| author | wenzelm | 
| Tue, 07 Nov 2006 19:40:56 +0100 | |
| changeset 21234 | fb84ab52f23b | 
| parent 21211 | 5370cfbf3070 | 
| child 21404 | eb85850d3eb7 | 
| permissions | -rw-r--r-- | 
| 13462 | 1 | (* Title: HOL/List.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 923 | 4 | *) | 
| 5 | ||
| 13114 | 6 | header {* The datatype of finite lists *}
 | 
| 13122 | 7 | |
| 15131 | 8 | theory List | 
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 9 | imports PreList FunDef | 
| 15131 | 10 | begin | 
| 923 | 11 | |
| 13142 | 12 | datatype 'a list = | 
| 13366 | 13 |     Nil    ("[]")
 | 
| 14 | | Cons 'a "'a list" (infixr "#" 65) | |
| 923 | 15 | |
| 15392 | 16 | subsection{*Basic list processing functions*}
 | 
| 15302 | 17 | |
| 923 | 18 | consts | 
| 13366 | 19 | "@" :: "'a list => 'a list => 'a list" (infixr 65) | 
| 20 |   filter:: "('a => bool) => 'a list => 'a list"
 | |
| 21 | concat:: "'a list list => 'a list" | |
| 22 |   foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
 | |
| 23 |   foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
 | |
| 24 | hd:: "'a list => 'a" | |
| 25 | tl:: "'a list => 'a list" | |
| 26 | last:: "'a list => 'a" | |
| 27 | butlast :: "'a list => 'a list" | |
| 28 | set :: "'a list => 'a set" | |
| 29 |   map :: "('a=>'b) => ('a list => 'b list)"
 | |
| 30 | nth :: "'a list => nat => 'a" (infixl "!" 100) | |
| 31 | list_update :: "'a list => nat => 'a => 'a list" | |
| 32 | take:: "nat => 'a list => 'a list" | |
| 33 | drop:: "nat => 'a list => 'a list" | |
| 34 |   takeWhile :: "('a => bool) => 'a list => 'a list"
 | |
| 35 |   dropWhile :: "('a => bool) => 'a list => 'a list"
 | |
| 36 | rev :: "'a list => 'a list" | |
| 37 |   zip :: "'a list => 'b list => ('a * 'b) list"
 | |
| 15425 | 38 |   upt :: "nat => nat => nat list" ("(1[_..</_'])")
 | 
| 13366 | 39 | remdups :: "'a list => 'a list" | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 40 | remove1 :: "'a => 'a list => 'a list" | 
| 13366 | 41 | "distinct":: "'a list => bool" | 
| 42 | replicate :: "nat => 'a => 'a list" | |
| 19390 | 43 | splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 15302 | 44 | |
| 19363 | 45 | abbreviation | 
| 46 |   upto:: "nat => nat => nat list"    ("(1[_../_])")
 | |
| 47 | "[i..j] == [i..<(Suc j)]" | |
| 19302 | 48 | |
| 923 | 49 | |
| 13146 | 50 | nonterminals lupdbinds lupdbind | 
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 51 | |
| 923 | 52 | syntax | 
| 13366 | 53 |   -- {* list Enumeration *}
 | 
| 54 |   "@list" :: "args => 'a list"    ("[(_)]")
 | |
| 923 | 55 | |
| 13366 | 56 |   -- {* Special syntax for filter *}
 | 
| 57 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_:_./ _])")
 | |
| 923 | 58 | |
| 13366 | 59 |   -- {* list update *}
 | 
| 60 |   "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
 | |
| 61 |   "" :: "lupdbind => lupdbinds"    ("_")
 | |
| 62 |   "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
 | |
| 63 |   "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
 | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 64 | |
| 923 | 65 | translations | 
| 13366 | 66 | "[x, xs]" == "x#[xs]" | 
| 67 | "[x]" == "x#[]" | |
| 68 | "[x:xs . P]"== "filter (%x. P) xs" | |
| 923 | 69 | |
| 13366 | 70 | "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs" | 
| 71 | "xs[i:=x]" == "list_update xs i x" | |
| 5077 
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
 nipkow parents: 
4643diff
changeset | 72 | |
| 5427 | 73 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
10832diff
changeset | 74 | syntax (xsymbols) | 
| 13366 | 75 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
 | 
| 14565 | 76 | syntax (HTML output) | 
| 77 |   "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
 | |
| 3342 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 78 | |
| 
ec3b55fcb165
New operator "lists" for formalizing sets of lists
 paulson parents: 
3320diff
changeset | 79 | |
| 13142 | 80 | text {*
 | 
| 14589 | 81 |   Function @{text size} is overloaded for all datatypes. Users may
 | 
| 13366 | 82 |   refer to the list version as @{text length}. *}
 | 
| 13142 | 83 | |
| 19363 | 84 | abbreviation | 
| 85 | length :: "'a list => nat" | |
