(i,j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 724 | apply (simp add: raw_oadd_def odiff_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 725 | apply (safe dest!: le_subset_iff [THEN iffD1]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 726 | apply (rule sum_ord_iso_cong [THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 727 | apply (erule id_ord_iso_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 728 | apply (rule ordertype_ord_iso [THEN ord_iso_sym]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 729 | apply (blast intro: well_ord_radd Diff_subset well_ord_subset well_ord_Memrel)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 730 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 731 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 732 | lemma oadd_odiff_inverse: "i le j ==> i ++ (j--i) = j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 733 | by (simp add: lt_Ord le_Ord2 oadd_def ordify_def raw_oadd_ordertype_Diff | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 734 | ordertype_sum_Diff ordertype_Memrel lt_Ord2 [THEN Ord_succD]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 735 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 736 | (*By oadd_inject, the difference between i and j is unique. Note that we get | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 737 | i++j = k ==> j = k--i. *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 738 | lemma odiff_oadd_inverse: "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 739 | apply (rule oadd_inject) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 740 | apply (blast intro: oadd_odiff_inverse oadd_le_self) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 741 | apply (blast intro: Ord_ordertype Ord_oadd Ord_odiff)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 742 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 743 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 744 | lemma odiff_lt_mono2: "[| i<j; k le i |] ==> i--k < j--k" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 745 | apply (rule_tac i = k in oadd_lt_cancel2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 746 | apply (simp add: oadd_odiff_inverse) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 747 | apply (subst oadd_odiff_inverse) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 748 | apply (blast intro: le_trans leI, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 749 | apply (simp (no_asm_simp) add: lt_Ord le_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 750 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 751 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 752 | |
| 13269 | 753 | subsection{*Ordinal Multiplication*}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 754 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 755 | lemma Ord_omult [simp,TC]: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 756 | "[| Ord(i); Ord(j) |] ==> Ord(i**j)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 757 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 758 | apply (blast intro: Ord_ordertype well_ord_rmult well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 759 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 760 | |
| 13356 | 761 | subsubsection{*A useful unfolding law *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 762 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 763 | lemma pred_Pair_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 764 | "[| a:A; b:B |] ==> pred(A*B, <a,b>, rmult(A,r,B,s)) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 765 |                       pred(A,a,r)*B Un ({a} * pred(B,b,s))"
 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 766 | apply (unfold pred_def, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 767 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 768 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 769 | lemma ordertype_pred_Pair_eq: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 770 | "[| a:A; b:B; well_ord(A,r); well_ord(B,s) |] ==> | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 771 | ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 772 | ordertype(pred(A,a,r)*B + pred(B,b,s), | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 773 | radd(A*B, rmult(A,r,B,s), B, s))" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 774 | apply (simp (no_asm_simp) add: pred_Pair_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 775 | apply (rule ordertype_eq [symmetric]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 776 | apply (rule prod_sum_singleton_ord_iso) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 777 | apply (simp_all add: pred_subset well_ord_rmult [THEN well_ord_subset]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 778 | apply (blast intro: pred_subset well_ord_rmult [THEN well_ord_subset] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 779 | elim!: predE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 780 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 781 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 782 | lemma ordertype_pred_Pair_lemma: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 783 | "[| i'<i; j'<j |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 784 | ==> ordertype(pred(i*j, <i',j'>, rmult(i,Memrel(i),j,Memrel(j))), | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 785 | rmult(i,Memrel(i),j,Memrel(j))) = | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 786 | raw_oadd (j**i', j')" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 787 | apply (unfold raw_oadd_def omult_def) | 
| 13356 | 788 | apply (simp add: ordertype_pred_Pair_eq lt_pred_Memrel ltD lt_Ord2 | 
| 789 | well_ord_Memrel) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 790 | apply (rule trans) | 
