author | paulson |
Tue, 16 Oct 2007 16:18:36 +0200 | |
changeset 25047 | f8712e98756a |
parent 24915 | fc90277c0dd7 |
child 25510 | 38c15efe603b |
permissions | -rw-r--r-- |
7700 | 1 |
(* Title: HOL/Inductive.thy |
2 |
ID: $Id$ |
|
10402 | 3 |
Author: Markus Wenzel, TU Muenchen |
11688 | 4 |
*) |
10727 | 5 |
|
24915 | 6 |
header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *} |
1187 | 7 |
|
15131 | 8 |
theory Inductive |
24915 | 9 |
imports Lattices Sum_Type |
16417 | 10 |
uses |
10402 | 11 |
("Tools/inductive_package.ML") |
24625
0398a5e802d3
separated code for inductive sequences from inductive_codegen.ML
haftmann
parents:
24349
diff
changeset
|
12 |
"Tools/dseq.ML" |
12437
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
13 |
("Tools/inductive_codegen.ML") |
10402 | 14 |
("Tools/datatype_aux.ML") |
15 |
("Tools/datatype_prop.ML") |
|
16 |
("Tools/datatype_rep_proofs.ML") |
|
17 |
("Tools/datatype_abs_proofs.ML") |
|
22783 | 18 |
("Tools/datatype_case.ML") |
10402 | 19 |
("Tools/datatype_package.ML") |
15131 | 20 |
("Tools/primrec_package.ML") |
21 |
begin |
|
10727 | 22 |
|
24915 | 23 |
subsection {* Least and greatest fixed points *} |
24 |
||
25 |
definition |
|
26 |
lfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where |
|
27 |
"lfp f = Inf {u. f u \<le> u}" --{*least fixed point*} |
|
28 |
||
29 |
definition |
|
30 |
gfp :: "('a\<Colon>complete_lattice \<Rightarrow> 'a) \<Rightarrow> 'a" where |
|
31 |
"gfp f = Sup {u. u \<le> f u}" --{*greatest fixed point*} |
|
32 |
||
33 |
||
34 |
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *} |
|
35 |
||
36 |
text{*@{term "lfp f"} is the least upper bound of |
|
37 |
the set @{term "{u. f(u) \<le> u}"} *} |
|
38 |
||
39 |
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A" |
|
40 |
by (auto simp add: lfp_def intro: Inf_lower) |
|
41 |
||
42 |
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f" |
|
43 |
by (auto simp add: lfp_def intro: Inf_greatest) |
|
44 |
||
45 |
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f" |
|
46 |
by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) |
|
47 |
||
48 |
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)" |
|
49 |
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) |
|
50 |
||
51 |
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" |
|
52 |
by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) |
|
53 |
||
54 |
lemma lfp_const: "lfp (\<lambda>x. t) = t" |
|
55 |
by (rule lfp_unfold) (simp add:mono_def) |
|
56 |
||
57 |
||
58 |
subsection {* General induction rules for least fixed points *} |
|
59 |
||
60 |
theorem lfp_induct: |
|
61 |
assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P" |
|
62 |
shows "lfp f <= P" |
|
63 |
proof - |
|
64 |
have "inf (lfp f) P <= lfp f" by (rule inf_le1) |
|
65 |
with mono have "f (inf (lfp f) P) <= f (lfp f)" .. |
|
66 |
also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric]) |
|
67 |
finally have "f (inf (lfp f) P) <= lfp f" . |
|
68 |
from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI) |
|
69 |
hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound) |
|
70 |
also have "inf (lfp f) P <= P" by (rule inf_le2) |
|
71 |
finally show ?thesis . |
|
72 |
qed |
|
73 |
||
74 |
lemma lfp_induct_set: |
|
75 |
assumes lfp: "a: lfp(f)" |
|
76 |
and mono: "mono(f)" |
|
77 |
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" |
|
78 |
shows "P(a)" |
|
79 |
by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) |
|
80 |
(auto simp: inf_set_eq intro: indhyp) |
|
81 |
||
82 |
lemma lfp_ordinal_induct: |
|
83 |
assumes mono: "mono f" |
|
84 |
