| author | wenzelm | 
| Fri, 27 Jul 2012 13:17:12 +0200 | |
| changeset 48546 | f81cf2fcd3a0 | 
| parent 47244 | a7f85074c169 | 
| child 50326 | b5afeccab2db | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Ln.thy | 
| 16959 | 2 | Author: Jeremy Avigad | 
| 3 | *) | |
| 4 | ||
| 5 | header {* Properties of ln *}
 | |
| 6 | ||
| 7 | theory Ln | |
| 8 | imports Transcendental | |
| 9 | begin | |
| 10 | ||
| 11 | lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n. | |
| 40864 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 12 | inverse(fact (n+2)) * (x ^ (n+2)))" | 
| 16959 | 13 | proof - | 
| 40864 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 14 | have "exp x = suminf (%n. inverse(fact n) * (x ^ n))" | 
| 19765 | 15 | by (simp add: exp_def) | 
| 40864 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 16 |   also from summable_exp have "... = (SUM n::nat : {0..<2}. 
 | 
| 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 17 | inverse(fact n) * (x ^ n)) + suminf (%n. | 
| 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 18 | inverse(fact(n+2)) * (x ^ (n+2)))" (is "_ = ?a + _") | 
| 16959 | 19 | by (rule suminf_split_initial_segment) | 
| 20 | also have "?a = 1 + x" | |
| 44289 | 21 | by (simp add: numeral_2_eq_2) | 
| 16959 | 22 | finally show ?thesis . | 
| 23 | qed | |
| 24 | ||
| 23114 | 25 | lemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2" | 
| 16959 | 26 | proof - | 
| 27 | assume a: "0 <= x" | |
| 28 | assume b: "x <= 1" | |
| 47244 | 29 |   { fix n :: nat
 | 
| 30 | have "2 * 2 ^ n \<le> fact (n + 2)" | |
| 31 | by (induct n, simp, simp) | |
| 32 | hence "real ((2::nat) * 2 ^ n) \<le> real (fact (n + 2))" | |
| 33 | by (simp only: real_of_nat_le_iff) | |
| 34 | hence "2 * 2 ^ n \<le> real (fact (n + 2))" | |
| 35 | by simp | |
| 36 | hence "inverse (fact (n + 2)) \<le> inverse (2 * 2 ^ n)" | |
| 37 | by (rule le_imp_inverse_le) simp | |
| 38 | hence "inverse (fact (n + 2)) \<le> 1/2 * (1/2)^n" | |
| 39 | by (simp add: inverse_mult_distrib power_inverse) | |
| 40 | hence "inverse (fact (n + 2)) * (x^n * x\<twosuperior>) \<le> 1/2 * (1/2)^n * (1 * x\<twosuperior>)" | |
| 41 | by (rule mult_mono) | |
| 42 | (rule mult_mono, simp_all add: power_le_one a b mult_nonneg_nonneg) | |
| 43 | hence "inverse (fact (n + 2)) * x ^ (n + 2) \<le> (x\<twosuperior>/2) * ((1/2)^n)" | |
| 44 | unfolding power_add by (simp add: mult_ac del: fact_Suc) } | |
| 45 | note aux1 = this | |
| 46 | have "(\<lambda>n. x\<twosuperior> / 2 * (1 / 2) ^ n) sums (x\<twosuperior> / 2 * (1 / (1 - 1 / 2)))" | |
| 47 | by (intro sums_mult geometric_sums, simp) | |
| 48 | hence aux2: "(\<lambda>n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2" | |
| 49 | by simp | |
| 50 | have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= x^2" | |
| 16959 | 51 | proof - | 
| 40864 
4abaaadfdaf2
moved activation of coercion inference into RealDef and declared function real a coercion.