| 13356 | 791 | apply (rule_tac [2] ordertype_ord_iso | 
| 792 | [THEN sum_ord_iso_cong, THEN ordertype_eq]) | |
| 793 | apply (rule_tac [3] ord_iso_refl) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 794 | apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 795 | apply (elim SigmaE sumE ltE ssubst) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 796 | apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 797 | Ord_ordertype lt_Ord lt_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 798 | apply (blast intro: Ord_trans)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 799 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 800 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 801 | lemma lt_omult: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 802 | "[| Ord(i); Ord(j); k<j**i |] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 803 | ==> EX j' i'. k = j**i' ++ j' & j'<j & i'<i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 804 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 805 | apply (simp add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 806 | apply (safe elim!: ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 807 | apply (simp add: ordertype_pred_Pair_lemma ltI raw_oadd_eq_oadd | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 808 | omult_def [symmetric] Ord_in_Ord' [of _ i] Ord_in_Ord' [of _ j]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 809 | apply (blast intro: ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 810 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 811 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 812 | lemma omult_oadd_lt: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 813 | "[| j'<j; i'<i |] ==> j**i' ++ j' < j**i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 814 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 815 | apply (rule ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 816 | prefer 2 | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 817 | apply (simp add: Ord_ordertype well_ord_rmult well_ord_Memrel lt_Ord2) | 
| 13356 | 818 | apply (simp add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel lt_Ord2) | 
| 14864 | 819 | apply (rule bexI [of _ i']) | 
| 820 | apply (rule bexI [of _ j']) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 821 | apply (simp add: ordertype_pred_Pair_lemma ltI omult_def [symmetric]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 822 | apply (simp add: lt_Ord lt_Ord2 raw_oadd_eq_oadd) | 
| 14864 | 823 | apply (simp_all add: lt_def) | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 824 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 825 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 826 | lemma omult_unfold: | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 827 |      "[| Ord(i);  Ord(j) |] ==> j**i = (\<Union>j'\<in>j. \<Union>i'\<in>i. {j**i' ++ j'})"
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 828 | apply (rule subsetI [THEN equalityI]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 829 | apply (rule lt_omult [THEN exE]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 830 | apply (erule_tac [3] ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 831 | apply (simp_all add: Ord_omult) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 832 | apply (blast elim!: ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 833 | apply (blast intro: omult_oadd_lt [THEN ltD] ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 834 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 835 | |
| 13356 | 836 | subsubsection{*Basic laws for ordinal multiplication *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 837 | |
| 14046 | 838 | text{*Ordinal multiplication by zero *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 839 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 840 | lemma omult_0 [simp]: "i**0 = 0" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 841 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 842 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 843 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 844 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 845 | lemma omult_0_left [simp]: "0**i = 0" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 846 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 847 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 848 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 849 | |
| 14046 | 850 | text{*Ordinal multiplication by 1 *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 851 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 852 | lemma omult_1 [simp]: "Ord(i) ==> i**1 = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 853 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 854 | apply (rule_tac s1="Memrel(i)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 855 | in ord_isoI [THEN ordertype_eq, THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 856 | apply (rule_tac c = snd and d = "%z.<0,z>" in lam_bijective) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 857 | apply (auto elim!: snd_type well_ord_Memrel ordertype_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 858 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 859 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 860 | lemma omult_1_left [simp]: "Ord(i) ==> 1**i = i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 861 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 862 | apply (rule_tac s1="Memrel(i)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 863 | in ord_isoI [THEN ordertype_eq, THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 864 | apply (rule_tac c = fst and d = "%z.<z,0>" in lam_bijective) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 865 | apply (auto elim!: fst_type well_ord_Memrel ordertype_Memrel) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 866 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 867 | |