and P_f: "!!S. P S ==> P(f S)" |
|
85 |
and P_Union: "!!M. !S:M. P S ==> P(Union M)" |
|
86 |
shows "P(lfp f)" |
|
87 |
proof - |
|
88 |
let ?M = "{S. S \<subseteq> lfp f & P S}" |
|
89 |
have "P (Union ?M)" using P_Union by simp |
|
90 |
also have "Union ?M = lfp f" |
|
91 |
proof |
|
92 |
show "Union ?M \<subseteq> lfp f" by blast |
|
93 |
hence "f (Union ?M) \<subseteq> f (lfp f)" by (rule mono [THEN monoD]) |
|
94 |
hence "f (Union ?M) \<subseteq> lfp f" using mono [THEN lfp_unfold] by simp |
|
95 |
hence "f (Union ?M) \<in> ?M" using P_f P_Union by simp |
|
96 |
hence "f (Union ?M) \<subseteq> Union ?M" by (rule Union_upper) |
|
97 |
thus "lfp f \<subseteq> Union ?M" by (rule lfp_lowerbound) |
|
98 |
qed |
|
99 |
finally show ?thesis . |
|
100 |
qed |
|
101 |
||
102 |
||
103 |
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, |
|
104 |
to control unfolding*} |
|
105 |
||
106 |
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" |
|
107 |
by (auto intro!: lfp_unfold) |
|
108 |
||
109 |
lemma def_lfp_induct: |
|
110 |
"[| A == lfp(f); mono(f); |
|
111 |
f (inf A P) \<le> P |
|
112 |
|] ==> A \<le> P" |
|
113 |
by (blast intro: lfp_induct) |
|
114 |
||
115 |
lemma def_lfp_induct_set: |
|
116 |
"[| A == lfp(f); mono(f); a:A; |
|
117 |
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) |
|
118 |
|] ==> P(a)" |
|
119 |
by (blast intro: lfp_induct_set) |
|
120 |
||
121 |
(*Monotonicity of lfp!*) |
|
122 |
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g" |
|
123 |
by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) |
|
124 |
||
125 |
||
126 |
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *} |
|
127 |
||
128 |
text{*@{term "gfp f"} is the greatest lower bound of |
|
129 |
the set @{term "{u. u \<le> f(u)}"} *} |
|
130 |
||
131 |
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f" |
|
132 |
by (auto simp add: gfp_def intro: Sup_upper) |
|
133 |
||
134 |
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X" |
|
135 |
by (auto simp add: gfp_def intro: Sup_least) |
|
136 |
||
137 |
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)" |
|
138 |
by (iprover intro: gfp_least order_trans monoD gfp_upperbound) |
|
139 |
||
140 |
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f" |
|
141 |
by (iprover intro: gfp_lemma2 monoD gfp_upperbound) |
|
142 |
||
143 |
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" |
|
144 |
by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) |
|
145 |
||
146 |
||
147 |
subsection {* Coinduction rules for greatest fixed points *} |
|
148 |
||
149 |
text{*weak version*} |
|
150 |
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)" |
|
151 |
by (rule gfp_upperbound [THEN subsetD], auto) |
|
152 |
||
153 |
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f" |
|
154 |
apply (erule gfp_upperbound [THEN subsetD]) |
|
155 |
apply (erule imageI) |
|
156 |
done |
|
157 |
||
158 |
lemma coinduct_lemma: |
|
159 |
"[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))" |
|
160 |
apply (frule gfp_lemma2) |
|
161 |
apply (drule mono_sup) |
|
162 |
apply (rule le_supI) |
|
163 |
apply assumption |
|
164 |
apply (rule order_trans) |
|
165 |
apply (rule order_trans) |
|
166 |
apply assumption |
|
167 |
apply (rule sup_ge2) |
|
168 |
apply assumption |
|
169 |
done |
|
170 |
||
171 |
text{*strong version, thanks to Coen and Frost*} |
|
172 |
lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)" |
|
173 |
by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq]) |
|
174 |
||
175 |
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)" |
|
176 |
apply (rule order_trans) |
|
177 |
