author | wenzelm |
Thu, 26 Jun 2008 15:06:28 +0200 | |
changeset 27371 | f89aa7bd4602 |
parent 27310 | d0229bc6c461 |
child 27373 | 5794a0e3e26c |
permissions | -rw-r--r-- |
25904 | 1 |
(* Title: HOLCF/UpperPD.thy |
2 |
ID: $Id$ |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
6 |
header {* Upper powerdomain *} |
|
7 |
||
8 |
theory UpperPD |
|
9 |
imports CompactBasis |
|
10 |
begin |
|
11 |
||
12 |
subsection {* Basis preorder *} |
|
13 |
||
14 |
definition |
|
15 |
upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
16 |
"upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)" |
25904 | 17 |
|
18 |
lemma upper_le_refl [simp]: "t \<le>\<sharp> t" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
19 |
unfolding upper_le_def by fast |
25904 | 20 |
|
21 |
lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v" |
|
22 |
unfolding upper_le_def |
|
23 |
apply (rule ballI) |
|
24 |
apply (drule (1) bspec, erule bexE) |
|
25 |
apply (drule (1) bspec, erule bexE) |
|
26 |
apply (erule rev_bexI) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
27 |
apply (erule (1) trans_less) |
25904 | 28 |
done |
29 |
||
30 |
interpretation upper_le: preorder [upper_le] |
|
31 |
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans) |
|
32 |
||
33 |
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t" |
|
34 |
unfolding upper_le_def Rep_PDUnit by simp |
|
35 |
||
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
36 |
lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y" |
25904 | 37 |
unfolding upper_le_def Rep_PDUnit by simp |
38 |
||
39 |
lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v" |
|
40 |
unfolding upper_le_def Rep_PDPlus by fast |
|
41 |
||
42 |
lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
43 |
unfolding upper_le_def Rep_PDPlus by fast |
25904 | 44 |
|
45 |
lemma upper_le_PDUnit_PDUnit_iff [simp]: |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
46 |
"(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b" |
25904 | 47 |
unfolding upper_le_def Rep_PDUnit by fast |
48 |
||
49 |
lemma upper_le_PDPlus_PDUnit_iff: |
|
50 |
"(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)" |
|
51 |
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast |
|
52 |
||
53 |
lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)" |
|
54 |
unfolding upper_le_def Rep_PDPlus by fast |
|
55 |
||
56 |
lemma upper_le_induct [induct set: upper_le]: |
|
57 |
assumes le: "t \<le>\<sharp> u" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
58 |
assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" |
25904 | 59 |
assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)" |
60 |
assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)" |
|
61 |
shows "P t u" |
|
62 |
using le apply (induct u arbitrary: t rule: pd_basis_induct) |
|
63 |
apply (erule rev_mp) |
|
64 |
apply (induct_tac t rule: pd_basis_induct) |
|
65 |
apply (simp add: 1) |
|
66 |
apply (simp add: upper_le_PDPlus_PDUnit_iff) |
|
67 |
apply (simp add: 2) |
|
68 |
apply (subst PDPlus_commute) |
|
69 |
apply (simp add: 2) |
|
70 |
apply (simp add: upper_le_PDPlus_iff 3) |
|
71 |
done |
|
72 |
||
27289 | 73 |
lemma approx_pd_upper_chain: |
74 |
"approx_pd n t \<le>\<sharp> approx_pd (Suc n) t" |
|
25904 | 75 |
apply (induct t rule: pd_basis_induct) |
27289 | 76 |
apply (simp add: compact_basis.take_chain) |
25904 | 77 |
apply (simp add: PDPlus_upper_mono) |
78 |
done |
|
79 |
||
80 |
lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t" |
|
81 |
apply (induct t rule: pd_basis_induct) |
|
27289 | 82 |
apply (simp add: compact_basis.take_less) |
25904 | 83 |
apply (simp add: PDPlus_upper_mono) |
84 |
done |
|
85 |
||
86 |
lemma approx_pd_upper_mono: |
|
87 |
"t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u" |
|
88 |
apply (erule upper_le_induct) |
|
27289 | 89 |
apply (simp add: compact_basis.take_mono) |
25904 | 90 |
apply (simp add: upper_le_PDPlus_PDUnit_iff) |
91 |
apply (simp add: upper_le_PDPlus_iff) |
|
92 |
done |
|
93 |
||
94 |
||
95 |
subsection {* Type definition *} |
|
96 |
||
97 |
cpodef (open) 'a upper_pd = |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
98 |
"{S::'a pd_basis cset. upper_le.ideal (Rep_cset S)}" |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
