| author | wenzelm | 
| Sat, 08 Sep 2018 12:34:11 +0200 | |
| changeset 68945 | fa5d936daf1c | 
| parent 64290 | fb5c74a58796 | 
| child 69216 | 1a52baa70aed | 
| permissions | -rw-r--r-- | 
| 63588 | 1 | (* Title: HOL/Groups.thy | 
| 2 | Author: Gertrud Bauer | |
| 3 | Author: Steven Obua | |
| 4 | Author: Lawrence C Paulson | |
| 5 | Author: Markus Wenzel | |
| 6 | Author: Jeremy Avigad | |
| 14738 | 7 | *) | 
| 8 | ||
| 60758 | 9 | section \<open>Groups, also combined with orderings\<close> | 
| 14738 | 10 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35036diff
changeset | 11 | theory Groups | 
| 63588 | 12 | imports Orderings | 
| 15131 | 13 | begin | 
| 14738 | 14 | |
| 60758 | 15 | subsection \<open>Dynamic facts\<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 16 | |
| 57950 | 17 | named_theorems ac_simps "associativity and commutativity simplification rules" | 
| 63588 | 18 | and algebra_simps "algebra simplification rules" | 
| 19 | and field_simps "algebra simplification rules for fields" | |
| 36343 | 20 | |
| 63325 | 21 | text \<open> | 
| 63588 | 22 | The rewrites accumulated in \<open>algebra_simps\<close> deal with the classical | 
| 23 | algebraic structures of groups, rings and family. They simplify terms by | |
| 24 | multiplying everything out (in case of a ring) and bringing sums and | |
| 25 | products into a canonical form (by ordered rewriting). As a result it | |
| 26 | decides group and ring equalities but also helps with inequalities. | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 27 | |
| 63588 | 28 | Of course it also works for fields, but it knows nothing about | 
| 29 | multiplicative inverses or division. This is catered for by \<open>field_simps\<close>. | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 30 | |
| 63588 | 31 | Facts in \<open>field_simps\<close> multiply with denominators in (in)equations if they | 
| 32 | can be proved to be non-zero (for equations) or positive/negative (for | |
| 33 | inequalities). Can be too aggressive and is therefore separate from the more | |
| 34 | benign \<open>algebra_simps\<close>. | |
| 63325 | 35 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 36 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 37 | |
| 60758 | 38 | subsection \<open>Abstract structures\<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 39 | |
| 60758 | 40 | text \<open> | 
| 63588 | 41 | These locales provide basic structures for interpretation into bigger | 
| 42 | structures; extensions require careful thinking, otherwise undesired effects | |
| 43 | may occur due to interpretation. | |
| 60758 | 44 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 45 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 46 | locale semigroup = | 
| 63325 | 47 | fixes f :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<^bold>*" 70) | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 48 | assumes assoc [ac_simps]: "a \<^bold>* b \<^bold>* c = a \<^bold>* (b \<^bold>* c)" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 49 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 50 | locale abel_semigroup = semigroup + | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 51 | assumes commute [ac_simps]: "a \<^bold>* b = b \<^bold>* a" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 52 | begin | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 53 | |
| 63325 | 54 | lemma left_commute [ac_simps]: "b \<^bold>* (a \<^bold>* c) = a \<^bold>* (b \<^bold>* c)" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 55 | proof - | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 56 | have "(b \<^bold>* a) \<^bold>* c = (a \<^bold>* b) \<^bold>* c" | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 57 | by (simp only: commute) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 58 | then show ?thesis | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 59 | by (simp only: assoc) | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 60 | qed | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 61 | |
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 62 | end | 
| 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 63 | |
| 35720 | 64 | locale monoid = semigroup + | 
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 65 |   fixes z :: 'a ("\<^bold>1")
 | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 66 | assumes left_neutral [simp]: "\<^bold>1 \<^bold>* a = a" | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 67 | assumes right_neutral [simp]: "a \<^bold>* \<^bold>1 = a" | 
| 35720 | 68 | |
| 69 | locale comm_monoid = abel_semigroup + | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 70 |   fixes z :: 'a ("\<^bold>1")
 | 
| 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63145diff
changeset | 71 | assumes comm_neutral: "a \<^bold>* \<^bold>1 = a" | 
| 54868 | 72 | begin | 
| 35720 | 73 | |
| 54868 | 74 | sublocale monoid | 
| 61169 | 75 | by standard (simp_all add: commute comm_neutral) | 
| 35720 | 76 | |
| 54868 | 77 | end | 
| 78 | ||
| 63364 | 79 | locale group = semigroup + | 
| 80 |   fixes z :: 'a ("\<^bold>1")
 | |
| 81 | fixes inverse :: "'a \<Rightarrow> 'a" | |
| 82 | assumes group_left_neutral: "\<^bold>1 \<^bold>* a = a" | |
| 83 | assumes left_inverse [simp]: "inverse a \<^bold>* a = \<^bold>1" | |
| 84 | begin | |
| 85 | ||
| 86 | lemma left_cancel: "a \<^bold>* b = a \<^bold>* c \<longleftrightarrow> b = c" | |
| 87 | proof | |
| 88 | assume "a \<^bold>* b = a \<^bold>* c" | |
| 89 | then have "inverse a \<^bold>* (a \<^bold>* b) = inverse a \<^bold>* (a \<^bold>* c)" by simp | |
| 90 | then have "(inverse a \<^bold>* a) \<^bold>* b = (inverse a \<^bold>* a) \<^bold>* c" | |
| 91 | by (simp only: assoc) | |
| 92 | then show "b = c" by (simp add: group_left_neutral) | |
| 93 | qed simp | |
| 94 | ||
| 95 | sublocale monoid | |
| 96 | proof | |
| 97 | fix a | |
| 98 | have "inverse a \<^bold>* a = \<^bold>1" by simp | |
| 99 | then have "inverse a \<^bold>* (a \<^bold>* \<^bold>1) = inverse a \<^bold>* a" | |
| 100 | by (simp add: group_left_neutral assoc [symmetric]) | |
| 101 | with left_cancel show "a \<^bold>* \<^bold>1 = a" | |
| 102 | by (simp only: left_cancel) | |
| 103 | qed (fact group_left_neutral) | |
| 104 | ||
| 105 | lemma inverse_unique: | |
| 106 | assumes "a \<^bold>* b = \<^bold>1" | |
| 107 | shows "inverse a = b" | |
| 108 | proof - | |
| 109 | from assms have "inverse a \<^bold>* (a \<^bold>* b) = inverse a" | |
| 110 | by simp | |
| 111 | then show ?thesis | |
| 112 | by (simp add: assoc [symmetric]) | |
| 113 | qed | |
| 114 | ||
| 63588 | 115 | lemma inverse_neutral [simp]: "inverse \<^bold>1 = \<^bold>1" | 
| 63364 | 116 | by (rule inverse_unique) simp | 
| 117 | ||
| 63588 | 118 | lemma inverse_inverse [simp]: "inverse (inverse a) = a" | 
| 63364 | 119 | by (rule inverse_unique) simp | 
| 120 | ||
| 63588 | 121 | lemma right_inverse [simp]: "a \<^bold>* inverse a = \<^bold>1" | 
| 63364 | 122 | proof - | 
| 123 | have "a \<^bold>* inverse a = inverse (inverse a) \<^bold>* inverse a" | |
| 124 | by simp | |
| 125 | also have "\<dots> = \<^bold>1" | |
| 126 | by (rule left_inverse) | |
| 127 | then show ?thesis by simp | |
| 128 | qed | |
| 129 | ||
| 63588 | 130 | lemma inverse_distrib_swap: "inverse (a \<^bold>* b) = inverse b \<^bold>* inverse a" | 
| 63364 | 131 | proof (rule inverse_unique) | 
| 132 | have "a \<^bold>* b \<^bold>* (inverse b \<^bold>* inverse a) = | |
| 133 | a \<^bold>* (b \<^bold>* inverse b) \<^bold>* inverse a" | |
| 134 | by (simp only: assoc) | |
| 135 | also have "\<dots> = \<^bold>1" | |
| 136 | by simp | |
| 137 | finally show "a \<^bold>* b \<^bold>* (inverse b \<^bold>* inverse a) = \<^bold>1" . | |
| 138 | qed | |
| 139 | ||
| 63588 | 140 | lemma right_cancel: "b \<^bold>* a = c \<^bold>* a \<longleftrightarrow> b = c" | 
| 63364 | 141 | proof | 
| 142 | assume "b \<^bold>* a = c \<^bold>* a" | |
| 143 | then have "b \<^bold>* a \<^bold>* inverse a= c \<^bold>* a \<^bold>* inverse a" | |
| 144 | by simp | |
| 145 | then show "b = c" | |
| 146 | by (simp add: assoc) | |
| 147 | qed simp | |
| 148 | ||
| 149 | end | |
| 150 | ||
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 151 | |
| 60758 | 152 | subsection \<open>Generic operations\<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 153 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 154 | class zero = | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 155 |   fixes zero :: 'a  ("0")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 156 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 157 | class one = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 158 |   fixes one  :: 'a  ("1")
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 159 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 160 | hide_const (open) zero one | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 161 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 162 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 163 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 164 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 165 | lemma Let_1 [simp]: "Let 1 f = f 1" | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 166 | unfolding Let_def .. | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 167 | |
| 60758 | 168 | setup \<open> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 169 | Reorient_Proc.add | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 170 |     (fn Const(@{const_name Groups.zero}, _) => true
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 171 |       | Const(@{const_name Groups.one}, _) => true
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 172 | | _ => false) | 
| 60758 | 173 | \<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 174 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 175 | simproc_setup reorient_zero ("0 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 176 | simproc_setup reorient_one ("1 = x") = Reorient_Proc.proc
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 177 | |
| 60758 | 178 | typed_print_translation \<open> | 
| 42247 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 179 | let | 
| 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 180 | fun tr' c = (c, fn ctxt => fn T => fn ts => | 
| 52210 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 181 | if null ts andalso Printer.type_emphasis ctxt T then | 
| 42248 | 182 |         Syntax.const @{syntax_const "_constrain"} $ Syntax.const c $
 | 
| 52210 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 183 | Syntax_Phases.term_of_typ ctxt T | 
| 
0226035df99d
more explicit Printer.type_emphasis, depending on show_type_emphasis;
 wenzelm parents: 
52143diff
changeset | 184 | else raise Match); | 
| 42247 
12fe41a92cd5
typed_print_translation: discontinued show_sorts argument;
 wenzelm parents: 
42245diff
changeset | 185 |   in map tr' [@{const_syntax Groups.one}, @{const_syntax Groups.zero}] end;
 | 
| 61799 | 186 | \<close> \<comment> \<open>show types that are presumably too general\<close> | 