| 14046 | 868 | text{*Distributive law for ordinal multiplication and addition *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 869 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 870 | lemma oadd_omult_distrib: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 871 | "[| Ord(i); Ord(j); Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 872 | apply (simp add: oadd_eq_if_raw_oadd) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 873 | apply (simp add: omult_def raw_oadd_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 874 | apply (rule ordertype_eq [THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 875 | apply (rule prod_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 876 | ord_iso_refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 877 | apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 878 | Ord_ordertype) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 879 | apply (rule sum_prod_distrib_ord_iso [THEN ordertype_eq, THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 880 | apply (rule_tac [2] ordertype_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 881 | apply (rule_tac [2] sum_ord_iso_cong [OF ordertype_ord_iso ordertype_ord_iso]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 882 | apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 883 | Ord_ordertype) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 884 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 885 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 886 | lemma omult_succ: "[| Ord(i); Ord(j) |] ==> i**succ(j) = (i**j)++i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 887 | by (simp del: oadd_succ add: oadd_1 [of j, symmetric] oadd_omult_distrib) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 888 | |
| 14046 | 889 | text{*Associative law *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 890 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 891 | lemma omult_assoc: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 892 | "[| Ord(i); Ord(j); Ord(k) |] ==> (i**j)**k = i**(j**k)" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 893 | apply (unfold omult_def) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 894 | apply (rule ordertype_eq [THEN trans]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 895 | apply (rule prod_ord_iso_cong [OF ord_iso_refl | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 896 | ordertype_ord_iso [THEN ord_iso_sym]]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 897 | apply (blast intro: well_ord_rmult well_ord_Memrel)+ | 
| 13356 | 898 | apply (rule prod_assoc_ord_iso | 
| 899 | [THEN ord_iso_sym, THEN ordertype_eq, THEN trans]) | |
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 900 | apply (rule_tac [2] ordertype_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 901 | apply (rule_tac [2] prod_ord_iso_cong [OF ordertype_ord_iso ord_iso_refl]) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 902 | apply (blast intro: well_ord_rmult well_ord_Memrel Ord_ordertype)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 903 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 904 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 905 | |
| 14046 | 906 | text{*Ordinal multiplication with limit ordinals *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 907 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 908 | lemma omult_UN: | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 909 | "[| Ord(i); !!x. x:A ==> Ord(j(x)) |] | 
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 910 | ==> i ** (\<Union>x\<in>A. j(x)) = (\<Union>x\<in>A. i**j(x))" | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 911 | by (simp (no_asm_simp) add: Ord_UN omult_unfold, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 912 | |
| 13615 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 paulson parents: 
13611diff
changeset | 913 | lemma omult_Limit: "[| Ord(i); Limit(j) |] ==> i**j = (\<Union>k\<in>j. i**k)" | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 914 | by (simp add: Limit_is_Ord [THEN Ord_in_Ord] omult_UN [symmetric] | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 915 | Union_eq_UN [symmetric] Limit_Union_eq) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 916 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 917 | |
| 13356 | 918 | subsubsection{*Ordering/monotonicity properties of ordinal multiplication *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 919 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 920 | (*As a special case we have "[| 0<i; 0<j |] ==> 0 < i**j" *) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 921 | lemma lt_omult1: "[| k<i; 0<j |] ==> k < i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 922 | apply (safe elim!: ltE intro!: ltI Ord_omult) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 923 | apply (force simp add: omult_unfold) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 924 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 925 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 926 | lemma omult_le_self: "[| Ord(i); 0<j |] ==> i le i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 927 | by (blast intro: all_lt_imp_le Ord_omult lt_omult1 lt_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 928 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 929 | lemma omult_le_mono1: "[| k le j; Ord(i) |] ==> k**i le j**i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 930 | apply (frule lt_Ord) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 931 | apply (frule le_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 932 | apply (erule