| author | wenzelm | 
| Mon, 17 Mar 2008 22:34:23 +0100 | |
| changeset 26310 | f8a7fac36e13 | 
| parent 26106 | be52145f482d | 
| child 27183 | 0fc4c0f97a1b | 
| permissions | -rw-r--r-- | 
| 13586 | 1  | 
(* Title: HOL/Library/FuncSet.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Florian Kammueller and Lawrence C Paulson  | 
|
4  | 
*)  | 
|
5  | 
||
| 14706 | 6  | 
header {* Pi and Function Sets *}
 | 
| 13586 | 7  | 
|
| 15131 | 8  | 
theory FuncSet  | 
| 15140 | 9  | 
imports Main  | 
| 15131 | 10  | 
begin  | 
| 13586 | 11  | 
|
| 19736 | 12  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
13  | 
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 14  | 
  "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 15  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
16  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
17  | 
  extensional :: "'a set => ('a => 'b) set" where
 | 
| 19736 | 18  | 
  "extensional A = {f. \<forall>x. x~:A --> f x = arbitrary}"
 | 
| 13586 | 19  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
20  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
21  | 
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 19736 | 22  | 
"restrict f A = (%x. if x \<in> A then f x else arbitrary)"  | 
| 13586 | 23  | 
|
| 19536 | 24  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
25  | 
  funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
26  | 
(infixr "->" 60) where  | 
| 19536 | 27  | 
"A -> B == Pi A (%_. B)"  | 
28  | 
||
| 21210 | 29  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
30  | 
funcset (infixr "\<rightarrow>" 60)  | 
| 19536 | 31  | 
|
| 13586 | 32  | 
syntax  | 
| 19736 | 33  | 
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
34  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | 
|
| 13586 | 35  | 
|
36  | 
syntax (xsymbols)  | 
|
| 19736 | 37  | 
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
38  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | 
|
| 13586 | 39  | 
|
| 14565 | 40  | 
syntax (HTML output)  | 
| 19736 | 41  | 
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
42  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | 
|
| 14565 | 43  | 
|
| 13586 | 44  | 
translations  | 
| 20770 | 45  | 
"PI x:A. B" == "CONST Pi A (%x. B)"  | 
46  | 
"%x:A. f" == "CONST restrict (%x. f) A"  | 
|
| 13586 | 47  | 
|
| 19736 | 48  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
49  | 
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 50  | 
"compose A g f = (\<lambda>x\<in>A. g (f x))"  | 
| 13586 | 51  | 
|
52  | 
||
53  | 
subsection{*Basic Properties of @{term Pi}*}
 | 
|
54  | 
||
55  | 
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"  | 
|
| 14706 | 56  | 
by (simp add: Pi_def)  | 
| 13586 | 57  | 
|
58  | 
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"  | 
|
| 14706 | 59  | 
by (simp add: Pi_def)  | 
| 13586 | 60  | 
|
61  | 
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"  | 
|
| 14706 | 62  | 
by (simp add: Pi_def)  | 
| 13586 | 63  | 
|
64  | 
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"  | 
|
| 14706 | 65  | 
by (simp add: Pi_def)  | 
| 13586 | 66  | 
|
| 14762 | 67  | 
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"  | 
| 19736 | 68  | 
by (auto simp add: Pi_def)  | 
| 14762 | 69  | 
|
| 13586 | 70  | 
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
 | 
| 13593 | 71  | 
apply (simp add: Pi_def, auto)  | 
| 13586 | 72  | 
txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
73  | 
picking an element from each non-empty @{term "B x"}*}
 | 
|
| 13593 | 74  | 
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)  | 
| 14706 | 75  | 
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)  | 
| 13586 | 76  | 
done  | 
77  | 
||
| 13593 | 78  | 
lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 14706 | 79  | 
by (simp add: Pi_def)  | 
| 13593 | 80  | 
|
81  | 
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"  | 
|
| 14706 | 82  | 
by (simp add: Pi_def)  | 
| 13586 | 83  | 
|
84  | 
text{*Covariance of Pi-sets in their second argument*}
 | 
|
85  | 
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"  | 
|
| 14706 | 86  | 
by (simp add: Pi_def, blast)  | 
| 13586 | 87  | 
|
88  | 
text{*Contravariance of Pi-sets in their first argument*}
 | 
|
89  | 
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"  | 
|
| 14706 | 90  | 
by (simp add: Pi_def, blast)  | 
| 13586 | 91  | 
|
92  | 
||
93  | 
subsection{*Composition With a Restricted Domain: @{term compose}*}
 | 
|
94  | 
||
| 14706 | 95  | 
lemma funcset_compose:  | 
96  | 
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"  | 
|
97  | 
by (simp add: Pi_def compose_def restrict_def)  | 
|
| 13586 | 98  | 
|
99  | 
lemma compose_assoc:  | 
|
| 14706 | 100  | 
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]  | 
| 13586 | 101  | 
==> compose A h (compose A g f) = compose A (compose B h g) f"  | 
| 14706 | 102  | 
by (simp add: expand_fun_eq Pi_def compose_def restrict_def)  | 
| 13586 | 103  | 
|
104  | 
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"  | 
|
| 14706 | 105  | 
by (simp add: compose_def restrict_def)  | 
| 13586 | 106  | 
|
107  | 
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"  | 