| 35267 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 187 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 188 | class plus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 189 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 190 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 191 | class minus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 192 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 193 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 194 | class uminus = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 195 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 196 | |
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 197 | class times = | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 198 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 
8dfd816713c6
moved remaning class operations from Algebras.thy to Groups.thy
 haftmann parents: 
35216diff
changeset | 199 | |
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 200 | |
| 60758 | 201 | subsection \<open>Semigroups and Monoids\<close> | 
| 14738 | 202 | |
| 22390 | 203 | class semigroup_add = plus + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 204 | assumes add_assoc [algebra_simps, field_simps]: "(a + b) + c = a + (b + c)" | 
| 54868 | 205 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 206 | |
| 61605 | 207 | sublocale add: semigroup plus | 
| 61169 | 208 | by standard (fact add_assoc) | 
| 22390 | 209 | |
| 54868 | 210 | end | 
| 211 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 212 | hide_fact add_assoc | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 213 | |
| 22390 | 214 | class ab_semigroup_add = semigroup_add + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 215 | assumes add_commute [algebra_simps, field_simps]: "a + b = b + a" | 
| 54868 | 216 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 217 | |
| 61605 | 218 | sublocale add: abel_semigroup plus | 
| 61169 | 219 | by standard (fact add_commute) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 220 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 221 | declare add.left_commute [algebra_simps, field_simps] | 
| 25062 | 222 | |
| 61337 | 223 | lemmas add_ac = add.assoc add.commute add.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 224 | |
| 25062 | 225 | end | 
| 14738 | 226 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 227 | hide_fact add_commute | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 228 | |
| 61337 | 229 | lemmas add_ac = add.assoc add.commute add.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 230 | |
| 22390 | 231 | class semigroup_mult = times + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 232 | assumes mult_assoc [algebra_simps, field_simps]: "(a * b) * c = a * (b * c)" | 
| 54868 | 233 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 234 | |
| 61605 | 235 | sublocale mult: semigroup times | 
| 61169 | 236 | by standard (fact mult_assoc) | 
| 14738 | 237 | |
| 54868 | 238 | end | 
| 239 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 240 | hide_fact mult_assoc | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 241 | |
| 22390 | 242 | class ab_semigroup_mult = semigroup_mult + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36343diff
changeset | 243 | assumes mult_commute [algebra_simps, field_simps]: "a * b = b * a" | 
| 54868 | 244 | begin | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 245 | |
| 61605 | 246 | sublocale mult: abel_semigroup times | 
| 61169 | 247 | by standard (fact mult_commute) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34147diff
changeset | 248 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 249 | declare mult.left_commute [algebra_simps, field_simps] | 
| 25062 | 250 | |
| 61337 | 251 | lemmas mult_ac = mult.assoc mult.commute mult.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 252 | |
| 23181 | 253 | end | 
| 14738 | 254 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 255 | hide_fact mult_commute | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 256 | |
| 61337 | 257 | lemmas mult_ac = mult.assoc mult.commute mult.left_commute | 
| 57571 
d38a98f496dd
reinstated popular add_ac and mult_ac to avoid needless incompatibilities in user space
 nipkow parents: 
57514diff
changeset | 258 | |
| 23085 | 259 | class monoid_add = zero + semigroup_add + | 
| 35720 | 260 | assumes add_0_left: "0 + a = a" | 
| 261 | and add_0_right: "a + 0 = a" | |
| 54868 | 262 | begin | 
| 35720 | 263 | |
| 61605 | 264 | sublocale add: monoid plus 0 | 
| 61169 | 265 | by standard (fact add_0_left add_0_right)+ | 
| 23085 | 266 | |
| 54868 | 267 | end | 
| 268 | ||
| 26071 | 269 | lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0" | 
| 54868 | 270 | by (fact eq_commute) | 
| 26071 | 271 | |
| 22390 | 272 | class comm_monoid_add = zero + ab_semigroup_add + | 
| 25062 | 273 | assumes add_0: "0 + a = a" | 
| 54868 | 274 | begin | 
| 23085 | 275 | |
| 59559 
35da1bbf234e
more canonical order of subscriptions avoids superfluous facts
 haftmann parents: 
59557diff
changeset | 276 | subclass monoid_add | 
| 61169 | 277 | by standard (simp_all add: add_0 add.commute [of _ 0]) | 
| 25062 | 278 | |
| 61605 | 279 | sublocale add: comm_monoid plus 0 | 
| 61169 | 280 | by standard (simp add: ac_simps) | 
| 14738 | 281 | |
| 54868 | 282 | end | 
| 283 | ||
| 22390 | 284 | class monoid_mult = one + semigroup_mult + | 
| 35720 | 285 | assumes mult_1_left: "1 * a = a" | 
| 286 | and mult_1_right: "a * 1 = a" | |
| 54868 | 287 | begin | 
| 35720 | 288 | |
| 61605 | 289 | sublocale mult: monoid times 1 | 
| 61169 | 290 | by standard (fact mult_1_left mult_1_right)+ | 
| 14738 | 291 | |
| 54868 | 292 | end | 
| 293 | ||
| 26071 | 294 | lemma one_reorient: "1 = x \<longleftrightarrow> x = 1" | 
| 54868 | 295 | by (fact eq_commute) | 
| 26071 | 296 | |
| 22390 | 297 | class comm_monoid_mult = one + ab_semigroup_mult + | 
| 25062 | 298 | assumes mult_1: "1 * a = a" | 
| 54868 | 299 | begin | 
| 14738 | 300 | |
| 59559 
35da1bbf234e
more canonical order of subscriptions avoids superfluous facts
 haftmann parents: 
59557diff
changeset | 301 | subclass monoid_mult | 
| 61169 | 302 | by standard (simp_all add: mult_1 mult.commute [of _ 1]) | 
| 25062 | 303 | |
| 61605 | 304 | sublocale mult: comm_monoid times 1 | 
| 61169 | 305 | by standard (simp add: ac_simps) | 
| 14738 | 306 | |
| 54868 | 307 | end | 
| 308 | ||
| 22390 | 309 | class cancel_semigroup_add = semigroup_add + | 
| 25062 | 310 | assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | 
| 311 | assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 312 | begin | 
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 313 | |
| 63325 | 314 | lemma add_left_cancel [simp]: "a + b = a + c \<longleftrightarrow> b = c" | 
| 315 | by (blast dest: add_left_imp_eq) | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 316 | |
| 63325 | 317 | lemma add_right_cancel [simp]: "b + a = c + a \<longleftrightarrow> b = c" | 
| 318 | by (blast dest: add_right_imp_eq) | |
| 27474 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 319 | |
| 
a89d755b029d
move proofs of add_left_cancel and add_right_cancel into the correct locale
 huffman parents: 
27250diff
changeset | 320 | end | 
| 14738 | 321 | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 322 | class cancel_ab_semigroup_add = ab_semigroup_add + minus + | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 323 | assumes add_diff_cancel_left' [simp]: "(a + b) - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 324 | assumes diff_diff_add [algebra_simps, field_simps]: "a - b - c = a - (b + c)" | 
| 25267 | 325 | begin | 
| 14738 | 326 | |
| 63325 | 327 | lemma add_diff_cancel_right' [simp]: "(a + b) - b = a" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 328 | using add_diff_cancel_left' [of b a] by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 329 | |
| 25267 | 330 | subclass cancel_semigroup_add | 
| 28823 | 331 | proof | 
| 22390 | 332 | fix a b c :: 'a | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 333 | assume "a + b = a + c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 334 | then have "a + b - a = a + c - a" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 335 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 336 | then show "b = c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 337 | by simp | 
| 22390 | 338 | next | 
| 14738 | 339 | fix a b c :: 'a | 
| 340 | assume "b + a = c + a" | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 341 | then have "b + a - a = c + a - a" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 342 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 343 | then show "b = c" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 344 | by simp | 
| 14738 | 345 | qed | 
| 346 | ||
| 63325 | 347 | lemma add_diff_cancel_left [simp]: "(c + a) - (c + b) = a - b" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 348 | unfolding diff_diff_add [symmetric] by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 349 | |
| 63325 | 350 | lemma add_diff_cancel_right [simp]: "(a + c) - (b + c) = a - b" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 351 | using add_diff_cancel_left [symmetric] by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 352 | |
| 63325 | 353 | lemma diff_right_commute: "a - c - b = a - b - c" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 354 | by (simp add: diff_diff_add add.commute) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 355 | |
| 25267 | 356 | end | 
| 357 | ||
| 29904 | 358 | class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add | 
| 59322 | 359 | begin | 
| 360 | ||
| 63325 | 361 | lemma diff_zero [simp]: "a - 0 = a" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 362 | using add_diff_cancel_right' [of a 0] by simp | 
| 59322 | 363 | |
| 63325 | 364 | lemma diff_cancel [simp]: "a - a = 0" | 
| 59322 | 365 | proof - | 
| 63325 | 366 | have "(a + 0) - (a + 0) = 0" | 
| 367 | by (simp only: add_diff_cancel_left diff_zero) | |
| 59322 | 368 | then show ?thesis by simp | 
| 369 | qed | |
| 370 | ||
| 371 | lemma add_implies_diff: | |
| 372 | assumes "c + b = a" | |
| 373 | shows "c = a - b" | |
| 374 | proof - | |
| 63325 | 375 | from assms have "(b + c) - (b + 0) = a - b" | 
| 376 | by (simp add: add.commute) | |
| 59322 | 377 | then show "c = a - b" by simp | 
| 378 | qed | |
| 379 | ||
| 63325 | 380 | lemma add_cancel_right_right [simp]: "a = a + b \<longleftrightarrow> b = 0" | 
| 381 | (is "?P \<longleftrightarrow> ?Q") | |
| 62608 | 382 | proof | 
| 63325 | 383 | assume ?Q | 
| 384 | then show ?P by simp | |
| 62608 | 385 | next | 
| 63325 | 386 | assume ?P | 
| 387 | then have "a - a = a + b - a" by simp | |
| 62608 | 388 | then show ?Q by simp | 
| 389 | qed | |
| 390 | ||
| 63325 | 391 | lemma add_cancel_right_left [simp]: "a = b + a \<longleftrightarrow> b = 0" | 
| 62608 | 392 | using add_cancel_right_right [of a b] by (simp add: ac_simps) | 
| 393 | ||
| 63325 | 394 | lemma add_cancel_left_right [simp]: "a + b = a \<longleftrightarrow> b = 0" | 
| 62608 | 395 | by (auto dest: sym) | 
