author | wenzelm |
Sun, 03 Nov 2024 22:29:07 +0100 | |
changeset 81332 | f94b30fa2b6c |
parent 77811 | ae9e6218443d |
permissions | -rw-r--r-- |
56796 | 1 |
(* Title: HOL/Library/Finite_Lattice.thy |
2 |
Author: Alessandro Coglio |
|
3 |
*) |
|
50634 | 4 |
|
77811 | 5 |
section \<open>Finite Lattices\<close> |
6 |
||
50634 | 7 |
theory Finite_Lattice |
51115
7dbd6832a689
consolidation of library theories on product orders
haftmann
parents:
50634
diff
changeset
|
8 |
imports Product_Order |
50634 | 9 |
begin |
10 |
||
77811 | 11 |
subsection \<open>Finite Complete Lattices\<close> |
12 |
||
60500 | 13 |
text \<open>A non-empty finite lattice is a complete lattice. |
50634 | 14 |
Since types are never empty in Isabelle/HOL, |
69593 | 15 |
a type of classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close> |
16 |
should also have class \<^class>\<open>complete_lattice\<close>. |
|
50634 | 17 |
A type class is defined |
69593 | 18 |
that extends classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close> |
19 |
with the operators \<^const>\<open>bot\<close>, \<^const>\<open>top\<close>, \<^const>\<open>Inf\<close>, and \<^const>\<open>Sup\<close>, |
|
50634 | 20 |
along with assumptions that define these operators |
69593 | 21 |
in terms of the ones of classes \<^class>\<open>finite\<close> and \<^class>\<open>lattice\<close>. |
22 |
The resulting class is a subclass of \<^class>\<open>complete_lattice\<close>.\<close> |
|
50634 | 23 |
|
24 |
class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup + |
|
56796 | 25 |
assumes bot_def: "bot = Inf_fin UNIV" |
26 |
assumes top_def: "top = Sup_fin UNIV" |
|
27 |
assumes Inf_def: "Inf A = Finite_Set.fold inf top A" |
|
28 |
assumes Sup_def: "Sup A = Finite_Set.fold sup bot A" |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
29 |
|
60500 | 30 |
text \<open>The definitional assumptions |
69593 | 31 |
on the operators \<^const>\<open>bot\<close> and \<^const>\<open>top\<close> |
32 |
of class \<^class>\<open>finite_lattice_complete\<close> |
|
60500 | 33 |
ensure that they yield bottom and top.\<close> |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
34 |
|
56796 | 35 |
lemma finite_lattice_complete_bot_least: "(bot::'a::finite_lattice_complete) \<le> x" |
36 |
by (auto simp: bot_def intro: Inf_fin.coboundedI) |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
37 |
|
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
38 |
instance finite_lattice_complete \<subseteq> order_bot |
60679 | 39 |
by standard (auto simp: finite_lattice_complete_bot_least) |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
40 |
|
56796 | 41 |
lemma finite_lattice_complete_top_greatest: "(top::'a::finite_lattice_complete) \<ge> x" |
42 |
by (auto simp: top_def Sup_fin.coboundedI) |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
43 |
|
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
44 |
instance finite_lattice_complete \<subseteq> order_top |
60679 | 45 |
by standard (auto simp: finite_lattice_complete_top_greatest) |
50634 | 46 |
|
47 |
instance finite_lattice_complete \<subseteq> bounded_lattice .. |
|
48 |
||
60500 | 49 |
text \<open>The definitional assumptions |
69593 | 50 |
on the operators \<^const>\<open>Inf\<close> and \<^const>\<open>Sup\<close> |
51 |
of class \<^class>\<open>finite_lattice_complete\<close> |
|
60500 | 52 |
ensure that they yield infimum and supremum.\<close> |
50634 | 53 |
|
56796 | 54 |
lemma finite_lattice_complete_Inf_empty: "Inf {} = (top :: 'a::finite_lattice_complete)" |
51489 | 55 |
by (simp add: Inf_def) |
56 |
||
56796 | 57 |
lemma finite_lattice_complete_Sup_empty: "Sup {} = (bot :: 'a::finite_lattice_complete)" |
51489 | 58 |
by (simp add: Sup_def) |
59 |
||
60 |
lemma finite_lattice_complete_Inf_insert: |
|
61 |
fixes A :: "'a::finite_lattice_complete set" |
|
62 |
shows "Inf (insert x A) = inf x (Inf A)" |
|
63 |
proof - |
|
56796 | 64 |
interpret comp_fun_idem "inf :: 'a \<Rightarrow> _" |
65 |
by (fact comp_fun_idem_inf) |
|
51489 | 66 |
show ?thesis by (simp add: Inf_def) |
67 |
qed |
|
68 |
||
69 |
lemma finite_lattice_complete_Sup_insert: |
|
70 |