 nipkow parents: 
36777diff
changeset | 52 | have "suminf (%n. inverse(fact (n+2)) * (x ^ (n+2))) <= | 
| 16959 | 53 | suminf (%n. (x^2/2) * ((1/2)^n))" | 
| 54 | apply (rule summable_le) | |
| 47244 | 55 | apply (rule allI, rule aux1) | 
| 56 | apply (rule summable_exp [THEN summable_ignore_initial_segment]) | |
| 57 | by (rule sums_summable, rule aux2) | |
| 16959 | 58 | also have "... = x^2" | 
| 59 | by (rule sums_unique [THEN sym], rule aux2) | |
| 60 | finally show ?thesis . | |
| 61 | qed | |
| 47244 | 62 | thus ?thesis unfolding exp_first_two_terms by auto | 
| 16959 | 63 | qed | 
| 64 | ||
| 47244 | 65 | lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==> | 
| 66 | x - x^2 <= ln (1 + x)" | |
| 16959 | 67 | proof - | 
| 68 | assume a: "0 <= x" and b: "x <= 1" | |
| 69 | have "exp (x - x^2) = exp x / exp (x^2)" | |
| 70 | by (rule exp_diff) | |
| 71 | also have "... <= (1 + x + x^2) / exp (x ^2)" | |
| 72 | apply (rule divide_right_mono) | |
| 73 | apply (rule exp_bound) | |
| 74 | apply (rule a, rule b) | |
| 75 | apply simp | |
| 76 | done | |
| 77 | also have "... <= (1 + x + x^2) / (1 + x^2)" | |
| 78 | apply (rule divide_left_mono) | |
| 47244 | 79 | apply (simp add: exp_ge_add_one_self_aux) | 
| 80 | apply (simp add: a) | |
| 81 | apply (simp add: mult_pos_pos add_pos_nonneg) | |
| 16959 | 82 | done | 
| 83 | also from a have "... <= 1 + x" | |
| 44289 | 84 | by (simp add: field_simps add_strict_increasing zero_le_mult_iff) | 
| 47244 | 85 | finally have "exp (x - x^2) <= 1 + x" . | 
| 16959 | 86 | also have "... = exp (ln (1 + x))" | 
| 87 | proof - | |
| 88 | from a have "0 < 1 + x" by auto | |
| 89 | thus ?thesis | |
| 90 | by (auto simp only: exp_ln_iff [THEN sym]) | |
| 91 | qed | |
| 92 | finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" . | |
| 93 | thus ?thesis by (auto simp only: exp_le_cancel_iff) | |
| 94 | qed | |
| 95 | ||
| 96 | lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x" | |
| 97 | proof - | |
| 98 | assume a: "0 <= (x::real)" and b: "x < 1" | |
| 99 | have "(1 - x) * (1 + x + x^2) = (1 - x^3)" | |
| 29667 | 100 | by (simp add: algebra_simps power2_eq_square power3_eq_cube) | 
| 16959 | 101 | also have "... <= 1" | 
| 25875 | 102 | by (auto simp add: a) | 
| 16959 | 103 | finally have "(1 - x) * (1 + x + x ^ 2) <= 1" . | 
| 47244 | 104 | moreover have c: "0 < 1 + x + x\<twosuperior>" | 
| 105 | by (simp add: add_pos_nonneg a) | |
| 16959 | 106 | ultimately have "1 - x <= 1 / (1 + x + x^2)" | 
| 107 | by (elim mult_imp_le_div_pos) | |
| 108 | also have "... <= 1 / exp x" | |
| 109 | apply (rule divide_left_mono) | |
| 110 | apply (rule exp_bound, rule a) | |
| 47244 | 111 | apply (rule b [THEN less_imp_le]) | 
| 112 | apply simp | |
| 16959 | 113 | apply (rule mult_pos_pos) | 
| 47244 | 114 | apply (rule c) | 
| 115 | apply simp | |
| 16959 | 116 | done | 
| 117 | also have "... = exp (-x)" | |
| 36777 
be5461582d0f
avoid using real-specific versions of generic lemmas
 huffman parents: 
33667diff