| 396 | ||
| 63325 | 397 | lemma add_cancel_left_left [simp]: "b + a = a \<longleftrightarrow> b = 0" | 
| 62608 | 398 | by (auto dest: sym) | 
| 399 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 400 | end | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 401 | |
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 402 | class comm_monoid_diff = cancel_comm_monoid_add + | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 403 | assumes zero_diff [simp]: "0 - a = 0" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 404 | begin | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 405 | |
| 63325 | 406 | lemma diff_add_zero [simp]: "a - (a + b) = 0" | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 407 | proof - | 
| 63325 | 408 | have "a - (a + b) = (a + 0) - (a + b)" | 
| 409 | by simp | |
| 410 | also have "\<dots> = 0" | |
| 411 | by (simp only: add_diff_cancel_left zero_diff) | |
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 412 | finally show ?thesis . | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 413 | qed | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 414 | |
| 59322 | 415 | end | 
| 416 | ||
| 29904 | 417 | |
| 60758 | 418 | subsection \<open>Groups\<close> | 
| 23085 | 419 | |
| 25762 | 420 | class group_add = minus + uminus + monoid_add + | 
| 63364 | 421 | assumes left_minus: "- a + a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 422 | assumes add_uminus_conv_diff [simp]: "a + (- b) = a - b" | 
| 25062 | 423 | begin | 
| 23085 | 424 | |
| 63325 | 425 | lemma diff_conv_add_uminus: "a - b = a + (- b)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 426 | by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 427 | |
| 63364 | 428 | sublocale add: group plus 0 uminus | 
| 429 | by standard (simp_all add: left_minus) | |
| 430 | ||
| 63588 | 431 | lemma minus_unique: "a + b = 0 \<Longrightarrow> - a = b" | 
| 432 | by (fact add.inverse_unique) | |
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 433 | |
| 63364 | 434 | lemma minus_zero: "- 0 = 0" | 
| 435 | by (fact add.inverse_neutral) | |
| 14738 | 436 | |
| 63364 | 437 | lemma minus_minus: "- (- a) = a" | 
| 438 | by (fact add.inverse_inverse) | |
| 14738 | 439 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 440 | lemma right_minus: "a + - a = 0" | 
| 63364 | 441 | by (fact add.right_inverse) | 
| 14738 | 442 | |
| 63325 | 443 | lemma diff_self [simp]: "a - a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 444 | using right_minus [of a] by simp | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 445 | |
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 446 | subclass cancel_semigroup_add | 
| 63364 | 447 | by standard (simp_all add: add.left_cancel add.right_cancel) | 
| 40368 
47c186c8577d
added class relation group_add < cancel_semigroup_add
 haftmann parents: 
39134diff
changeset | 448 | |
| 63325 | 449 | lemma minus_add_cancel [simp]: "- a + (a + b) = b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 450 | by (simp add: add.assoc [symmetric]) | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 451 | |
| 63325 | 452 | lemma add_minus_cancel [simp]: "a + (- a + b) = b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 453 | by (simp add: add.assoc [symmetric]) | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 454 | |
| 63325 | 455 | lemma diff_add_cancel [simp]: "a - b + b = a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 456 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 457 | |
| 63325 | 458 | lemma add_diff_cancel [simp]: "a + b - b = a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 459 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 460 | |
| 63325 | 461 | lemma minus_add: "- (a + b) = - b + - a" | 
| 63364 | 462 | by (fact add.inverse_distrib_swap) | 
| 34147 
319616f4eecf
generalize lemma add_minus_cancel, add lemma minus_add, simplify some proofs
 huffman parents: 
34146diff
changeset | 463 | |
| 63325 | 464 | lemma right_minus_eq [simp]: "a - b = 0 \<longleftrightarrow> a = b" | 
| 14738 | 465 | proof | 
| 23085 | 466 | assume "a - b = 0" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 467 | have "a = (a - b) + b" by (simp add: add.assoc) | 
| 60758 | 468 | also have "\<dots> = b" using \<open>a - b = 0\<close> by simp | 
| 23085 | 469 | finally show "a = b" . | 
| 14738 | 470 | next | 
| 63325 | 471 | assume "a = b" | 
| 472 | then show "a - b = 0" by simp | |
| 14738 | 473 | qed | 
| 474 | ||
| 63325 | 475 | lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 476 | by (fact right_minus_eq [symmetric]) | 
| 14738 | 477 | |
| 63325 | 478 | lemma diff_0 [simp]: "0 - a = - a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 479 | by (simp only: diff_conv_add_uminus add_0_left) | 
| 14738 | 480 | |
| 63325 | 481 | lemma diff_0_right [simp]: "a - 0 = a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 482 | by (simp only: diff_conv_add_uminus minus_zero add_0_right) | 
| 14738 | 483 | |
| 63325 | 484 | lemma diff_minus_eq_add [simp]: "a - - b = a + b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 485 | by (simp only: diff_conv_add_uminus minus_minus) | 
| 14738 | 486 | |
| 63325 | 487 | lemma neg_equal_iff_equal [simp]: "- a = - b \<longleftrightarrow> a = b" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 488 | proof | 
| 14738 | 489 | assume "- a = - b" | 
| 63325 | 490 | then have "- (- a) = - (- b)" by simp | 
| 491 | then show "a = b" by simp | |
| 14738 | 492 | next | 
| 25062 | 493 | assume "a = b" | 
| 63325 | 494 | then show "- a = - b" by simp | 
| 14738 | 495 | qed | 
| 496 | ||
| 63325 | 497 | lemma neg_equal_0_iff_equal [simp]: "- a = 0 \<longleftrightarrow> a = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 498 | by (subst neg_equal_iff_equal [symmetric]) simp | 
| 14738 | 499 | |
| 63325 | 500 | lemma neg_0_equal_iff_equal [simp]: "0 = - a \<longleftrightarrow> 0 = a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 501 | by (subst neg_equal_iff_equal [symmetric]) simp | 
| 14738 | 502 | |
| 63325 | 503 | text \<open>The next two equations can make the simplifier loop!\<close> | 
| 14738 | 504 | |
| 63325 | 505 | lemma equation_minus_iff: "a = - b \<longleftrightarrow> b = - a" | 
| 14738 | 506 | proof - | 
| 63325 | 507 | have "- (- a) = - b \<longleftrightarrow> - a = b" | 
| 508 | by (rule neg_equal_iff_equal) | |
| 509 | then show ?thesis | |
| 510 | by (simp add: eq_commute) | |
| 25062 | 511 | qed | 
| 512 | ||
| 63325 | 513 | lemma minus_equation_iff: "- a = b \<longleftrightarrow> - b = a" | 
| 25062 | 514 | proof - | 
| 63325 | 515 | have "- a = - (- b) \<longleftrightarrow> a = -b" | 
| 516 | by (rule neg_equal_iff_equal) | |
| 517 | then show ?thesis | |
| 518 | by (simp add: eq_commute) | |
| 14738 | 519 | qed | 
| 520 | ||
| 63325 | 521 | lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0" | 
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 522 | proof | 
| 63325 | 523 | assume "a = - b" | 
| 524 | then show "a + b = 0" by simp | |
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 525 | next | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 526 | assume "a + b = 0" | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 527 | moreover have "a + (b + - b) = (a + b) + - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 528 | by (simp only: add.assoc) | 
| 63325 | 529 | ultimately show "a = - b" | 
| 530 | by simp | |
| 29914 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 531 | qed | 
| 
c9ced4f54e82
generalize lemma eq_neg_iff_add_eq_0, and move to OrderedGroup
 huffman parents: 
29904diff
changeset | 532 | |
| 63325 | 533 | lemma add_eq_0_iff2: "a + b = 0 \<longleftrightarrow> a = - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 534 | by (fact eq_neg_iff_add_eq_0 [symmetric]) | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 535 | |
| 63325 | 536 | lemma neg_eq_iff_add_eq_0: "- a = b \<longleftrightarrow> a + b = 0" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 537 | by (auto simp add: add_eq_0_iff2) | 
| 44348 | 538 | |
| 63325 | 539 | lemma add_eq_0_iff: "a + b = 0 \<longleftrightarrow> b = - a" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 540 | by (auto simp add: neg_eq_iff_add_eq_0 [symmetric]) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 541 | |
| 63325 | 542 | lemma minus_diff_eq [simp]: "- (a - b) = b - a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 543 | by (simp only: neg_eq_iff_add_eq_0 diff_conv_add_uminus add.assoc minus_add_cancel) simp | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 544 | |
| 63325 | 545 | lemma add_diff_eq [algebra_simps, field_simps]: "a + (b - c) = (a + b) - c" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 546 | by (simp only: diff_conv_add_uminus add.assoc) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 547 | |
| 63325 | 548 | lemma diff_add_eq_diff_diff_swap: "a - (b + c) = a - c - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 549 | by (simp only: diff_conv_add_uminus add.assoc minus_add) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 550 | |
| 63325 | 551 | lemma diff_eq_eq [algebra_simps, field_simps]: "a - b = c \<longleftrightarrow> a = c + b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 552 | by auto | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 553 | |
| 63325 | 554 | lemma eq_diff_eq [algebra_simps, field_simps]: "a = c - b \<longleftrightarrow> a + b = c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 555 | by auto | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 556 | |
| 63325 | 557 | lemma diff_diff_eq2 [algebra_simps, field_simps]: "a - (b - c) = (a + c) - b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 558 | by (simp only: diff_conv_add_uminus add.assoc) simp | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 559 | |
| 63325 | 560 | lemma diff_eq_diff_eq: "a - b = c - d \<Longrightarrow> a = b \<longleftrightarrow> c = d" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 561 | by (simp only: eq_iff_diff_eq_0 [of a b] eq_iff_diff_eq_0 [of c d]) | 
| 45548 
3e2722d66169
Groups.thy: generalize several lemmas from class ab_group_add to class group_add
 huffman parents: 
45294diff
changeset | 562 | |
| 25062 | 563 | end | 
| 564 | ||
| 25762 | 565 | class ab_group_add = minus + uminus + comm_monoid_add + | 
| 25062 | 566 | assumes ab_left_minus: "- a + a = 0" | 
| 59557 | 567 | assumes ab_diff_conv_add_uminus: "a - b = a + (- b)" | 
| 25267 | 568 | begin | 
| 25062 | 569 | |
| 25267 | 570 | subclass group_add | 
| 63325 | 571 | by standard (simp_all add: ab_left_minus ab_diff_conv_add_uminus) | 
| 25062 | 572 | |
| 29904 | 573 | subclass cancel_comm_monoid_add | 
| 28823 | 574 | proof | 
| 25062 | 575 | fix a b c :: 'a | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 576 | have "b + a - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 577 | by simp | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 578 | then show "a + b - a = b" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 579 | by (simp add: ac_simps) | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 580 | show "a - b - c = a - (b + c)" | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 581 | by (simp add: algebra_simps) | 