|
| 14706 | 108  | 
by (auto simp add: image_def compose_eq)  | 
| 13586 | 109  | 
|
110  | 
||
111  | 
subsection{*Bounded Abstraction: @{term restrict}*}
 | 
|
112  | 
||
113  | 
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"  | 
|
| 14706 | 114  | 
by (simp add: Pi_def restrict_def)  | 
| 13586 | 115  | 
|
116  | 
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"  | 
|
| 14706 | 117  | 
by (simp add: Pi_def restrict_def)  | 
| 13586 | 118  | 
|
119  | 
lemma restrict_apply [simp]:  | 
|
| 14706 | 120  | 
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"  | 
121  | 
by (simp add: restrict_def)  | 
|
| 13586 | 122  | 
|
| 14706 | 123  | 
lemma restrict_ext:  | 
| 13586 | 124  | 
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"  | 
| 14706 | 125  | 
by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)  | 
| 13586 | 126  | 
|
| 14853 | 127  | 
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"  | 
| 14706 | 128  | 
by (simp add: inj_on_def restrict_def)  | 
| 13586 | 129  | 
|
130  | 
lemma Id_compose:  | 
|
| 14706 | 131  | 
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"  | 
132  | 
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)  | 
|
| 13586 | 133  | 
|
134  | 
lemma compose_Id:  | 
|
| 14706 | 135  | 
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"  | 
136  | 
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)  | 
|
| 13586 | 137  | 
|
| 14853 | 138  | 
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"  | 
| 19736 | 139  | 
by (auto simp add: restrict_def)  | 
| 13586 | 140  | 
|
| 14745 | 141  | 
|
| 14762 | 142  | 
subsection{*Bijections Between Sets*}
 | 
143  | 
||
| 
26106
 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 
nipkow 
parents: 
21404 
diff
changeset
 | 
144  | 
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 145  | 
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
146  | 
||
147  | 
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"  | 
|
| 19736 | 148  | 
by (auto simp add: bij_betw_def inj_on_Inv Pi_def)  | 
| 14762 | 149  | 
|
| 14853 | 150  | 
lemma inj_on_compose:  | 
151  | 
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"  | 
|
152  | 
by (auto simp add: bij_betw_def inj_on_def compose_eq)  | 
|
153  | 
||
| 14762 | 154  | 
lemma bij_betw_compose:  | 
155  | 
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"  | 
|
| 19736 | 156  | 
apply (simp add: bij_betw_def compose_eq inj_on_compose)  | 
157  | 
apply (auto simp add: compose_def image_def)  | 
|
158  | 
done  | 
|
| 14762 | 159  | 
|
| 14853 | 160  | 
lemma bij_betw_restrict_eq [simp]:  | 
161  | 
"bij_betw (restrict f A) A B = bij_betw f A B"  | 
|
162  | 
by (simp add: bij_betw_def)  | 
|
163  | 
||
164  | 
||
165  | 
subsection{*Extensionality*}
 | 
|
166  | 
||
167  | 
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"  | 
|
168  | 
by (simp add: extensional_def)  | 
|
169  | 
||
170  | 
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"  | 
|
171  | 
by (simp add: restrict_def extensional_def)  | 
|
172  | 
||
173  | 
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"  | 
|
174  | 
by (simp add: compose_def)  | 
|
175  | 
||
176  | 
lemma extensionalityI:  | 
|
177  | 
"[| f \<in> extensional A; g \<in> extensional A;  | 
|
178  | 
!!x. x\<in>A ==> f x = g x |] ==> f = g"  | 
|
179  | 
by (force simp add: expand_fun_eq extensional_def)  | 
|
180  | 
||
181  | 
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"  | 
|
182  | 
by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)  | 
|
183  | 
||
184  | 
lemma compose_Inv_id:  | 
|
185  | 
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"  | 
|
186  | 
apply (simp add: bij_betw_def compose_def)  | 
|
187  | 
apply (rule restrict_ext, auto)  | 
|
188  | 
apply (erule subst)  | 
|
189  | 
apply (simp add: Inv_f_f)  | 
|
190  | 
done  | 
|
191  | 
||
192  | 
lemma compose_id_Inv:  | 
|
193  | 
"f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"  | 
|
194  | 
apply (simp add: compose_def)  | 
|
195  | 
apply (rule restrict_ext)  | 
|
196  | 
apply (simp add: f_Inv_f)  | 
|
197  | 
done  | 
|
198  | 
||
| 14762 | 199  | 
|
| 14745 | 200  | 
subsection{*Cardinality*}
 | 
201  | 
||
202  | 
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"  | 
|
| 19736 | 203  | 
apply (rule card_inj_on_le)  | 
204  | 
apply (auto simp add: Pi_def)  | 
|
205  | 
done  | 
|
| 14745 | 206  | 
|
207  | 
lemma card_bij:  | 
|
208  | 
"[|f \<in> A\<rightarrow>B; inj_on f A;  | 
|
209  | 
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"  | 
|
| 19736 | 210  | 
by (blast intro: card_inj order_antisym)  | 
| 14745 | 211  | 
|
| 20362 | 212  | 
|
213  | 
(*The following declarations generate polymorphic Skolem functions for  | 
|
214  | 
these theorems. Eventually they should become redundant, once this  | 
|
215  | 
is done automatically.*)  | 
|
216  | 
||
217  | 
declare FuncSet.Pi_I [skolem]  | 
|
218  | 
declare FuncSet.Pi_mono [skolem]  | 
|
219  | 
declare FuncSet.extensionalityI [skolem]  | 
|
220  | 
declare FuncSet.funcsetI [skolem]  | 
|
221  | 
declare FuncSet.restrictI [skolem]  | 
|
222  | 
declare FuncSet.restrict_in_funcset [skolem]  | 
|
223  | 
||
| 13586 | 224  | 
end  |