fixes A :: "'a::finite_lattice_complete set" |
|
71 |
shows "Sup (insert x A) = sup x (Sup A)" |
|
72 |
proof - |
|
56796 | 73 |
interpret comp_fun_idem "sup :: 'a \<Rightarrow> _" |
74 |
by (fact comp_fun_idem_sup) |
|
51489 | 75 |
show ?thesis by (simp add: Sup_def) |
76 |
qed |
|
77 |
||
50634 | 78 |
lemma finite_lattice_complete_Inf_lower: |
79 |
"(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Inf A \<le> x" |
|
56796 | 80 |
using finite [of A] |
81 |
by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2) |
|
50634 | 82 |
|
83 |
lemma finite_lattice_complete_Inf_greatest: |
|
84 |
"\<forall>x::'a::finite_lattice_complete \<in> A. z \<le> x \<Longrightarrow> z \<le> Inf A" |
|
56796 | 85 |
using finite [of A] |
86 |
by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert) |
|
50634 | 87 |
|
88 |
lemma finite_lattice_complete_Sup_upper: |
|
89 |
"(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Sup A \<ge> x" |
|
56796 | 90 |
using finite [of A] |
91 |
by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2) |
|
50634 | 92 |
|
93 |
lemma finite_lattice_complete_Sup_least: |
|
94 |
"\<forall>x::'a::finite_lattice_complete \<in> A. z \<ge> x \<Longrightarrow> z \<ge> Sup A" |
|
56796 | 95 |
using finite [of A] |
96 |
by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert) |
|
50634 | 97 |
|
98 |
instance finite_lattice_complete \<subseteq> complete_lattice |
|
99 |
proof |
|
100 |
qed (auto simp: |
|
56796 | 101 |
finite_lattice_complete_Inf_lower |
102 |
finite_lattice_complete_Inf_greatest |
|
103 |
finite_lattice_complete_Sup_upper |
|
104 |
finite_lattice_complete_Sup_least |
|
105 |
finite_lattice_complete_Inf_empty |
|
106 |
finite_lattice_complete_Sup_empty) |
|
50634 | 107 |
|
60500 | 108 |
text \<open>The product of two finite lattices is already a finite lattice.\<close> |
50634 | 109 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
110 |
lemma finite_bot_prod: |
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
111 |
"(bot :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) = |
56796 | 112 |
Inf_fin UNIV" |
113 |
by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV) |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
114 |
|
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
115 |
lemma finite_top_prod: |
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
116 |
"(top :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) = |
56796 | 117 |
Sup_fin UNIV" |
118 |
by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV) |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
119 |
|
50634 | 120 |
lemma finite_Inf_prod: |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
121 |
"Inf(A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) = |
56796 | 122 |
Finite_Set.fold inf top A" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
123 |
by (metis Inf_fold_inf finite) |
50634 | 124 |
|
125 |
lemma finite_Sup_prod: |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
126 |
"Sup (A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) = |
56796 | 127 |
Finite_Set.fold sup bot A" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
128 |
by (metis Sup_fold_sup finite) |
50634 | 129 |
|
56796 | 130 |
instance prod :: (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete |
60679 | 131 |
by standard (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod) |
50634 | 132 |
|
60500 | 133 |
text \<open>Functions with a finite domain and with a finite lattice as codomain |
134 |
already form a finite lattice.\<close> |
|
50634 | 135 |
|
56796 | 136 |
lemma finite_bot_fun: "(bot :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Inf_fin UNIV" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
137 |
by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite) |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
138 |
|
56796 | 139 |
lemma finite_top_fun: "(top :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Sup_fin UNIV" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
140 |
by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite) |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
141 |
|
50634 | 142 |