| 25062 | 582 | qed | 
| 583 | ||
| 63325 | 584 | lemma uminus_add_conv_diff [simp]: "- a + b = b - a" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 585 | by (simp add: add.commute) | 
| 25062 | 586 | |
| 63325 | 587 | lemma minus_add_distrib [simp]: "- (a + b) = - a + - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 588 | by (simp add: algebra_simps) | 
| 25062 | 589 | |
| 63325 | 590 | lemma diff_add_eq [algebra_simps, field_simps]: "(a - b) + c = (a + c) - b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 591 | by (simp add: algebra_simps) | 
| 25077 | 592 | |
| 25062 | 593 | end | 
| 14738 | 594 | |
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 595 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 596 | subsection \<open>(Partially) Ordered Groups\<close> | 
| 14738 | 597 | |
| 60758 | 598 | text \<open> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 599 | The theory of partially ordered groups is taken from the books: | 
| 63325 | 600 | |
| 601 | \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979 | |
| 602 | \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963 | |
| 603 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 604 | Most of the used notions can also be looked up in | 
| 63680 | 605 | \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al. | 
| 63325 | 606 | \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer | 
| 60758 | 607 | \<close> | 
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35267diff
changeset | 608 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 609 | class ordered_ab_semigroup_add = order + ab_semigroup_add + | 
| 25062 | 610 | assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | 
| 611 | begin | |
| 24380 
c215e256beca
moved ordered_ab_semigroup_add to OrderedGroup.thy
 haftmann parents: 
24286diff
changeset | 612 | |
| 63325 | 613 | lemma add_right_mono: "a \<le> b \<Longrightarrow> a + c \<le> b + c" | 
| 614 | by (simp add: add.commute [of _ c] add_left_mono) | |
| 14738 | 615 | |
| 60758 | 616 | text \<open>non-strict, in both arguments\<close> | 
| 63325 | 617 | lemma add_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d" | 
| 14738 | 618 | apply (erule add_right_mono [THEN order_trans]) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 619 | apply (simp add: add.commute add_left_mono) | 
| 14738 | 620 | done | 
| 621 | ||
| 25062 | 622 | end | 
| 623 | ||
| 63325 | 624 | text \<open>Strict monotonicity in both arguments\<close> | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 625 | class strict_ordered_ab_semigroup_add = ordered_ab_semigroup_add + | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 626 | assumes add_strict_mono: "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 627 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 628 | class ordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 629 | ordered_ab_semigroup_add + cancel_ab_semigroup_add | 
| 25062 | 630 | begin | 
| 631 | ||
| 63325 | 632 | lemma add_strict_left_mono: "a < b \<Longrightarrow> c + a < c + b" | 
| 633 | by (auto simp add: less_le add_left_mono) | |
| 14738 | 634 | |
| 63325 | 635 | lemma add_strict_right_mono: "a < b \<Longrightarrow> a + c < b + c" | 
| 636 | by (simp add: add.commute [of _ c] add_strict_left_mono) | |
| 14738 | 637 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 638 | subclass strict_ordered_ab_semigroup_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 639 | apply standard | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 640 | apply (erule add_strict_right_mono [THEN less_trans]) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 641 | apply (erule add_strict_left_mono) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 642 | done | 
| 14738 | 643 | |
| 63325 | 644 | lemma add_less_le_mono: "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d" | 
| 645 | apply (erule add_strict_right_mono [THEN less_le_trans]) | |
| 646 | apply (erule add_left_mono) | |
| 647 | done | |
| 14738 | 648 | |
| 63325 | 649 | lemma add_le_less_mono: "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d" | 
| 650 | apply (erule add_right_mono [THEN le_less_trans]) | |
| 651 | apply (erule add_strict_left_mono) | |
| 652 | done | |
| 14738 | 653 | |
| 25062 | 654 | end | 
| 655 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 656 | class ordered_ab_semigroup_add_imp_le = ordered_cancel_ab_semigroup_add + | 
| 25062 | 657 | assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | 
| 658 | begin | |
| 659 | ||
| 14738 | 660 | lemma add_less_imp_less_left: | 
| 63325 | 661 | assumes less: "c + a < c + b" | 
| 662 | shows "a < b" | |
| 14738 | 663 | proof - | 
| 63325 | 664 | from less have le: "c + a \<le> c + b" | 
| 665 | by (simp add: order_le_less) | |
| 666 | have "a \<le> b" | |
| 14738 | 667 | apply (insert le) | 
| 668 | apply (drule add_le_imp_le_left) | |
| 63325 | 669 | apply (insert le) | 
| 670 | apply (drule add_le_imp_le_left) | |
| 671 | apply assumption | |
| 672 | done | |
| 14738 | 673 | moreover have "a \<noteq> b" | 
| 674 | proof (rule ccontr) | |
| 63325 | 675 | assume "\<not> ?thesis" | 
| 14738 | 676 | then have "a = b" by simp | 
| 677 | then have "c + a = c + b" by simp | |
| 63325 | 678 | with less show "False" by simp | 
| 14738 | 679 | qed | 
| 63325 | 680 | ultimately show "a < b" | 
| 681 | by (simp add: order_le_less) | |
| 14738 | 682 | qed | 
| 683 | ||
| 63325 | 684 | lemma add_less_imp_less_right: "a + c < b + c \<Longrightarrow> a < b" | 
| 685 | by (rule add_less_imp_less_left [of c]) (simp add: add.commute) | |
| 14738 | 686 | |
| 63325 | 687 | lemma add_less_cancel_left [simp]: "c + a < c + b \<longleftrightarrow> a < b" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 688 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | 
| 14738 | 689 | |
| 63325 | 690 | lemma add_less_cancel_right [simp]: "a + c < b + c \<longleftrightarrow> a < b" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 691 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | 
| 14738 | 692 | |
| 63325 | 693 | lemma add_le_cancel_left [simp]: "c + a \<le> c + b \<longleftrightarrow> a \<le> b" | 
| 694 | apply auto | |
| 63588 | 695 | apply (drule add_le_imp_le_left) | 
| 696 | apply (simp_all add: add_left_mono) | |
| 63325 | 697 | done | 
| 14738 | 698 | |
| 63325 | 699 | lemma add_le_cancel_right [simp]: "a + c \<le> b + c \<longleftrightarrow> a \<le> b" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56950diff
changeset | 700 | by (simp add: add.commute [of a c] add.commute [of b c]) | 
| 14738 | 701 | |
| 63325 | 702 | lemma add_le_imp_le_right: "a + c \<le> b + c \<Longrightarrow> a \<le> b" | 
| 703 | by simp | |
| 25062 | 704 | |
| 63325 | 705 | lemma max_add_distrib_left: "max x y + z = max (x + z) (y + z)" | 
| 25077 | 706 | unfolding max_def by auto | 
| 707 | ||
| 63325 | 708 | lemma min_add_distrib_left: "min x y + z = min (x + z) (y + z)" | 
| 25077 | 709 | unfolding min_def by auto | 
| 710 | ||
| 63325 | 711 | lemma max_add_distrib_right: "x + max y z = max (x + y) (x + z)" | 
| 44848 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 712 | unfolding max_def by auto | 
| 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 713 | |
| 63325 | 714 | lemma min_add_distrib_right: "x + min y z = min (x + y) (x + z)" | 
| 44848 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 715 | unfolding min_def by auto | 
| 
f4d0b060c7ca
remove lemmas nat_add_min_{left,right} in favor of generic lemmas min_add_distrib_{left,right}
 huffman parents: 
44433diff
changeset | 716 | |
| 25062 | 717 | end | 
| 718 | ||
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 719 | subsection \<open>Support for reasoning about signs\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 720 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 721 | class ordered_comm_monoid_add = comm_monoid_add + ordered_ab_semigroup_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 722 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 723 | |
| 63325 | 724 | lemma add_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 725 | using add_mono[of 0 a 0 b] by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 726 | |
| 63325 | 727 | lemma add_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> a + b \<le> 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 728 | using add_mono[of a 0 b 0] by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 729 | |
| 63325 | 730 | lemma add_nonneg_eq_0_iff: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 731 | using add_left_mono[of 0 y x] add_right_mono[of 0 x y] by auto | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 732 | |
| 63325 | 733 | lemma add_nonpos_eq_0_iff: "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 734 | using add_left_mono[of y 0 x] add_right_mono[of x 0 y] by auto | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 735 | |
| 63325 | 736 | lemma add_increasing: "0 \<le> a \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> a + c" | 
| 737 | using add_mono [of 0 a b c] by simp | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 738 | |
| 63325 | 739 | lemma add_increasing2: "0 \<le> c \<Longrightarrow> b \<le> a \<Longrightarrow> b \<le> a + c" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 740 | by (simp add: add_increasing add.commute [of a]) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 741 | |
| 63325 | 742 | lemma add_decreasing: "a \<le> 0 \<Longrightarrow> c \<le> b \<Longrightarrow> a + c \<le> b" | 
| 743 | using add_mono [of a 0 c b] by simp | |
| 52289 | 744 | |
| 63325 | 745 | lemma add_decreasing2: "c \<le> 0 \<Longrightarrow> a \<le> b \<Longrightarrow> a + c \<le> b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 746 | using add_mono[of a b c 0] by simp | 
| 52289 | 747 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 748 | lemma add_pos_nonneg: "0 < a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 749 | using less_le_trans[of 0 a "a + b"] by (simp add: add_increasing2) | 
| 52289 | 750 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 751 | lemma add_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 752 | by (intro add_pos_nonneg less_imp_le) | 
| 52289 | 753 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 754 | lemma add_nonneg_pos: "0 \<le> a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a + b" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 755 | using add_pos_nonneg[of b a] by (simp add: add_commute) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 756 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 757 | lemma add_neg_nonpos: "a < 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 758 | using le_less_trans[of "a + b" a 0] by (simp add: add_decreasing2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 759 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 760 | lemma add_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 761 | by (intro add_neg_nonpos less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 762 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 763 | lemma add_nonpos_neg: "a \<le> 0 \<Longrightarrow> b < 0 \<Longrightarrow> a + b < 0" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 764 | using add_neg_nonpos[of b a] by (simp add: add_commute) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 765 | |