99 |
by (rule upper_le.cpodef_ideal_lemma) |
25904 | 100 |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
101 |
lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_cset (Rep_upper_pd xs))" |
26927 | 102 |
by (rule Rep_upper_pd [unfolded mem_Collect_eq]) |
25904 | 103 |
|
104 |
definition |
|
105 |
upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
106 |
"upper_principal t = Abs_upper_pd (Abs_cset {u. u \<le>\<sharp> t})" |
25904 | 107 |
|
108 |
lemma Rep_upper_principal: |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
109 |
"Rep_cset (Rep_upper_pd (upper_principal t)) = {u. u \<le>\<sharp> t}" |
25904 | 110 |
unfolding upper_principal_def |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
111 |
by (simp add: Abs_upper_pd_inverse upper_le.ideal_principal) |
25904 | 112 |
|
113 |
interpretation upper_pd: |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
114 |
ideal_completion |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
115 |
[upper_le approx_pd upper_principal "\<lambda>x. Rep_cset (Rep_upper_pd x)"] |
25904 | 116 |
apply unfold_locales |
117 |
apply (rule approx_pd_upper_le) |
|
118 |
apply (rule approx_pd_idem) |
|
119 |
apply (erule approx_pd_upper_mono) |
|
27289 | 120 |
apply (rule approx_pd_upper_chain) |
25904 | 121 |
apply (rule finite_range_approx_pd) |
27289 | 122 |
apply (rule approx_pd_covers) |
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
123 |
apply (rule ideal_Rep_upper_pd) |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
124 |
apply (simp add: cont2contlubE [OF cont_Rep_upper_pd] Rep_cset_lub) |
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
125 |
apply (rule Rep_upper_principal) |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
126 |
apply (simp only: less_upper_pd_def sq_le_cset_def) |
25904 | 127 |
done |
128 |
||
27289 | 129 |
text {* Upper powerdomain is pointed *} |
25904 | 130 |
|
131 |
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys" |
|
132 |
by (induct ys rule: upper_pd.principal_induct, simp, simp) |
|
133 |
||
134 |
instance upper_pd :: (bifinite) pcpo |
|
26927 | 135 |
by intro_classes (fast intro: upper_pd_minimal) |
25904 | 136 |
|
137 |
lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)" |
|
138 |
by (rule upper_pd_minimal [THEN UU_I, symmetric]) |
|
139 |
||
27289 | 140 |
text {* Upper powerdomain is profinite *} |
25904 | 141 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
142 |
instantiation upper_pd :: (profinite) profinite |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
143 |
begin |
25904 | 144 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
145 |
definition |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
146 |
approx_upper_pd_def: "approx = upper_pd.completion_approx" |
26927 | 147 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
148 |
instance |
26927 | 149 |
apply (intro_classes, unfold approx_upper_pd_def) |
27310 | 150 |
apply (rule upper_pd.chain_completion_approx) |
26927 | 151 |
apply (rule upper_pd.lub_completion_approx) |
152 |
apply (rule upper_pd.completion_approx_idem) |
|
153 |
apply (rule upper_pd.finite_fixes_completion_approx) |
|
154 |
done |
|
155 |
||
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
156 |
end |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
157 |
|
26927 | 158 |
instance upper_pd :: (bifinite) bifinite .. |
25904 | 159 |
|
160 |
lemma approx_upper_principal [simp]: |
|
161 |
"approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)" |
|
162 |
unfolding approx_upper_pd_def |
|
26927 | 163 |
by (rule upper_pd.completion_approx_principal) |
25904 | 164 |
|
165 |
lemma approx_eq_upper_principal: |
|
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
166 |
"\<exists>t\<in>Rep_cset (Rep_upper_pd xs). |
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
167 |
approx n\<cdot>xs = upper_principal (approx_pd n t)" |
25904 | 168 |
unfolding approx_upper_pd_def |
26927 | 169 |
by (rule upper_pd.completion_approx_eq_principal) |
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
170 |
|
25904 | 171 |
|
26927 | 172 |
subsection {* Monadic unit and plus *} |
25904 | 173 |
|
174 |
definition |
|
175 |
upper_unit :: "'a \<rightarrow> 'a upper_pd" where |
|
176 |
"upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))" |
|
177 |
||
178 |
definition |
|
179 |
upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where |
|
180 |
"upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u. |
|
181 |
upper_principal (PDPlus t u)))" |
|
182 |
||
183 |
abbreviation |
|
184 |
upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd" |
|
185 |
(infixl "+\<sharp>" 65) where |
|
186 |
"xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys" |
|
187 |
||
26927 | 188 |
syntax |
189 |
"_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>") |
|
190 |
||
191 |
translations |
|
192 |
"{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>" |
|
193 |
"{x}\<sharp>" == "CONST upper_unit\<cdot>x" |
|
194 |
||
195 |
lemma upper_unit_Rep_compact_basis [simp]: |
|
196 |
"{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)" |
|
197 |
unfolding upper_unit_def |
|
27289 | 198 |
by (simp add: compact_basis.basis_fun_principal PDUnit_upper_mono) |
26927 | 199 |
|
25904 | 200 |
lemma upper_plus_principal [simp]: |
26927 | 201 |
"upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)" |
25904 | 202 |
unfolding upper_plus_def |
203 |
by (simp add: upper_pd.basis_fun_principal |
|
204 |
upper_pd.basis_fun_mono PDPlus_upper_mono) |
|
205 |
||
26927 | 206 |
lemma approx_upper_unit [simp]: |
207 |
"approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>" |
|
27289 | 208 |
apply (induct x rule: compact_basis.principal_induct, simp) |
26927 | 209 |
apply (simp add: approx_Rep_compact_basis) |
210 |
done |
|
211 |
||
25904 | 212 |
lemma approx_upper_plus [simp]: |
26927 | 213 |
"approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)" |
27289 | 214 |
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp) |
25904 | 215 |
|
26927 | 216 |
lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)" |
27289 | 217 |
apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp) |
218 |
apply (rule_tac x=zs in upper_pd.principal_induct, simp) |
|
25904 | 219 |
apply (simp add: PDPlus_assoc) |
220 |
done |
|
221 |
||
26927 | 222 |
lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs" |
27289 | 223 |
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) |
26927 | 224 |
apply (simp add: PDPlus_commute) |
225 |
done |
|
226 |
||
227 |
lemma upper_plus_absorb: "xs +\<sharp> xs = xs" |
|
27289 | 228 |
apply (induct xs rule: upper_pd.principal_induct, simp) |
25904 | 229 |
apply (simp add: PDPlus_absorb) |
230 |
done |
|
231 |
||
26927 | 232 |
interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"] |
233 |
by unfold_locales |
|
234 |
(rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+ |
|
235 |
||
236 |
lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)" |
|
237 |
by (rule aci_upper_plus.mult_left_commute) |
|
238 |
||
239 |
lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys" |
|
240 |
by (rule aci_upper_plus.mult_left_idem) |
|
241 |
||
242 |
lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem |
|
243 |
||
244 |
lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs" |
|
27289 | 245 |
apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) |
25904 | 246 |
apply (simp add: PDPlus_upper_less) |
247 |
done |
|
248 |
||
26927 | 249 |
lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys" |
25904 | 250 |
by (subst upper_plus_commute, rule upper_plus_less1) |
251 |
||
26927 | 252 |
lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs" |
25904 | 253 |
apply (subst upper_plus_absorb [of xs, symmetric]) |
254 |
apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
|
255 |
done |
|
256 |
||
257 |
lemma upper_less_plus_iff: |
|
26927 | 258 |
"xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs" |
25904 | 259 |
apply safe |
260 |
apply (erule trans_less [OF _ upper_plus_less1]) |
|
261 |
apply (erule trans_less [OF _ upper_plus_less2]) |
|
262 |
apply (erule (1) upper_plus_greatest) |
|
263 |
done |
|
264 |
||
265 |
lemma upper_plus_less_unit_iff: |
|
26927 | 266 |
"xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>" |
25904 | 267 |
apply (rule iffI) |
268 |
apply (subgoal_tac |
|
26927 | 269 |
"adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)") |
25925 | 270 |
apply (drule admD, rule chain_approx) |
25904 | 271 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