changeset | 118 | by (auto simp add: exp_minus divide_inverse) | 
| 16959 | 119 | finally have "1 - x <= exp (- x)" . | 
| 120 | also have "1 - x = exp (ln (1 - x))" | |
| 121 | proof - | |
| 122 | have "0 < 1 - x" | |
| 123 | by (insert b, auto) | |
| 124 | thus ?thesis | |
| 125 | by (auto simp only: exp_ln_iff [THEN sym]) | |
| 126 | qed | |
| 127 | finally have "exp (ln (1 - x)) <= exp (- x)" . | |
| 128 | thus ?thesis by (auto simp only: exp_le_cancel_iff) | |
| 129 | qed | |
| 130 | ||
| 131 | lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))" | |
| 132 | proof - | |
| 133 | assume a: "x < 1" | |
| 134 | have "ln(1 - x) = - ln(1 / (1 - x))" | |
| 135 | proof - | |
| 136 | have "ln(1 - x) = - (- ln (1 - x))" | |
| 137 | by auto | |
| 138 | also have "- ln(1 - x) = ln 1 - ln(1 - x)" | |
| 139 | by simp | |
| 140 | also have "... = ln(1 / (1 - x))" | |
| 141 | apply (rule ln_div [THEN sym]) | |
| 142 | by (insert a, auto) | |
| 143 | finally show ?thesis . | |
| 144 | qed | |
| 23482 | 145 | also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps) | 
| 16959 | 146 | finally show ?thesis . | 
| 147 | qed | |
| 148 | ||
| 149 | lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==> | |
| 150 | - x - 2 * x^2 <= ln (1 - x)" | |
| 151 | proof - | |
| 152 | assume a: "0 <= x" and b: "x <= (1 / 2)" | |
| 153 | from b have c: "x < 1" | |
| 154 | by auto | |
| 155 | then have "ln (1 - x) = - ln (1 + x / (1 - x))" | |
| 156 | by (rule aux5) | |
| 157 | also have "- (x / (1 - x)) <= ..." | |
| 158 | proof - | |
| 159 | have "ln (1 + x / (1 - x)) <= x / (1 - x)" | |
| 160 | apply (rule ln_add_one_self_le_self) | |
| 161 | apply (rule divide_nonneg_pos) | |
| 162 | by (insert a c, auto) | |
| 163 | thus ?thesis | |
| 164 | by auto | |
| 165 | qed | |
| 166 | also have "- (x / (1 - x)) = -x / (1 - x)" | |
| 167 | by auto | |
| 168 | finally have d: "- x / (1 - x) <= ln (1 - x)" . | |
| 41550 | 169 | have "0 < 1 - x" using a b by simp | 
| 23482 | 170 | hence e: "-x - 2 * x^2 <= - x / (1 - x)" | 
| 41550 | 171 | using mult_right_le_one_le[of "x*x" "2*x"] a b | 
| 172 | by (simp add:field_simps power2_eq_square) | |
| 16959 | 173 | from e d show "- x - 2 * x^2 <= ln (1 - x)" | 
| 174 | by (rule order_trans) | |
| 175 | qed | |
| 176 | ||
| 23114 | 177 | lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x" | 
| 16959 | 178 | apply (case_tac "0 <= x") | 
| 17013 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 avigad parents: 
16963diff
changeset | 179 | apply (erule exp_ge_add_one_self_aux) | 
| 16959 | 180 | apply (case_tac "x <= -1") | 
| 181 | apply (subgoal_tac "1 + x <= 0") | |
| 182 | apply (erule order_trans) | |
| 183 | apply simp | |
| 184 | apply simp | |
| 185 | apply (subgoal_tac "1 + x = exp(ln (1 + x))") | |
| 186 | apply (erule ssubst) | |
| 187 | apply (subst exp_le_cancel_iff) | |
| 188 | apply (subgoal_tac "ln (1 - (- x)) <= - (- x)") | |
| 189 | apply simp | |
| 190 | apply (rule ln_one_minus_pos_upper_bound) | |
| 191 | apply auto | |