trans_induct3) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 933 | apply (simp (no_asm_simp) add: le_refl Ord_0) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 934 | apply (simp (no_asm_simp) add: omult_succ oadd_le_mono) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 935 | apply (simp (no_asm_simp) add: omult_Limit) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 936 | apply (rule le_implies_UN_le_UN, blast) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 937 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 938 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 939 | lemma omult_lt_mono2: "[| k<j; 0<i |] ==> i**k < i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 940 | apply (rule ltI) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 941 | apply (simp (no_asm_simp) add: omult_unfold lt_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 942 | apply (safe elim!: ltE intro!: Ord_omult) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 943 | apply (force simp add: Ord_omult) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 944 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 945 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 946 | lemma omult_le_mono2: "[| k le j; Ord(i) |] ==> i**k le i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 947 | apply (rule subset_imp_le) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 948 | apply (safe elim!: ltE dest!: Ord_succD intro!: Ord_omult) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 949 | apply (simp add: omult_unfold) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 950 | apply (blast intro: Ord_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 951 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 952 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 953 | lemma omult_le_mono: "[| i' le i; j' le j |] ==> i'**j' le i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 954 | by (blast intro: le_trans omult_le_mono1 omult_le_mono2 Ord_succD elim: ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 955 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 956 | lemma omult_lt_mono: "[| i' le i; j'<j; 0<i |] ==> i'**j' < i**j" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 957 | by (blast intro: lt_trans1 omult_le_mono1 omult_lt_mono2 Ord_succD elim: ltE) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 958 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 959 | lemma omult_le_self2: "[| Ord(i); 0<j |] ==> i le j**i" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 960 | apply (frule lt_Ord2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 961 | apply (erule_tac i = i in trans_induct3) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 962 | apply (simp (no_asm_simp)) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 963 | apply (simp (no_asm_simp) add: omult_succ) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 964 | apply (erule lt_trans1) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 965 | apply (rule_tac b = "j**x" in oadd_0 [THEN subst], rule_tac [2] oadd_lt_mono2) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 966 | apply (blast intro: Ord_omult, assumption) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 967 | apply (simp (no_asm_simp) add: omult_Limit) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 968 | apply (rule le_trans) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 969 | apply (rule_tac [2] le_implies_UN_le_UN) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 970 | prefer 2 apply blast | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 971 | apply (simp (no_asm_simp) add: Union_eq_UN [symmetric] Limit_Union_eq Limit_is_Ord) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 972 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 973 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 974 | |
| 14046 | 975 | text{*Further properties of ordinal multiplication *}
 | 
| 13140 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 976 | |
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 977 | lemma omult_inject: "[| i**j = i**k; 0<i; Ord(j); Ord(k) |] ==> j=k" | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 978 | apply (rule Ord_linear_lt) | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 979 | prefer 4 apply assumption | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 980 | apply auto | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 981 | apply (force dest: omult_lt_mono2 simp add: lt_not_refl)+ | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 982 | done | 
| 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 paulson parents: 
13125diff
changeset | 983 | |
| 14046 | 984 | subsection{*The Relation @{term Lt}*}
 | 
| 985 | ||
| 986 | lemma wf_Lt: "wf(Lt)" | |
| 987 | apply (rule wf_subset) | |
| 988 | apply (rule wf_Memrel) | |
| 989 | apply (auto simp add: Lt_def Memrel_def lt_def) | |
| 990 | done | |
| 991 | ||
| 992 | lemma irrefl_Lt: "irrefl(A,Lt)" | |
| 993 | by (auto simp add: Lt_def irrefl_def) | |
| 994 | ||
| 995 | lemma trans_Lt: "trans[A](Lt)" | |
| 996 | apply (simp add: Lt_def trans_on_def) | |
| 997 | apply (blast intro: lt_trans) | |
| 998 | done | |
| 999 | ||
| 1000 | lemma part_ord_Lt: "part_ord(A,Lt)" | |
| 1001 | by (simp add: part_ord_def irrefl_Lt trans_Lt) | |
| 1002 | ||
| 1003 | lemma linear_Lt: "linear(nat,Lt)" | |
| 1004 | apply (auto dest!: not_lt_imp_le simp add: Lt_def linear_def le_iff) | |
| 1005 | apply (drule lt_asym, auto) | |
| 1006 | done | |
| 1007 | ||
| 1008 | lemma tot_ord_Lt: "tot_ord(nat,Lt)" | |
| 1009 | by (simp add: tot_ord_def linear_Lt part_ord_Lt) | |
| 1010 | ||
| 14052 | 1011 | lemma well_ord_Lt: "well_ord(nat,Lt)" | 
| 1012 | by (simp add: well_ord_def wf_Lt wf_imp_wf_on tot_ord_Lt) | |
| 1013 | ||
| 435 | 1014 | end |