lemma finite_Inf_fun: |
143 |
"Inf (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) = |
|
56796 | 144 |
Finite_Set.fold inf top A" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
145 |
by (metis Inf_fold_inf finite) |
50634 | 146 |
|
147 |
lemma finite_Sup_fun: |
|
148 |
"Sup (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) = |
|
56796 | 149 |
Finite_Set.fold sup bot A" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
150 |
by (metis Sup_fold_sup finite) |
50634 | 151 |
|
152 |
instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete |
|
60679 | 153 |
by standard (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun) |
50634 | 154 |
|
155 |
||
60500 | 156 |
subsection \<open>Finite Distributive Lattices\<close> |
50634 | 157 |
|
60500 | 158 |
text \<open>A finite distributive lattice is a complete lattice |
69593 | 159 |
whose \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> operators |
160 |
distribute over \<^const>\<open>Sup\<close> and \<^const>\<open>Inf\<close>.\<close> |
|
50634 | 161 |
|
162 |
class finite_distrib_lattice_complete = |
|
163 |
distrib_lattice + finite_lattice_complete |
|
164 |
||
165 |
lemma finite_distrib_lattice_complete_sup_Inf: |
|
69260
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
haftmann
parents:
67829
diff
changeset
|
166 |
"sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y\<in>A. sup x y)" |
56796 | 167 |
using finite |
168 |
by (induct A rule: finite_induct) (simp_all add: sup_inf_distrib1) |
|
50634 | 169 |
|
170 |
lemma finite_distrib_lattice_complete_inf_Sup: |
|
69260
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
haftmann
parents:
67829
diff
changeset
|
171 |
"inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y\<in>A. inf x y)" |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
60679
diff
changeset
|
172 |
using finite [of A] by induct (simp_all add: inf_sup_distrib1) |
50634 | 173 |
|
67829
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
174 |
context finite_distrib_lattice_complete |
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
175 |
begin |
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
176 |
subclass finite_distrib_lattice |
73832 | 177 |
proof - |
178 |
show "class.finite_distrib_lattice Inf Sup inf (\<le>) (<) sup bot top" |
|
179 |
proof |
|
180 |
show "bot = Inf UNIV" |
|
181 |
unfolding bot_def top_def Inf_def |
|
182 |
using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force |
|
183 |
next |
|
184 |
show "top = Sup UNIV" |
|
185 |
unfolding bot_def top_def Sup_def |
|
186 |
using Sup_fin.eq_fold Sup_fin.insert by force |
|
187 |
next |
|
188 |
show "Inf {} = Sup UNIV" |
|
189 |
unfolding Inf_def Sup_def bot_def top_def |
|
190 |
using Sup_fin.eq_fold Sup_fin.insert by force |
|
191 |
next |
|
192 |
show "Sup {} = Inf UNIV" |
|
193 |
unfolding Inf_def Sup_def bot_def top_def |
|
194 |
using Inf_fin.eq_fold Inf_fin.insert inf.absorb2 by force |
|
195 |
next |
|
196 |
interpret comp_fun_idem_inf: comp_fun_idem inf |
|
197 |
by (fact comp_fun_idem_inf) |
|
198 |
show "Inf (insert a A) = inf a (Inf A)" for a A |
|
199 |
using comp_fun_idem_inf.fold_insert_idem Inf_def finite by simp |
|
200 |
next |
|
201 |
interpret comp_fun_idem_sup: comp_fun_idem sup |
|
202 |
by (fact comp_fun_idem_sup) |
|
203 |
show "Sup (insert a A) = sup a (Sup A)" for a A |
|
204 |
using comp_fun_idem_sup.fold_insert_idem Sup_def finite by simp |
|
205 |
qed |
|
206 |
qed |
|
67829
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
207 |
end |
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
208 |
|
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
Manuel Eberl <eberlm@in.tum.de>
parents:
62343
diff
changeset
|
209 |
instance finite_distrib_lattice_complete \<subseteq> complete_distrib_lattice .. |
50634 | 210 |
|
60500 | 211 |
text \<open>The product of two finite distributive lattices |
212 |
is already a finite distributive lattice.\<close> |
|
50634 | 213 |
|
214 |
instance prod :: |
|
215 |
(finite_distrib_lattice_complete, finite_distrib_lattice_complete) |
|
216 |
finite_distrib_lattice_complete |
|
56796 | 217 |
.. |
50634 | 218 |