| 86 | "length == size" | |
| 15302 | 87 | |
| 5183 | 88 | primrec | 
| 15307 | 89 | "hd(x#xs) = x" | 
| 90 | ||
| 5183 | 91 | primrec | 
| 15307 | 92 | "tl([]) = []" | 
| 93 | "tl(x#xs) = xs" | |
| 94 | ||
| 5183 | 95 | primrec | 
| 15307 | 96 | "last(x#xs) = (if xs=[] then x else last xs)" | 
| 97 | ||
| 5183 | 98 | primrec | 
| 15307 | 99 | "butlast []= []" | 
| 100 | "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)" | |
| 101 | ||
| 5183 | 102 | primrec | 
| 15307 | 103 |   "set [] = {}"
 | 
| 104 | "set (x#xs) = insert x (set xs)" | |
| 105 | ||
| 5183 | 106 | primrec | 
| 15307 | 107 | "map f [] = []" | 
| 108 | "map f (x#xs) = f(x)#map f xs" | |
| 109 | ||
| 5183 | 110 | primrec | 
| 15307 | 111 | append_Nil:"[]@ys = ys" | 
| 112 | append_Cons: "(x#xs)@ys = x#(xs@ys)" | |
| 113 | ||
| 5183 | 114 | primrec | 
| 15307 | 115 | "rev([]) = []" | 
| 116 | "rev(x#xs) = rev(xs) @ [x]" | |
| 117 | ||
| 5183 | 118 | primrec | 
| 15307 | 119 | "filter P [] = []" | 
| 120 | "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)" | |
| 121 | ||
| 5183 | 122 | primrec | 
| 15307 | 123 | foldl_Nil:"foldl f a [] = a" | 
| 124 | foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs" | |
| 125 | ||
| 8000 | 126 | primrec | 
| 15307 | 127 | "foldr f [] a = a" | 
| 128 | "foldr f (x#xs) a = f x (foldr f xs a)" | |
| 129 | ||
| 5183 | 130 | primrec | 
| 15307 | 131 | "concat([]) = []" | 
| 132 | "concat(x#xs) = x @ concat(xs)" | |
| 133 | ||
| 5183 | 134 | primrec | 
| 15307 | 135 | drop_Nil:"drop n [] = []" | 
| 136 | drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)" | |
| 137 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 138 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 139 | ||
| 5183 | 140 | primrec | 
| 15307 | 141 | take_Nil:"take n [] = []" | 
| 142 | take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)" | |
| 143 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 144 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 145 | ||
| 13142 | 146 | primrec | 
| 15307 | 147 | nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)" | 
| 148 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 149 |        theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
 | |
| 150 | ||
| 5183 | 151 | primrec | 
| 15307 | 152 | "[][i:=v] = []" | 
| 153 | "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])" | |
| 154 | ||
| 155 | primrec | |
| 156 | "takeWhile P [] = []" | |
| 157 | "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" | |
| 158 | ||
| 5183 | 159 | primrec | 
| 15307 | 160 | "dropWhile P [] = []" | 
| 161 | "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" | |
| 162 | ||
| 5183 | 163 | primrec | 
| 15307 | 164 | "zip xs [] = []" | 
| 165 | zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)" | |
| 166 |   -- {*Warning: simpset does not contain this definition, but separate
 | |
| 167 |        theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
 | |
| 168 | ||
| 5427 | 169 | primrec | 
| 15425 | 170 | upt_0: "[i..<0] = []" | 
| 171 | upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])" | |
| 15307 | 172 | |
| 5183 | 173 | primrec | 
| 15307 | 174 | "distinct [] = True" | 
| 175 | "distinct (x#xs) = (x ~: set xs \<and> distinct xs)" | |
| 176 | ||
| 5183 | 177 | primrec | 
| 15307 | 178 | "remdups [] = []" | 
| 179 | "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" | |
| 180 | ||
| 5183 | 181 | primrec | 
| 15307 | 182 | "remove1 x [] = []" | 
| 183 | "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)" | |
| 184 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 185 | primrec | 
| 15307 | 186 | replicate_0: "replicate 0 x = []" | 
| 187 | replicate_Suc: "replicate (Suc n) x = x # replicate n x" | |