| 30691 | 766 | lemmas add_sign_intros = | 
| 767 | add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg | |
| 768 | add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos | |
| 769 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 770 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 771 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 772 | class strict_ordered_comm_monoid_add = comm_monoid_add + strict_ordered_ab_semigroup_add | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 773 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 774 | |
| 63325 | 775 | lemma pos_add_strict: "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 776 | using add_strict_mono [of 0 a b c] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 777 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 778 | end | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 779 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 780 | class ordered_cancel_comm_monoid_add = ordered_comm_monoid_add + cancel_ab_semigroup_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 781 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 782 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 783 | subclass ordered_cancel_ab_semigroup_add .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 784 | subclass strict_ordered_comm_monoid_add .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 785 | |
| 63325 | 786 | lemma add_strict_increasing: "0 < a \<Longrightarrow> b \<le> c \<Longrightarrow> b < a + c" | 
| 787 | using add_less_le_mono [of 0 a b c] by simp | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 788 | |
| 63325 | 789 | lemma add_strict_increasing2: "0 \<le> a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | 
| 790 | using add_le_less_mono [of 0 a b c] by simp | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 791 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 792 | end | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 793 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 794 | class ordered_ab_semigroup_monoid_add_imp_le = monoid_add + ordered_ab_semigroup_add_imp_le | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 795 | begin | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 796 | |
| 63588 | 797 | lemma add_less_same_cancel1 [simp]: "b + a < b \<longleftrightarrow> a < 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 798 | using add_less_cancel_left [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 799 | |
| 63588 | 800 | lemma add_less_same_cancel2 [simp]: "a + b < b \<longleftrightarrow> a < 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 801 | using add_less_cancel_right [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 802 | |
| 63588 | 803 | lemma less_add_same_cancel1 [simp]: "a < a + b \<longleftrightarrow> 0 < b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 804 | using add_less_cancel_left [of _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 805 | |
| 63588 | 806 | lemma less_add_same_cancel2 [simp]: "a < b + a \<longleftrightarrow> 0 < b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 807 | using add_less_cancel_right [of 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 808 | |
| 63588 | 809 | lemma add_le_same_cancel1 [simp]: "b + a \<le> b \<longleftrightarrow> a \<le> 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 810 | using add_le_cancel_left [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 811 | |
| 63588 | 812 | lemma add_le_same_cancel2 [simp]: "a + b \<le> b \<longleftrightarrow> a \<le> 0" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 813 | using add_le_cancel_right [of _ _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 814 | |
| 63588 | 815 | lemma le_add_same_cancel1 [simp]: "a \<le> a + b \<longleftrightarrow> 0 \<le> b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 816 | using add_le_cancel_left [of _ 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 817 | |
| 63588 | 818 | lemma le_add_same_cancel2 [simp]: "a \<le> b + a \<longleftrightarrow> 0 \<le> b" | 
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 819 | using add_le_cancel_right [of 0] by simp | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 820 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 821 | subclass cancel_comm_monoid_add | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 822 | by standard auto | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 823 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 824 | subclass ordered_cancel_comm_monoid_add | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 825 | by standard | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 826 | |
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 827 | end | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 828 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 829 | class ordered_ab_group_add = ab_group_add + ordered_ab_semigroup_add | 
| 25062 | 830 | begin | 
| 831 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 832 | subclass ordered_cancel_ab_semigroup_add .. | 
| 25062 | 833 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63364diff
changeset | 834 | subclass ordered_ab_semigroup_monoid_add_imp_le | 
| 28823 | 835 | proof | 
| 25062 | 836 | fix a b c :: 'a | 
| 837 | assume "c + a \<le> c + b" | |
| 63325 | 838 | then have "(-c) + (c + a) \<le> (-c) + (c + b)" | 
| 839 | by (rule add_left_mono) | |
| 840 | then have "((-c) + c) + a \<le> ((-c) + c) + b" | |
| 841 | by (simp only: add.assoc) | |
| 842 | then show "a \<le> b" by simp | |
| 25062 | 843 | qed | 
| 844 | ||
| 63325 | 845 | lemma max_diff_distrib_left: "max x y - z = max (x - z) (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 846 | using max_add_distrib_left [of x y "- z"] by simp | 
| 25077 | 847 | |
| 63325 | 848 | lemma min_diff_distrib_left: "min x y - z = min (x - z) (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 849 | using min_add_distrib_left [of x y "- z"] by simp | 
| 25077 | 850 | |
| 851 | lemma le_imp_neg_le: | |
| 63325 | 852 | assumes "a \<le> b" | 
| 853 | shows "- b \<le> - a" | |
| 25077 | 854 | proof - | 
| 63325 | 855 | from assms have "- a + a \<le> - a + b" | 
| 856 | by (rule add_left_mono) | |
| 857 | then have "0 \<le> - a + b" | |
| 858 | by simp | |
| 859 | then have "0 + (- b) \<le> (- a + b) + (- b)" | |
| 860 | by (rule add_right_mono) | |
| 861 | then show ?thesis | |
| 862 | by (simp add: algebra_simps) | |
| 25077 | 863 | qed | 
| 864 | ||
| 865 | lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b" | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 866 | proof | 
| 25077 | 867 | assume "- b \<le> - a" | 
| 63325 | 868 | then have "- (- a) \<le> - (- b)" | 
| 869 | by (rule le_imp_neg_le) | |
| 870 | then show "a \<le> b" | |
| 871 | by simp | |
| 25077 | 872 | next | 
| 63325 | 873 | assume "a \<le> b" | 
| 874 | then show "- b \<le> - a" | |
| 875 | by (rule le_imp_neg_le) | |
| 25077 | 876 | qed | 
| 877 | ||
| 878 | lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 63325 | 879 | by (subst neg_le_iff_le [symmetric]) simp | 
| 25077 | 880 | |
| 881 | lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 63325 | 882 | by (subst neg_le_iff_le [symmetric]) simp | 
| 25077 | 883 | |
| 884 | lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b" | |
| 63325 | 885 | by (auto simp add: less_le) | 
| 25077 | 886 | |
| 887 | lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a" | |
| 63325 | 888 | by (subst neg_less_iff_less [symmetric]) simp | 
| 25077 | 889 | |
| 890 | lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0" | |
| 63325 | 891 | by (subst neg_less_iff_less [symmetric]) simp | 
| 25077 | 892 | |
| 63325 | 893 | text \<open>The next several equations can make the simplifier loop!\<close> | 
| 25077 | 894 | |
| 895 | lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a" | |
| 896 | proof - | |
| 63588 | 897 | have "- (- a) < - b \<longleftrightarrow> b < - a" | 
| 63325 | 898 | by (rule neg_less_iff_less) | 
| 899 | then show ?thesis by simp | |
| 25077 | 900 | qed | 
| 901 | ||
| 902 | lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a" | |
| 903 | proof - | |
| 63325 | 904 | have "- a < - (- b) \<longleftrightarrow> - b < a" | 
| 905 | by (rule neg_less_iff_less) | |
| 906 | then show ?thesis by simp | |
| 25077 | 907 | qed | 
| 908 | ||
| 909 | lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a" | |
| 910 | proof - | |
| 63588 | 911 | have mm: "- (- a) < - b \<Longrightarrow> - (- b) < -a" for a b :: 'a | 
| 63325 | 912 | by (simp only: minus_less_iff) | 
| 63588 | 913 | have "- (- a) \<le> - b \<longleftrightarrow> b \<le> - a" | 
| 25077 | 914 | apply (auto simp only: le_less) | 
| 63588 | 915 | apply (drule mm) | 
| 916 | apply (simp_all) | |
| 25077 | 917 | apply (drule mm[simplified], assumption) | 
| 918 | done | |
| 919 | then show ?thesis by simp | |
| 920 | qed | |
| 921 | ||
| 922 | lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a" | |
| 63325 | 923 | by (auto simp add: le_less minus_less_iff) | 
| 25077 | 924 | |
| 63325 | 925 | lemma diff_less_0_iff_less [simp]: "a - b < 0 \<longleftrightarrow> a < b" | 
| 25077 | 926 | proof - | 
| 63325 | 927 | have "a - b < 0 \<longleftrightarrow> a + (- b) < b + (- b)" | 
| 928 | by simp | |
| 929 | also have "\<dots> \<longleftrightarrow> a < b" | |
| 930 | by (simp only: add_less_cancel_right) | |
| 25077 | 931 | finally show ?thesis . | 
| 932 | qed | |
| 933 | ||
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 934 | lemmas less_iff_diff_less_0 = diff_less_0_iff_less [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 935 | |
| 63325 | 936 | lemma diff_less_eq [algebra_simps, field_simps]: "a - b < c \<longleftrightarrow> a < c + b" | 
| 937 | apply (subst less_iff_diff_less_0 [of a]) | |
| 938 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | |
| 939 | apply (simp add: algebra_simps) | |
| 940 | done | |
| 25077 | 941 | |
| 63325 | 942 | lemma less_diff_eq[algebra_simps, field_simps]: "a < c - b \<longleftrightarrow> a + b < c" | 
| 943 | apply (subst less_iff_diff_less_0 [of "a + b"]) | |
| 944 | apply (subst less_iff_diff_less_0 [of a]) | |
| 945 | apply (simp add: algebra_simps) | |
| 946 | done | |
| 25077 | 947 | |
| 63325 | 948 | lemma diff_gt_0_iff_gt [simp]: "a - b > 0 \<longleftrightarrow> a > b" | 
| 62348 | 949 | by (simp add: less_diff_eq) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61605diff
changeset | 950 | |
| 63325 | 951 | lemma diff_le_eq [algebra_simps, field_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b" | 
| 62348 | 952 | by (auto simp add: le_less diff_less_eq ) | 
| 25077 | 953 | |
| 63325 | 954 | lemma le_diff_eq [algebra_simps, field_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c" | 