|
60500 | 219 |
text \<open>Functions with a finite domain |
50634 | 220 |
and with a finite distributive lattice as codomain |
60500 | 221 |
already form a finite distributive lattice.\<close> |
50634 | 222 |
|
223 |
instance "fun" :: |
|
224 |
(finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete |
|
56796 | 225 |
.. |
50634 | 226 |
|
60500 | 227 |
subsection \<open>Linear Orders\<close> |
50634 | 228 |
|
60500 | 229 |
text \<open>A linear order is a distributive lattice. |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
230 |
A type class is defined |
69593 | 231 |
that extends class \<^class>\<open>linorder\<close> |
232 |
with the operators \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close>, |
|
50634 | 233 |
along with assumptions that define these operators |
69593 | 234 |
in terms of the ones of class \<^class>\<open>linorder\<close>. |
235 |
The resulting class is a subclass of \<^class>\<open>distrib_lattice\<close>.\<close> |
|
50634 | 236 |
|
237 |
class linorder_lattice = linorder + inf + sup + |
|
56796 | 238 |
assumes inf_def: "inf x y = (if x \<le> y then x else y)" |
239 |
assumes sup_def: "sup x y = (if x \<ge> y then x else y)" |
|
50634 | 240 |
|
60500 | 241 |
text \<open>The definitional assumptions |
69593 | 242 |
on the operators \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> |
243 |
of class \<^class>\<open>linorder_lattice\<close> |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
244 |
ensure that they yield infimum and supremum |
60500 | 245 |
and that they distribute over each other.\<close> |
50634 | 246 |
|
247 |
lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y \<le> x" |
|
56796 | 248 |
unfolding inf_def by (metis (full_types) linorder_linear) |
50634 | 249 |
|
250 |
lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y \<le> y" |
|
56796 | 251 |
unfolding inf_def by (metis (full_types) linorder_linear) |
50634 | 252 |
|
253 |
lemma linorder_lattice_inf_greatest: |
|
254 |
"(x::'a::linorder_lattice) \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> inf y z" |
|
56796 | 255 |
unfolding inf_def by (metis (full_types)) |
50634 | 256 |
|
257 |
lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y \<ge> x" |
|
56796 | 258 |
unfolding sup_def by (metis (full_types) linorder_linear) |
50634 | 259 |
|
260 |
lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y \<ge> y" |
|
56796 | 261 |
unfolding sup_def by (metis (full_types) linorder_linear) |
50634 | 262 |
|
263 |
lemma linorder_lattice_sup_least: |
|
264 |
"(x::'a::linorder_lattice) \<ge> y \<Longrightarrow> x \<ge> z \<Longrightarrow> x \<ge> sup y z" |
|
56796 | 265 |
by (auto simp: sup_def) |
50634 | 266 |
|
267 |
lemma linorder_lattice_sup_inf_distrib1: |
|
268 |
"sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)" |
|
56796 | 269 |
by (auto simp: inf_def sup_def) |
270 |
||
50634 | 271 |
instance linorder_lattice \<subseteq> distrib_lattice |
56796 | 272 |
proof |
50634 | 273 |
qed (auto simp: |
56796 | 274 |
linorder_lattice_inf_le1 |
275 |
linorder_lattice_inf_le2 |
|
276 |
linorder_lattice_inf_greatest |
|
277 |
linorder_lattice_sup_ge1 |
|
278 |
linorder_lattice_sup_ge2 |
|
279 |
linorder_lattice_sup_least |
|
280 |
linorder_lattice_sup_inf_distrib1) |
|
50634 | 281 |
|
282 |
||
60500 | 283 |
subsection \<open>Finite Linear Orders\<close> |
50634 | 284 |
|
60500 | 285 |
text \<open>A (non-empty) finite linear order is a complete linear order.\<close> |
50634 | 286 |
|
287 |
class finite_linorder_complete = linorder_lattice + finite_lattice_complete |
|
288 |
||
289 |
instance finite_linorder_complete \<subseteq> complete_linorder .. |
|
290 |
||
60500 | 291 |
text \<open>A (non-empty) finite linear order is a complete lattice |
69593 | 292 |
whose \<^const>\<open>inf\<close> and \<^const>\<open>sup\<close> operators |
293 |
distribute over \<^const>\<open>Sup\<close> and \<^const>\<open>Inf\<close>.\<close> |
|
50634 | 294 |
|
295 |
instance finite_linorder_complete \<subseteq> finite_distrib_lattice_complete .. |
|
296 |
||
297 |
end |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
51489
diff
changeset
|
298 |