apply (rule sup_ge1) |
|
178 |
apply (erule gfp_upperbound [OF coinduct_lemma]) |
|
179 |
apply assumption |
|
180 |
done |
|
181 |
||
182 |
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" |
|
183 |
by (blast dest: gfp_lemma2 mono_Un) |
|
184 |
||
185 |
||
186 |
subsection {* Even Stronger Coinduction Rule, by Martin Coen *} |
|
187 |
||
188 |
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both |
|
189 |
@{term lfp} and @{term gfp}*} |
|
190 |
||
191 |
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" |
|
192 |
by (iprover intro: subset_refl monoI Un_mono monoD) |
|
193 |
||
194 |
lemma coinduct3_lemma: |
|
195 |
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] |
|
196 |
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))" |
|
197 |
apply (rule subset_trans) |
|
198 |
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) |
|
199 |
apply (rule Un_least [THEN Un_least]) |
|
200 |
apply (rule subset_refl, assumption) |
|
201 |
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) |
|
202 |
apply (rule monoD, assumption) |
|
203 |
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) |
|
204 |
done |
|
205 |
||
206 |
lemma coinduct3: |
|
207 |
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" |
|
208 |
apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) |
|
209 |
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto) |
|
210 |
done |
|
211 |
||
212 |
||
213 |
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, |
|
214 |
to control unfolding*} |
|
215 |
||
216 |
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" |
|
217 |
by (auto intro!: gfp_unfold) |
|
218 |
||
219 |
lemma def_coinduct: |
|
220 |
"[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A" |
|
221 |
by (iprover intro!: coinduct) |
|
222 |
||
223 |
lemma def_coinduct_set: |
|
224 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A" |
|
225 |
by (auto intro!: coinduct_set) |
|
226 |
||
227 |
(*The version used in the induction/coinduction package*) |
|
228 |
lemma def_Collect_coinduct: |
|
229 |
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); |
|
230 |
a: X; !!z. z: X ==> P (X Un A) z |] ==> |
|
231 |
a : A" |
|
232 |
apply (erule def_coinduct_set, auto) |
|
233 |
done |
|
234 |
||
235 |
lemma def_coinduct3: |
|
236 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" |
|
237 |
by (auto intro!: coinduct3) |
|
238 |
||
239 |
text{*Monotonicity of @{term gfp}!*} |
|
240 |
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g" |
|
241 |
by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) |
|
242 |
||
243 |
||
23734 | 244 |
subsection {* Inductive predicates and sets *} |
11688 | 245 |
|
246 |
text {* Inversion of injective functions. *} |
|
11436 | 247 |
|
248 |
constdefs |
|
249 |
myinv :: "('a => 'b) => ('b => 'a)" |
|
250 |
"myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y" |
|
251 |
||
252 |
lemma myinv_f_f: "inj f ==> myinv f (f x) = x" |
|
253 |
proof - |
|
254 |
assume "inj f" |
|
255 |
hence "(THE x'. f x' = f x) = (THE x'. x' = x)" |
|
256 |
by (simp only: inj_eq) |
|
257 |
also have "... = x" by (rule the_eq_trivial) |
|
11439 | 258 |
finally show ?thesis by (unfold myinv_def) |
11436 | 259 |
qed |
260 |
||
261 |
lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y" |
|
262 |
proof (unfold myinv_def) |
|
263 |
assume inj: "inj f" |
|
264 |
assume "y \<in> range f" |
|
265 |
then obtain x where "y = f x" .. |
|
266 |
hence x: "f x = y" .. |
|
267 |
thus "f (THE x. f x = y) = y" |
|
268 |
proof (rule theI) |
|
269 |
fix x' assume "f x' = y" |
|
270 |
with x have "f x' = f x" by simp |
|
271 |