| 188 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 189 | definition | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 190 | rotate1 :: "'a list \<Rightarrow> 'a list" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 191 | rotate1_def: "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 192 | rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 193 | rotate_def: "rotate n = rotate1 ^ n" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 194 |   list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 195 | list_all2_def: "list_all2 P xs ys = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 196 | (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 197 | sublist :: "'a list => nat set => 'a list" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 198 | sublist_def: "sublist xs A = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 199 | map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))" | 
| 17086 | 200 | |
| 201 | primrec | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 202 | "splice [] ys = ys" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 203 | "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 204 |     -- {*Warning: simpset does not contain the second eqn but a derived one. *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 205 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 206 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 207 | subsubsection {* @{const Nil} and @{const Cons} *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 208 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 209 | lemma not_Cons_self [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 210 | "xs \<noteq> x # xs" | 
| 13145 | 211 | by (induct xs) auto | 
| 13114 | 212 | |
| 13142 | 213 | lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] | 
| 13114 | 214 | |
| 13142 | 215 | lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" | 
| 13145 | 216 | by (induct xs) auto | 
| 13114 | 217 | |
| 13142 | 218 | lemma length_induct: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 219 | "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs" | 
| 17589 | 220 | by (rule measure_induct [of length]) iprover | 
| 13114 | 221 | |
| 222 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 223 | subsubsection {* @{const length} *}
 | 
| 13114 | 224 | |
| 13142 | 225 | text {*
 | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 226 |   Needs to come before @{text "@"} because of theorem @{text
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 227 | append_eq_append_conv}. | 
| 13142 | 228 | *} | 
| 13114 | 229 | |
| 13142 | 230 | lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" | 
| 13145 | 231 | by (induct xs) auto | 
| 13114 | 232 | |
| 13142 | 233 | lemma length_map [simp]: "length (map f xs) = length xs" | 
| 13145 | 234 | by (induct xs) auto | 
| 13114 | 235 | |
| 13142 | 236 | lemma length_rev [simp]: "length (rev xs) = length xs" | 
| 13145 | 237 | by (induct xs) auto | 
| 13114 | 238 | |
| 13142 | 239 | lemma length_tl [simp]: "length (tl xs) = length xs - 1" | 
| 13145 | 240 | by (cases xs) auto | 
| 13114 | 241 | |
| 13142 | 242 | lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" | 
| 13145 | 243 | by (induct xs) auto | 
| 13114 | 244 | |
| 13142 | 245 | lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" | 
| 13145 | 246 | by (induct xs) auto | 
| 13114 | 247 | |
| 248 | lemma length_Suc_conv: | |
| 13145 | 249 | "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | 
| 250 | by (induct xs) auto | |
| 13142 | 251 | |
| 14025 | 252 | lemma Suc_length_conv: | 
| 253 | "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" | |
| 14208 | 254 | apply (induct xs, simp, simp) | 
| 14025 | 255 | apply blast | 
| 256 | done | |
| 257 | ||
| 14099 | 258 | lemma impossible_Cons [rule_format]: | 
| 259 | "length xs <= length ys --> xs = x # ys = False" | |
| 20503 | 260 | apply (induct xs) | 
| 261 | apply auto | |
| 14099 | 262 | done | 
| 263 | ||
| 14247 | 264 | lemma list_induct2[consumes 1]: "\<And>ys. | 
| 265 | \<lbrakk> length xs = length ys; | |
| 266 | P [] []; | |
| 267 | \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk> | |
| 268 | \<Longrightarrow> P xs ys" | |
| 269 | apply(induct xs) | |
| 270 | apply simp | |
| 271 | apply(case_tac ys) | |
| 272 | apply simp | |
| 273 | apply(simp) | |
| 274 | done | |
| 13114 | 275 | |
| 15392 | 276 | subsubsection {* @{text "@"} -- append *}
 | 
| 13114 | 277 | |
| 13142 | 278 | lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" | 
| 13145 | 279 | by (induct xs) auto | 
| 13114 | 280 | |
| 13142 | 281 | lemma append_Nil2 [simp]: "xs @ [] = xs" | 