27289 | 272 |
apply (cut_tac x="approx i\<cdot>xs" in upper_pd.compact_imp_principal, simp) |
273 |
apply (cut_tac x="approx i\<cdot>ys" in upper_pd.compact_imp_principal, simp) |
|
274 |
apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp) |
|
25904 | 275 |
apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff) |
276 |
apply simp |
|
277 |
apply simp |
|
278 |
apply (erule disjE) |
|
279 |
apply (erule trans_less [OF upper_plus_less1]) |
|
280 |
apply (erule trans_less [OF upper_plus_less2]) |
|
281 |
done |
|
282 |
||
26927 | 283 |
lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y" |
284 |
apply (rule iffI) |
|
27309 | 285 |
apply (rule profinite_less_ext) |
26927 | 286 |
apply (drule_tac f="approx i" in monofun_cfun_arg, simp) |
27289 | 287 |
apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) |
288 |
apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) |
|
289 |
apply clarsimp |
|
26927 | 290 |
apply (erule monofun_cfun_arg) |
291 |
done |
|
292 |
||
25904 | 293 |
lemmas upper_pd_less_simps = |
294 |
upper_unit_less_iff |
|
295 |
upper_less_plus_iff |
|
296 |
upper_plus_less_unit_iff |
|
297 |
||
26927 | 298 |
lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y" |
299 |
unfolding po_eq_conv by simp |
|
300 |
||
301 |
lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>" |
|
302 |
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp |
|
303 |
||
304 |
lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>" |
|
305 |
by (rule UU_I, rule upper_plus_less1) |
|
306 |
||
307 |
lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>" |
|
308 |
by (rule UU_I, rule upper_plus_less2) |
|
309 |
||
310 |
lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>" |
|
311 |
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) |
|
312 |
||
313 |
lemma upper_plus_strict_iff [simp]: |
|
314 |
"xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>" |
|
315 |
apply (rule iffI) |
|
316 |
apply (erule rev_mp) |
|
27289 | 317 |
apply (rule upper_pd.principal_induct2 [where x=xs and y=ys], simp, simp) |
318 |
apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff |
|
26927 | 319 |
upper_le_PDPlus_PDUnit_iff) |
320 |
apply auto |
|
321 |
done |
|
322 |
||
323 |
lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x" |
|
27309 | 324 |
unfolding profinite_compact_iff by simp |
26927 | 325 |
|
326 |
lemma compact_upper_plus [simp]: |
|
327 |
"\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)" |
|
27289 | 328 |
by (auto dest!: upper_pd.compact_imp_principal) |
26927 | 329 |
|
25904 | 330 |
|
331 |
subsection {* Induction rules *} |
|
332 |
||
333 |
lemma upper_pd_induct1: |
|
334 |
assumes P: "adm P" |
|
26927 | 335 |
assumes unit: "\<And>x. P {x}\<sharp>" |
336 |
assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)" |
|
25904 | 337 |
shows "P (xs::'a upper_pd)" |
27289 | 338 |
apply (induct xs rule: upper_pd.principal_induct, rule P) |
339 |
apply (induct_tac a rule: pd_basis_induct1) |
|
25904 | 340 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric]) |
341 |
apply (rule unit) |
|
342 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric] |
|
343 |
upper_plus_principal [symmetric]) |
|
344 |
apply (erule insert [OF unit]) |
|
345 |
done |
|
346 |
||
347 |
lemma upper_pd_induct: |
|
348 |
assumes P: "adm P" |
|
26927 | 349 |
assumes unit: "\<And>x. P {x}\<sharp>" |
350 |
assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)" |
|
25904 | 351 |
shows "P (xs::'a upper_pd)" |
27289 | 352 |
apply (induct xs rule: upper_pd.principal_induct, rule P) |
353 |
apply (induct_tac a rule: pd_basis_induct) |
|
25904 | 354 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit) |
355 |
apply (simp only: upper_plus_principal [symmetric] plus) |
|
356 |
done |
|
357 |
||
358 |
||
359 |
subsection {* Monadic bind *} |
|
360 |
||
361 |
definition |
|
362 |
upper_bind_basis :: |
|
363 |
"'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where |
|
364 |
"upper_bind_basis = fold_pd |
|
365 |
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) |
|
26927 | 366 |
(\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" |
25904 | 367 |
|
26927 | 368 |
lemma ACI_upper_bind: |
369 |
"ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" |