| 62348 | 955 | by (auto simp add: le_less less_diff_eq) | 
| 25077 | 956 | |
| 63325 | 957 | lemma diff_le_0_iff_le [simp]: "a - b \<le> 0 \<longleftrightarrow> a \<le> b" | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 958 | by (simp add: algebra_simps) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 959 | |
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 960 | lemmas le_iff_diff_le_0 = diff_le_0_iff_le [symmetric] | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 961 | |
| 63325 | 962 | lemma diff_ge_0_iff_ge [simp]: "a - b \<ge> 0 \<longleftrightarrow> a \<ge> b" | 
| 62348 | 963 | by (simp add: le_diff_eq) | 
| 964 | ||
| 63325 | 965 | lemma diff_eq_diff_less: "a - b = c - d \<Longrightarrow> a < b \<longleftrightarrow> c < d" | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 966 | by (auto simp only: less_iff_diff_less_0 [of a b] less_iff_diff_less_0 [of c d]) | 
| 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 967 | |
| 63325 | 968 | lemma diff_eq_diff_less_eq: "a - b = c - d \<Longrightarrow> a \<le> b \<longleftrightarrow> c \<le> d" | 
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 969 | by (auto simp only: le_iff_diff_le_0 [of a b] le_iff_diff_le_0 [of c d]) | 
| 25077 | 970 | |
| 56950 | 971 | lemma diff_mono: "a \<le> b \<Longrightarrow> d \<le> c \<Longrightarrow> a - c \<le> b - d" | 
| 972 | by (simp add: field_simps add_mono) | |
| 973 | ||
| 974 | lemma diff_left_mono: "b \<le> a \<Longrightarrow> c - a \<le> c - b" | |
| 975 | by (simp add: field_simps) | |
| 976 | ||
| 977 | lemma diff_right_mono: "a \<le> b \<Longrightarrow> a - c \<le> b - c" | |
| 978 | by (simp add: field_simps) | |
| 979 | ||
| 980 | lemma diff_strict_mono: "a < b \<Longrightarrow> d < c \<Longrightarrow> a - c < b - d" | |
| 981 | by (simp add: field_simps add_strict_mono) | |
| 982 | ||
| 983 | lemma diff_strict_left_mono: "b < a \<Longrightarrow> c - a < c - b" | |
| 984 | by (simp add: field_simps) | |
| 985 | ||
| 986 | lemma diff_strict_right_mono: "a < b \<Longrightarrow> a - c < b - c" | |
| 987 | by (simp add: field_simps) | |
| 988 | ||
| 25077 | 989 | end | 
| 990 | ||
| 48891 | 991 | ML_file "Tools/group_cancel.ML" | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 992 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 993 | simproc_setup group_cancel_add ("a + b::'a::ab_group_add") =
 | 
| 60758 | 994 | \<open>fn phi => fn ss => try Group_Cancel.cancel_add_conv\<close> | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 995 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 996 | simproc_setup group_cancel_diff ("a - b::'a::ab_group_add") =
 | 
| 60758 | 997 | \<open>fn phi => fn ss => try Group_Cancel.cancel_diff_conv\<close> | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 998 | |
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 999 | simproc_setup group_cancel_eq ("a = (b::'a::ab_group_add)") =
 | 
| 60758 | 1000 | \<open>fn phi => fn ss => try Group_Cancel.cancel_eq_conv\<close> | 
| 37889 
0d8058e0c270
keep explicit diff_def as legacy theorem; modernized abel_cancel simproc setup
 haftmann parents: 
37884diff
changeset | 1001 | |
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1002 | simproc_setup group_cancel_le ("a \<le> (b::'a::ordered_ab_group_add)") =
 | 
| 60758 | 1003 | \<open>fn phi => fn ss => try Group_Cancel.cancel_le_conv\<close> | 
| 48556 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1004 | |
| 
62a3fbf9d35b
replace abel_cancel simprocs with functionally equivalent, but simpler and faster ones
 huffman parents: 
45548diff
changeset | 1005 | simproc_setup group_cancel_less ("a < (b::'a::ordered_ab_group_add)") =
 | 
| 60758 | 1006 | \<open>fn phi => fn ss => try Group_Cancel.cancel_less_conv\<close> | 
| 37884 
314a88278715
discontinued pretending that abel_cancel is logic-independent; cleaned up junk
 haftmann parents: 
36977diff
changeset | 1007 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1008 | class linordered_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1009 | linorder + ordered_ab_semigroup_add | 
| 25062 | 1010 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1011 | class linordered_cancel_ab_semigroup_add = | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1012 | linorder + ordered_cancel_ab_semigroup_add | 
| 25267 | 1013 | begin | 
| 25062 | 1014 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1015 | subclass linordered_ab_semigroup_add .. | 
| 25062 | 1016 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1017 | subclass ordered_ab_semigroup_add_imp_le | 
| 28823 | 1018 | proof | 
| 25062 | 1019 | fix a b c :: 'a | 
| 63325 | 1020 | assume le1: "c + a \<le> c + b" | 
| 1021 | show "a \<le> b" | |
| 25062 | 1022 | proof (rule ccontr) | 
| 63325 | 1023 | assume *: "\<not> ?thesis" | 
| 1024 | then have "b \<le> a" by (simp add: linorder_not_le) | |
| 63588 | 1025 | then have "c + b \<le> c + a" by (rule add_left_mono) | 
| 1026 | with le1 have "a = b" | |
| 1027 | apply - | |
| 63325 | 1028 | apply (drule antisym) | 
| 63588 | 1029 | apply simp_all | 
| 25062 | 1030 | done | 
| 63325 | 1031 | with * show False | 
| 25062 | 1032 | by (simp add: linorder_not_le [symmetric]) | 
| 1033 | qed | |
| 1034 | qed | |
| 1035 | ||
| 25267 | 1036 | end | 
| 1037 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1038 | class linordered_ab_group_add = linorder + ordered_ab_group_add | 
| 25267 | 1039 | begin | 
| 25230 | 1040 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1041 | subclass linordered_cancel_ab_semigroup_add .. | 
| 25230 | 1042 | |
| 63325 | 1043 | lemma equal_neg_zero [simp]: "a = - a \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1044 | proof | 
| 63325 | 1045 | assume "a = 0" | 
| 1046 | then show "a = - a" by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1047 | next | 
| 63325 | 1048 | assume A: "a = - a" | 
| 1049 | show "a = 0" | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1050 | proof (cases "0 \<le> a") | 
| 63325 | 1051 | case True | 
| 1052 | with A have "0 \<le> - a" by auto | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1053 | with le_minus_iff have "a \<le> 0" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1054 | with True show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1055 | next | 
| 63325 | 1056 | case False | 
| 1057 | then have B: "a \<le> 0" by auto | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1058 | with A have "- a \<le> 0" by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1059 | with B show ?thesis by (auto intro: order_trans) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1060 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1061 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1062 | |
| 63325 | 1063 | lemma neg_equal_zero [simp]: "- a = a \<longleftrightarrow> a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1064 | by (auto dest: sym) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1065 | |
| 63325 | 1066 | lemma neg_less_eq_nonneg [simp]: "- a \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 54250 | 1067 | proof | 
| 63325 | 1068 | assume *: "- a \<le> a" | 
| 1069 | show "0 \<le> a" | |
| 54250 | 1070 | proof (rule classical) | 
| 63325 | 1071 | assume "\<not> ?thesis" | 
| 54250 | 1072 | then have "a < 0" by auto | 
| 63325 | 1073 | with * have "- a < 0" by (rule le_less_trans) | 
| 54250 | 1074 | then show ?thesis by auto | 
| 1075 | qed | |
| 1076 | next | |
| 63325 | 1077 | assume *: "0 \<le> a" | 
| 1078 | then have "- a \<le> 0" by (simp add: minus_le_iff) | |
| 1079 | from this * show "- a \<le> a" by (rule order_trans) | |
| 54250 | 1080 | qed | 
| 1081 | ||
| 63325 | 1082 | lemma neg_less_pos [simp]: "- a < a \<longleftrightarrow> 0 < a" | 
| 54250 | 1083 | by (auto simp add: less_le) | 
| 1084 | ||
| 63325 | 1085 | lemma less_eq_neg_nonpos [simp]: "a \<le> - a \<longleftrightarrow> a \<le> 0" | 
| 54250 | 1086 | using neg_less_eq_nonneg [of "- a"] by simp | 
| 1087 | ||
| 63325 | 1088 | lemma less_neg_neg [simp]: "a < - a \<longleftrightarrow> a < 0" | 
| 54250 | 1089 | using neg_less_pos [of "- a"] by simp | 
| 1090 | ||
| 63325 | 1091 | lemma double_zero [simp]: "a + a = 0 \<longleftrightarrow> a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1092 | proof | 
| 63325 | 1093 | assume "a + a = 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1094 | then have a: "- a = a" by (rule minus_unique) | 
| 35216 | 1095 | then show "a = 0" by (simp only: neg_equal_zero) | 
| 63325 | 1096 | next | 
| 1097 | assume "a = 0" | |
| 1098 | then show "a + a = 0" by simp | |
| 1099 | qed | |
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1100 | |
| 63325 | 1101 | lemma double_zero_sym [simp]: "0 = a + a \<longleftrightarrow> a = 0" | 
| 1102 | apply (rule iffI) | |
| 63588 | 1103 | apply (drule sym) | 
| 1104 | apply simp_all | |
| 63325 | 1105 | done | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1106 | |
| 63325 | 1107 | lemma zero_less_double_add_iff_zero_less_single_add [simp]: "0 < a + a \<longleftrightarrow> 0 < a" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1108 | proof | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1109 | assume "0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1110 | then have "0 - a < a" by (simp only: diff_less_eq) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1111 | then have "- a < a" by simp | 
| 54250 | 1112 | then show "0 < a" by simp | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1113 | next | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1114 | assume "0 < a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1115 | with this have "0 + 0 < a + a" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1116 | by (rule add_strict_mono) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1117 | then show "0 < a + a" by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1118 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1119 | |
| 63325 | 1120 | lemma zero_le_double_add_iff_zero_le_single_add [simp]: "0 \<le> a + a \<longleftrightarrow> 0 \<le> a" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1121 | by (auto simp add: le_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1122 | |
| 63325 | 1123 | lemma double_add_less_zero_iff_single_add_less_zero [simp]: "a + a < 0 \<longleftrightarrow> a < 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1124 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1125 | have "\<not> a + a < 0 \<longleftrightarrow> \<not> a < 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1126 | by (simp add: not_less) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1127 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1128 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1129 | |
| 63325 | 1130 | lemma double_add_le_zero_iff_single_add_le_zero [simp]: "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1131 | proof - | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1132 | have "\<not> a + a \<le> 0 \<longleftrightarrow> \<not> a \<le> 0" | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1133 | by (simp add: not_le) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1134 | then show ?thesis by simp | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1135 | qed | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1136 | |