| 192 | done | |
| 193 | ||
| 194 | lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x" | |
| 47244 | 195 | apply (subgoal_tac "ln (1 + x) \<le> ln (exp x)", simp) | 
| 16959 | 196 | apply (subst ln_le_cancel_iff) | 
| 197 | apply auto | |
| 198 | done | |
| 199 | ||
| 200 | lemma abs_ln_one_plus_x_minus_x_bound_nonneg: | |
| 201 | "0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2" | |
| 202 | proof - | |
| 23441 | 203 | assume x: "0 <= x" | 
| 41550 | 204 | assume x1: "x <= 1" | 
| 23441 | 205 | from x have "ln (1 + x) <= x" | 
| 16959 | 206 | by (rule ln_add_one_self_le_self) | 
| 207 | then have "ln (1 + x) - x <= 0" | |
| 208 | by simp | |
| 209 | then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)" | |
| 210 | by (rule abs_of_nonpos) | |
| 211 | also have "... = x - ln (1 + x)" | |
| 212 | by simp | |
| 213 | also have "... <= x^2" | |
| 214 | proof - | |
| 41550 | 215 | from x x1 have "x - x^2 <= ln (1 + x)" | 
| 16959 | 216 | by (intro ln_one_plus_pos_lower_bound) | 
| 217 | thus ?thesis | |
| 218 | by simp | |
| 219 | qed | |
| 220 | finally show ?thesis . | |
| 221 | qed | |
| 222 | ||
| 223 | lemma abs_ln_one_plus_x_minus_x_bound_nonpos: | |
| 224 | "-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2" | |
| 225 | proof - | |
| 41550 | 226 | assume a: "-(1 / 2) <= x" | 
| 227 | assume b: "x <= 0" | |
| 16959 | 228 | have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" | 
| 229 | apply (subst abs_of_nonpos) | |
| 230 | apply simp | |
| 231 | apply (rule ln_add_one_self_le_self2) | |
| 41550 | 232 | using a apply auto | 
| 16959 | 233 | done | 
| 234 | also have "... <= 2 * x^2" | |
| 235 | apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))") | |
| 29667 | 236 | apply (simp add: algebra_simps) | 
| 16959 | 237 | apply (rule ln_one_minus_pos_lower_bound) | 
| 41550 | 238 | using a b apply auto | 
| 29667 | 239 | done | 
| 16959 | 240 | finally show ?thesis . | 
| 241 | qed | |
| 242 | ||
| 243 | lemma abs_ln_one_plus_x_minus_x_bound: | |
| 244 | "abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2" | |
| 245 | apply (case_tac "0 <= x") | |
| 246 | apply (rule order_trans) | |
| 247 | apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg) | |
| 248 | apply auto | |
| 249 | apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos) | |
| 250 | apply auto | |
| 251 | done | |
| 252 | ||
| 253 | lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)" | |
| 254 | proof - | |
| 41550 | 255 | assume x: "exp 1 <= x" "x <= y" | 
| 44289 | 256 | moreover have "0 < exp (1::real)" by simp | 
| 257 | ultimately have a: "0 < x" and b: "0 < y" | |
| 258 | by (fast intro: less_le_trans order_trans)+ | |
| 16959 | 259 | have "x * ln y - x * ln x = x * (ln y - ln x)" | 
| 29667 | 260 | by (simp add: algebra_simps) | 
| 16959 | 261 | also have "... = x * ln(y / x)" | 
| 44289 | 262 | by (simp only: ln_div a b) | 
| 16959 | 263 | also have "y / x = (x + (y - x)) / x" | 
| 264 | by simp | |
| 44289 | 265 | also have "... = 1 + (y - x) / x" | 