|
25904 | 370 |
apply unfold_locales |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25925
diff
changeset
|
371 |
apply (simp add: upper_plus_assoc) |
25904 | 372 |
apply (simp add: upper_plus_commute) |
373 |
apply (simp add: upper_plus_absorb eta_cfun) |
|
374 |
done |
|
375 |
||
376 |
lemma upper_bind_basis_simps [simp]: |
|
377 |
"upper_bind_basis (PDUnit a) = |
|
378 |
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))" |
|
379 |
"upper_bind_basis (PDPlus t u) = |
|
26927 | 380 |
(\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)" |
25904 | 381 |
unfolding upper_bind_basis_def |
382 |
apply - |
|
26927 | 383 |
apply (rule fold_pd_PDUnit [OF ACI_upper_bind]) |
384 |
apply (rule fold_pd_PDPlus [OF ACI_upper_bind]) |
|
25904 | 385 |
done |
386 |
||
387 |
lemma upper_bind_basis_mono: |
|
388 |
"t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u" |
|
389 |
unfolding expand_cfun_less |
|
390 |
apply (erule upper_le_induct, safe) |
|
27289 | 391 |
apply (simp add: monofun_cfun) |
25904 | 392 |
apply (simp add: trans_less [OF upper_plus_less1]) |
393 |
apply (simp add: upper_less_plus_iff) |
|
394 |
done |
|
395 |
||
396 |
definition |
|
397 |
upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where |
|
398 |
"upper_bind = upper_pd.basis_fun upper_bind_basis" |
|
399 |
||
400 |
lemma upper_bind_principal [simp]: |
|
401 |
"upper_bind\<cdot>(upper_principal t) = upper_bind_basis t" |
|
402 |
unfolding upper_bind_def |
|
403 |
apply (rule upper_pd.basis_fun_principal) |
|
404 |
apply (erule upper_bind_basis_mono) |
|
405 |
done |
|
406 |
||
407 |
lemma upper_bind_unit [simp]: |
|
26927 | 408 |
"upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x" |
27289 | 409 |
by (induct x rule: compact_basis.principal_induct, simp, simp) |
25904 | 410 |
|
411 |
lemma upper_bind_plus [simp]: |
|
26927 | 412 |
"upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f" |
27289 | 413 |
by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp) |
25904 | 414 |
|
415 |
lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" |
|
416 |
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit) |
|
417 |
||
418 |
||
419 |
subsection {* Map and join *} |
|
420 |
||
421 |
definition |
|
422 |
upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where |
|
26927 | 423 |
"upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))" |
25904 | 424 |
|
425 |
definition |
|
426 |
upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where |
|
427 |
"upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" |
|
428 |
||
429 |
lemma upper_map_unit [simp]: |
|
26927 | 430 |
"upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>" |
25904 | 431 |
unfolding upper_map_def by simp |
432 |
||
433 |
lemma upper_map_plus [simp]: |
|
26927 | 434 |
"upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys" |
25904 | 435 |
unfolding upper_map_def by simp |
436 |
||
437 |
lemma upper_join_unit [simp]: |
|
26927 | 438 |
"upper_join\<cdot>{xs}\<sharp> = xs" |
25904 | 439 |
unfolding upper_join_def by simp |
440 |
||
441 |
lemma upper_join_plus [simp]: |
|
26927 | 442 |
"upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss" |
25904 | 443 |
unfolding upper_join_def by simp |
444 |
||
445 |
lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" |
|
446 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
447 |
||
448 |
lemma upper_map_map: |
|
449 |
"upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" |
|
450 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
451 |
||
452 |
lemma upper_join_map_unit: |
|
453 |
"upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs" |
|
454 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
455 |
||
456 |
lemma upper_join_map_join: |
|
457 |
"upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)" |
|
458 |
by (induct xsss rule: upper_pd_induct, simp_all) |
|
459 |
||
460 |
lemma upper_join_map_map: |
|
461 |
"upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) = |
|
462 |
upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)" |
|
463 |
by (induct xss rule: upper_pd_induct, simp_all) |
|
464 |
||
465 |
lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" |
|
466 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
467 |
||
468 |
end |