with inj show "x' = x" by (rule injD) |
|
272 |
qed |
|
273 |
qed |
|
274 |
||
275 |
hide const myinv |
|
276 |
||
277 |
||
11688 | 278 |
text {* Package setup. *} |
10402 | 279 |
|
23734 | 280 |
theorems basic_monos = |
22218 | 281 |
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
11688 | 282 |
Collect_mono in_mono vimage_mono |
283 |
imp_conv_disj not_not de_Morgan_disj de_Morgan_conj |
|
284 |
not_all not_ex |
|
285 |
Ball_def Bex_def |
|
18456 | 286 |
induct_rulify_fallback |
11688 | 287 |
|
24915 | 288 |
ML {* |
289 |
val def_lfp_unfold = @{thm def_lfp_unfold} |
|
290 |
val def_gfp_unfold = @{thm def_gfp_unfold} |
|
291 |
val def_lfp_induct = @{thm def_lfp_induct} |
|
292 |
val def_coinduct = @{thm def_coinduct} |
|
293 |
val inf_bool_eq = @{thm inf_bool_eq} |
|
294 |
val inf_fun_eq = @{thm inf_fun_eq} |
|
295 |
val le_boolI = @{thm le_boolI} |
|
296 |
val le_boolI' = @{thm le_boolI'} |
|
297 |
val le_funI = @{thm le_funI} |
|
298 |
val le_boolE = @{thm le_boolE} |
|
299 |
val le_funE = @{thm le_funE} |
|
300 |
val le_boolD = @{thm le_boolD} |
|
301 |
val le_funD = @{thm le_funD} |
|
302 |
val le_bool_def = @{thm le_bool_def} |
|
303 |
val le_fun_def = @{thm le_fun_def} |
|
304 |
*} |
|
305 |
||
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
306 |
use "Tools/inductive_package.ML" |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
307 |
setup InductivePackage.setup |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
308 |
|
23734 | 309 |
theorems [mono] = |
22218 | 310 |
imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
311 |
imp_conv_disj not_not de_Morgan_disj de_Morgan_conj |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
312 |
not_all not_ex |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
313 |
Ball_def Bex_def |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
314 |
induct_rulify_fallback |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
315 |
|
11688 | 316 |
|
12023 | 317 |
subsection {* Inductive datatypes and primitive recursion *} |
11688 | 318 |
|
11825 | 319 |
text {* Package setup. *} |
320 |
||
10402 | 321 |
use "Tools/datatype_aux.ML" |
322 |
use "Tools/datatype_prop.ML" |
|
323 |
use "Tools/datatype_rep_proofs.ML" |
|
324 |
use "Tools/datatype_abs_proofs.ML" |
|
22783 | 325 |
use "Tools/datatype_case.ML" |
10402 | 326 |
use "Tools/datatype_package.ML" |
7700 | 327 |
setup DatatypePackage.setup |
24699
c6674504103f
datatype interpretators for size and datatype_realizer
haftmann
parents:
24626
diff
changeset
|
328 |
use "Tools/primrec_package.ML" |
12437
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
329 |
|
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
330 |
use "Tools/inductive_codegen.ML" |
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
331 |
setup InductiveCodegen.setup |
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
332 |
|
23526 | 333 |
text{* Lambda-abstractions with pattern matching: *} |
334 |
||
335 |
syntax |
|
23529 | 336 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(%_)" 10) |
23526 | 337 |
syntax (xsymbols) |
23529 | 338 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(\<lambda>_)" 10) |
23526 | 339 |
|
23529 | 340 |
parse_translation (advanced) {* |
341 |
let |
|
342 |
fun fun_tr ctxt [cs] = |
|
343 |
let |
|
344 |
val x = Free (Name.variant (add_term_free_names (cs, [])) "x", dummyT); |
|
24349 | 345 |
val ft = DatatypeCase.case_tr true DatatypePackage.datatype_of_constr |
346 |
ctxt [x, cs] |
|
23529 | 347 |
in lambda x ft end |
348 |
in [("_lam_pats_syntax", fun_tr)] end |
|
23526 | 349 |
*} |
350 |
||
351 |
end |