| 266 | using x a by (simp add: field_simps) | |
| 16959 | 267 | also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)" | 
| 268 | apply (rule mult_left_mono) | |
| 269 | apply (rule ln_add_one_self_le_self) | |
| 270 | apply (rule divide_nonneg_pos) | |
| 41550 | 271 | using x a apply simp_all | 
| 16959 | 272 | done | 
| 23482 | 273 | also have "... = y - x" using a by simp | 
| 274 | also have "... = (y - x) * ln (exp 1)" by simp | |
| 16959 | 275 | also have "... <= (y - x) * ln x" | 
| 276 | apply (rule mult_left_mono) | |
| 277 | apply (subst ln_le_cancel_iff) | |
| 44289 | 278 | apply fact | 
| 16959 | 279 | apply (rule a) | 
| 41550 | 280 | apply (rule x) | 
| 281 | using x apply simp | |
| 16959 | 282 | done | 
| 283 | also have "... = y * ln x - x * ln x" | |
| 284 | by (rule left_diff_distrib) | |
| 285 | finally have "x * ln y <= y * ln x" | |
| 286 | by arith | |
| 41550 | 287 | then have "ln y <= (y * ln x) / x" using a by (simp add: field_simps) | 
| 288 | also have "... = y * (ln x / x)" by simp | |
| 289 | finally show ?thesis using b by (simp add: field_simps) | |
| 16959 | 290 | qed | 
| 291 | ||
| 43336 | 292 | lemma ln_le_minus_one: | 
| 293 | "0 < x \<Longrightarrow> ln x \<le> x - 1" | |
| 294 | using exp_ge_add_one_self[of "ln x"] by simp | |
| 295 | ||
| 296 | lemma ln_eq_minus_one: | |
| 297 | assumes "0 < x" "ln x = x - 1" shows "x = 1" | |
| 298 | proof - | |
| 299 | let "?l y" = "ln y - y + 1" | |
| 300 | have D: "\<And>x. 0 < x \<Longrightarrow> DERIV ?l x :> (1 / x - 1)" | |
| 301 | by (auto intro!: DERIV_intros) | |
| 302 | ||
| 303 | show ?thesis | |
| 304 | proof (cases rule: linorder_cases) | |
| 305 | assume "x < 1" | |
| 306 | from dense[OF `x < 1`] obtain a where "x < a" "a < 1" by blast | |
| 307 | from `x < a` have "?l x < ?l a" | |
| 308 | proof (rule DERIV_pos_imp_increasing, safe) | |
| 309 | fix y assume "x \<le> y" "y \<le> a" | |
| 310 | with `0 < x` `a < 1` have "0 < 1 / y - 1" "0 < y" | |
| 311 | by (auto simp: field_simps) | |
| 312 | with D show "\<exists>z. DERIV ?l y :> z \<and> 0 < z" | |
| 313 | by auto | |
| 314 | qed | |
| 315 | also have "\<dots> \<le> 0" | |
| 316 | using ln_le_minus_one `0 < x` `x < a` by (auto simp: field_simps) | |
| 317 | finally show "x = 1" using assms by auto | |
| 318 | next | |
| 319 | assume "1 < x" | |
| 320 | from dense[OF `1 < x`] obtain a where "1 < a" "a < x" by blast | |
| 321 | from `a < x` have "?l x < ?l a" | |
| 322 | proof (rule DERIV_neg_imp_decreasing, safe) | |
| 323 | fix y assume "a \<le> y" "y \<le> x" | |
| 324 | with `1 < a` have "1 / y - 1 < 0" "0 < y" | |
| 325 | by (auto simp: field_simps) | |
| 326 | with D show "\<exists>z. DERIV ?l y :> z \<and> z < 0" | |
| 327 | by blast | |
| 328 | qed | |
| 329 | also have "\<dots> \<le> 0" | |
| 330 | using ln_le_minus_one `1 < a` by (auto simp: field_simps) | |
| 331 | finally show "x = 1" using assms by auto | |
| 332 | qed simp | |
| 333 | qed | |
| 334 | ||
| 16959 | 335 | end |