| 63325 | 1137 | lemma minus_max_eq_min: "- max x y = min (- x) (- y)" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1138 | by (auto simp add: max_def min_def) | 
| 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1139 | |
| 63325 | 1140 | lemma minus_min_eq_max: "- min x y = max (- x) (- y)" | 
| 35036 
b8c8d01cc20d
separate library theory for type classes combining lattices with various algebraic structures; more simp rules
 haftmann parents: 
35028diff
changeset | 1141 | by (auto simp add: max_def min_def) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1142 | |
| 25267 | 1143 | end | 
| 1144 | ||
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1145 | class abs = | 
| 61944 | 1146 |   fixes abs :: "'a \<Rightarrow> 'a"  ("\<bar>_\<bar>")
 | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1147 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1148 | class sgn = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1149 | fixes sgn :: "'a \<Rightarrow> 'a" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35050diff
changeset | 1150 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34973diff
changeset | 1151 | class ordered_ab_group_add_abs = ordered_ab_group_add + abs + | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1152 | assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1153 | and abs_ge_self: "a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1154 | and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1155 | and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1156 | and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1157 | begin | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1158 | |
| 25307 | 1159 | lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0" | 
| 1160 | unfolding neg_le_0_iff_le by simp | |
| 1161 | ||
| 1162 | lemma abs_of_nonneg [simp]: | |
| 63325 | 1163 | assumes nonneg: "0 \<le> a" | 
| 1164 | shows "\<bar>a\<bar> = a" | |
| 25307 | 1165 | proof (rule antisym) | 
| 63325 | 1166 | show "a \<le> \<bar>a\<bar>" by (rule abs_ge_self) | 
| 25307 | 1167 | from nonneg le_imp_neg_le have "- a \<le> 0" by simp | 
| 1168 | from this nonneg have "- a \<le> a" by (rule order_trans) | |
| 1169 | then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI) | |
| 63325 | 1170 | qed | 
| 25307 | 1171 | |
| 1172 | lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 63325 | 1173 | by (rule antisym) (auto intro!: abs_ge_self abs_leI order_trans [of "- \<bar>a\<bar>" 0 "\<bar>a\<bar>"]) | 
| 25307 | 1174 | |
| 1175 | lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 1176 | proof - | |
| 1177 | have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0" | |
| 1178 | proof (rule antisym) | |
| 1179 | assume zero: "\<bar>a\<bar> = 0" | |
| 1180 | with abs_ge_self show "a \<le> 0" by auto | |
| 1181 | from zero have "\<bar>-a\<bar> = 0" by simp | |
| 36302 | 1182 | with abs_ge_self [of "- a"] have "- a \<le> 0" by auto | 
| 25307 | 1183 | with neg_le_0_iff_le show "0 \<le> a" by auto | 
| 1184 | qed | |
| 1185 | then show ?thesis by auto | |
| 1186 | qed | |
| 1187 | ||
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1188 | lemma abs_zero [simp]: "\<bar>0\<bar> = 0" | 
| 63325 | 1189 | by simp | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1190 | |
| 54148 | 1191 | lemma abs_0_eq [simp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1192 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1193 | have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac) | 
| 63325 | 1194 | then show ?thesis by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1195 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1196 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 1197 | lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1198 | proof | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1199 | assume "\<bar>a\<bar> \<le> 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1200 | then have "\<bar>a\<bar> = 0" by (rule antisym) simp | 
| 63325 | 1201 | then show "a = 0" by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1202 | next | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1203 | assume "a = 0" | 
| 63325 | 1204 | then show "\<bar>a\<bar> \<le> 0" by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1205 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1206 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1207 | lemma abs_le_self_iff [simp]: "\<bar>a\<bar> \<le> a \<longleftrightarrow> 0 \<le> a" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1208 | proof - | 
| 63325 | 1209 | have "0 \<le> \<bar>a\<bar>" | 
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1210 | using abs_ge_zero by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1211 | then have "\<bar>a\<bar> \<le> a \<Longrightarrow> 0 \<le> a" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1212 | using order.trans by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1213 | then show ?thesis | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1214 | using abs_of_nonneg eq_refl by blast | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1215 | qed | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1216 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1217 | lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0" | 
| 63325 | 1218 | by (simp add: less_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1219 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1220 | lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1221 | proof - | 
| 63325 | 1222 | have "x \<le> y \<Longrightarrow> \<not> y < x" for x y by auto | 
| 1223 | then show ?thesis by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1224 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1225 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1226 | lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1227 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1228 | have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self) | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1229 | then show ?thesis by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1230 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1231 | |
| 63325 | 1232 | lemma abs_minus_commute: "\<bar>a - b\<bar> = \<bar>b - a\<bar>" | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1233 | proof - | 
| 63325 | 1234 | have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" | 
| 1235 | by (simp only: abs_minus_cancel) | |
| 1236 | also have "\<dots> = \<bar>b - a\<bar>" by simp | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1237 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1238 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1239 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1240 | lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a" | 
| 63325 | 1241 | by (rule abs_of_nonneg) (rule less_imp_le) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1242 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1243 | lemma abs_of_nonpos [simp]: | 
| 63325 | 1244 | assumes "a \<le> 0" | 
| 1245 | shows "\<bar>a\<bar> = - a" | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1246 | proof - | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1247 | let ?b = "- a" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1248 | have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)" | 
| 63325 | 1249 | unfolding abs_minus_cancel [of ?b] | 
| 1250 | unfolding neg_le_0_iff_le [of ?b] | |
| 1251 | unfolding minus_minus by (erule abs_of_nonneg) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1252 | then show ?thesis using assms by auto | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1253 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62348diff
changeset | 1254 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1255 | lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a" | 
| 63325 | 1256 | by (rule abs_of_nonpos) (rule less_imp_le) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1257 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1258 | lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b" | 
| 63325 | 1259 | using abs_ge_self by (blast intro: order_trans) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1260 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1261 | lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b" | 
| 63325 | 1262 | using abs_le_D1 [of "- a"] by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1263 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1264 | lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b" | 
| 63325 | 1265 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1266 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1267 | lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1268 | proof - | 
| 1269 | have "\<bar>a\<bar> = \<bar>b + (a - b)\<bar>" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54148diff
changeset | 1270 | by (simp add: algebra_simps) | 
| 36302 | 1271 | then have "\<bar>a\<bar> \<le> \<bar>b\<bar> + \<bar>a - b\<bar>" | 
| 1272 | by (simp add: abs_triangle_ineq) | |
| 1273 | then show ?thesis | |
| 1274 | by (simp add: algebra_simps) | |
| 1275 | qed | |
| 1276 | ||
| 1277 | lemma abs_triangle_ineq2_sym: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>b - a\<bar>" | |
| 1278 | by (simp only: abs_minus_commute [of b] abs_triangle_ineq2) | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1279 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1280 | lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>" | 
| 36302 | 1281 | by (simp add: abs_le_iff abs_triangle_ineq2 abs_triangle_ineq2_sym) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1282 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1283 | lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1284 | proof - | 
| 63325 | 1285 | have "\<bar>a - b\<bar> = \<bar>a + - b\<bar>" | 
| 1286 | by (simp add: algebra_simps) | |
| 1287 | also have "\<dots> \<le> \<bar>a\<bar> + \<bar>- b\<bar>" | |
| 1288 | by (rule abs_triangle_ineq) | |
| 29667 | 1289 | finally show ?thesis by simp | 
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1290 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1291 | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1292 | lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1293 | proof - | 
| 63325 | 1294 | have "\<bar>a + b - (c + d)\<bar> = \<bar>(a - c) + (b - d)\<bar>" | 
| 1295 | by (simp add: algebra_simps) | |
| 1296 | also have "\<dots> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>" | |
| 1297 | by (rule abs_triangle_ineq) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1298 | finally show ?thesis . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1299 | qed | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1300 | |
| 63325 | 1301 | lemma abs_add_abs [simp]: "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" | 
| 1302 | (is "?L = ?R") | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1303 | proof (rule antisym) | 
| 63325 | 1304 | show "?L \<ge> ?R" by (rule abs_ge_self) | 
| 1305 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by (rule abs_triangle_ineq) | |
| 25303 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1306 | also have "\<dots> = ?R" by simp | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1307 | finally show "?L \<le> ?R" . | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1308 | qed | 
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1309 | |
| 
0699e20feabd
renamed lordered_*_* to lordered_*_add_*; further localization
 haftmann parents: 
25267diff
changeset | 1310 | end | 
| 14738 | 1311 | |
| 60762 | 1312 | lemma dense_eq0_I: | 
| 1313 |   fixes x::"'a::{dense_linorder,ordered_ab_group_add_abs}"
 | |
| 63325 | 1314 | shows "(\<And>e. 0 < e \<Longrightarrow> \<bar>x\<bar> \<le> e) \<Longrightarrow> x = 0" | 
| 1315 | apply (cases "\<bar>x\<bar> = 0") | |
| 63588 | 1316 | apply simp | 
| 60762 | 1317 | apply (simp only: zero_less_abs_iff [symmetric]) | 
| 1318 | apply (drule dense) | |
| 1319 | apply (auto simp add: not_less [symmetric]) | |
| 1320 | done | |
| 1321 | ||
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1322 | hide_fact (open) ab_diff_conv_add_uminus add_0 mult_1 ab_left_minus | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1323 | |
| 63325 | 1324 | lemmas add_0 = add_0_left (* FIXME duplicate *) | 
| 1325 | lemmas mult_1 = mult_1_left (* FIXME duplicate *) | |
| 1326 | lemmas ab_left_minus = left_minus (* FIXME duplicate *) | |
| 1327 | lemmas diff_diff_eq = diff_diff_add (* FIXME duplicate *) | |
| 1328 | ||
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59559diff
changeset | 1329 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1330 | subsection \<open>Canonically ordered monoids\<close> | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1331 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1332 | text \<open>Canonically ordered monoids are never groups.\<close> | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1333 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1334 | class canonically_ordered_monoid_add = comm_monoid_add + order + | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1335 | assumes le_iff_add: "a \<le> b \<longleftrightarrow> (\<exists>c. b = a + c)" | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1336 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1337 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1338 | lemma zero_le[simp]: "0 \<le> x" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1339 | by (auto simp: le_iff_add) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1340 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1341 | lemma le_zero_eq[simp]: "n \<le> 0 \<longleftrightarrow> n = 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1342 | by (auto intro: antisym) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1343 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1344 | lemma not_less_zero[simp]: "\<not> n < 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1345 | by (auto simp: less_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1346 | |
| 63325 | 1347 | lemma zero_less_iff_neq_zero: "0 < n \<longleftrightarrow> n \<noteq> 0" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1348 | by (auto simp: less_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1349 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1350 | text \<open>This theorem is useful with \<open>blast\<close>\<close> | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1351 | lemma gr_zeroI: "(n = 0 \<Longrightarrow> False) \<Longrightarrow> 0 < n" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1352 | by (rule zero_less_iff_neq_zero[THEN iffD2]) iprover | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1353 | |
| 63325 | 1354 | lemma not_gr_zero[simp]: "\<not> 0 < n \<longleftrightarrow> n = 0" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1355 | by (simp add: zero_less_iff_neq_zero) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1356 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1357 | subclass ordered_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1358 | proof qed (auto simp: le_iff_add add_ac) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1359 | |
| 63878 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1360 | lemma gr_implies_not_zero: "m < n \<Longrightarrow> n \<noteq> 0" | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1361 | by auto | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1362 | |
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1363 | lemma add_eq_0_iff_both_eq_0[simp]: "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1364 | by (intro add_nonneg_eq_0_iff zero_le) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1365 | |
| 63878 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1366 | lemma zero_eq_add_iff_both_eq_0[simp]: "0 = x + y \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
e26c7f58d78e
add add_eq_0_iff_both_eq_0 and zero_eq_add_iff_both_eq_0 to simp set
 hoelzl parents: 
63680diff
changeset | 1367 | using add_eq_0_iff_both_eq_0[of x y] unfolding eq_commute[of 0] . | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1368 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1369 | lemmas zero_order = zero_le le_zero_eq not_less_zero zero_less_iff_neq_zero not_gr_zero | 
| 63145 | 1370 | \<comment> \<open>This should be attributed with \<open>[iff]\<close>, but then \<open>blast\<close> fails in \<open>Set\<close>.\<close> | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1371 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1372 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1373 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1374 | class ordered_cancel_comm_monoid_diff = | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1375 | canonically_ordered_monoid_add + comm_monoid_diff + ordered_ab_semigroup_add_imp_le | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1376 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1377 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1378 | context | 
| 63588 | 1379 | fixes a b :: 'a | 
| 63325 | 1380 | assumes le: "a \<le> b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1381 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1382 | |
| 63325 | 1383 | lemma add_diff_inverse: "a + (b - a) = b" | 
| 1384 | using le by (auto simp add: le_iff_add) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1385 | |
| 63325 | 1386 | lemma add_diff_assoc: "c + (b - a) = c + b - a" | 
| 1387 | using le by (auto simp add: le_iff_add add.left_commute [of c]) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1388 | |
| 63325 | 1389 | lemma add_diff_assoc2: "b - a + c = b + c - a" | 
| 1390 | using le by (auto simp add: le_iff_add add.assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1391 | |
| 63325 | 1392 | lemma diff_add_assoc: "c + b - a = c + (b - a)" | 
| 1393 | using le by (simp add: add.commute add_diff_assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1394 | |
| 63325 | 1395 | lemma diff_add_assoc2: "b + c - a = b - a + c" | 
| 1396 | using le by (simp add: add.commute add_diff_assoc) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1397 | |
| 63325 | 1398 | lemma diff_diff_right: "c - (b - a) = c + a - b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1399 | by (simp add: add_diff_inverse add_diff_cancel_left [of a c "b - a", symmetric] add.commute) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1400 | |
| 63325 | 1401 | lemma diff_add: "b - a + a = b" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1402 | by (simp add: add.commute add_diff_inverse) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1403 | |
| 63325 | 1404 | lemma le_add_diff: "c \<le> b + c - a" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1405 | by (auto simp add: add.commute diff_add_assoc2 le_iff_add) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1406 | |
| 63325 | 1407 | lemma le_imp_diff_is_add: "a \<le> b \<Longrightarrow> b - a = c \<longleftrightarrow> b = c + a" | 
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1408 | by (auto simp add: add.commute add_diff_inverse) | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1409 | |
| 63325 | 1410 | lemma le_diff_conv2: "c \<le> b - a \<longleftrightarrow> c + a \<le> b" | 
| 1411 | (is "?P \<longleftrightarrow> ?Q") | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1412 | proof | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1413 | assume ?P | 
| 63325 | 1414 | then have "c + a \<le> b - a + a" | 
| 1415 | by (rule add_right_mono) | |
| 1416 | then show ?Q | |
| 1417 | by (simp add: add_diff_inverse add.commute) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1418 | next | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1419 | assume ?Q | 
| 63325 | 1420 | then have "a + c \<le> a + (b - a)" | 
| 1421 | by (simp add: add_diff_inverse add.commute) | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1422 | then show ?P by simp | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1423 | qed | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1424 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1425 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1426 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1427 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1428 | |
| 63325 | 1429 | |
| 60758 | 1430 | subsection \<open>Tools setup\<close> | 
| 25090 | 1431 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1432 | lemma add_mono_thms_linordered_semiring: | 
| 61076 | 1433 | fixes i j k :: "'a::ordered_ab_semigroup_add" | 
| 25077 | 1434 | shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | 
| 1435 | and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l" | |
| 1436 | and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l" | |
| 1437 | and "i = j \<and> k = l \<Longrightarrow> i + k = j + l" | |
| 63325 | 1438 | by (rule add_mono, clarify+)+ | 
| 25077 | 1439 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1440 | lemma add_mono_thms_linordered_field: | 
| 61076 | 1441 | fixes i j k :: "'a::ordered_cancel_ab_semigroup_add" | 
| 25077 | 1442 | shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l" | 
| 1443 | and "i = j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1444 | and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l" | |
| 1445 | and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 1446 | and "i < j \<and> k < l \<Longrightarrow> i + k < j + l" | |
| 63325 | 1447 | by (auto intro: add_strict_right_mono add_strict_left_mono | 
| 1448 | add_less_le_mono add_le_less_mono add_strict_mono) | |
| 25077 | 1449 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 1450 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 1451 | code_module Groups \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 1452 | |
| 14738 | 1453 | end |