| 13145 | 282 | by (induct xs) auto | 
| 3507 | 283 | |
| 13142 | 284 | lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" | 
| 13145 | 285 | by (induct xs) auto | 
| 13114 | 286 | |
| 13142 | 287 | lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" | 
| 13145 | 288 | by (induct xs) auto | 
| 13114 | 289 | |
| 13142 | 290 | lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" | 
| 13145 | 291 | by (induct xs) auto | 
| 13114 | 292 | |
| 13142 | 293 | lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" | 
| 13145 | 294 | by (induct xs) auto | 
| 13114 | 295 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 296 | lemma append_eq_append_conv [simp]: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 297 | "!!ys. length xs = length ys \<or> length us = length vs | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 298 | ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 299 | apply (induct xs) | 
| 14208 | 300 | apply (case_tac ys, simp, force) | 
| 301 | apply (case_tac ys, force, simp) | |
| 13145 | 302 | done | 
| 13142 | 303 | |
| 14495 | 304 | lemma append_eq_append_conv2: "!!ys zs ts. | 
| 305 | (xs @ ys = zs @ ts) = | |
| 306 | (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)" | |
| 307 | apply (induct xs) | |
| 308 | apply fastsimp | |
| 309 | apply(case_tac zs) | |
| 310 | apply simp | |
| 311 | apply fastsimp | |
| 312 | done | |
| 313 | ||
| 13142 | 314 | lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" | 
| 13145 | 315 | by simp | 
| 13142 | 316 | |
| 317 | lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" | |
| 13145 | 318 | by simp | 
| 13114 | 319 | |
| 13142 | 320 | lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" | 
| 13145 | 321 | by simp | 
| 13114 | 322 | |
| 13142 | 323 | lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" | 
| 13145 | 324 | using append_same_eq [of _ _ "[]"] by auto | 
| 3507 | 325 | |
| 13142 | 326 | lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" | 
| 13145 | 327 | using append_same_eq [of "[]"] by auto | 
| 13114 | 328 | |
| 13142 | 329 | lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" | 
| 13145 | 330 | by (induct xs) auto | 
| 13114 | 331 | |
| 13142 | 332 | lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" | 
| 13145 | 333 | by (induct xs) auto | 
| 13114 | 334 | |
| 13142 | 335 | lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" | 
| 13145 | 336 | by (simp add: hd_append split: list.split) | 
| 13114 | 337 | |
| 13142 | 338 | lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" | 
| 13145 | 339 | by (simp split: list.split) | 
| 13114 | 340 | |
| 13142 | 341 | lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" | 
| 13145 | 342 | by (simp add: tl_append split: list.split) | 
| 13114 | 343 | |
| 344 | ||
| 14300 | 345 | lemma Cons_eq_append_conv: "x#xs = ys@zs = | 
| 346 | (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))" | |
| 347 | by(cases ys) auto | |
| 348 | ||
| 15281 | 349 | lemma append_eq_Cons_conv: "(ys@zs = x#xs) = | 
| 350 | (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))" | |
| 351 | by(cases ys) auto | |
| 352 | ||
| 14300 | 353 | |
| 13142 | 354 | text {* Trivial rules for solving @{text "@"}-equations automatically. *}
 | 
| 13114 | 355 | |
| 356 | lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" | |
| 13145 | 357 | by simp | 
| 13114 | 358 | |
| 13142 | 359 | lemma Cons_eq_appendI: | 
| 13145 | 360 | "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" | 
| 361 | by (drule sym) simp | |
| 13114 | 362 | |
| 13142 | 363 | lemma append_eq_appendI: | 
| 13145 | 364 | "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" | 
| 365 | by (drule sym) simp | |
| 13114 | 366 | |
| 367 | ||
| 13142 | 368 | text {*
 | 
| 13145 | 369 | Simplification procedure for all list equalities. | 
| 370 | Currently only tries to rearrange @{text "@"} to see if
 | |
| 371 | - both lists end in a singleton list, | |
| 372 | - or both lists end in the same list. | |
| 13142 | 373 | *} | 
| 374 | ||
| 375 | ML_setup {*
 | |
| 3507 | 376 | local | 
| 377 | ||
| 13122 | 378 | val append_assoc = thm "append_assoc"; | 
| 379 | val append_Nil = thm "append_Nil"; | |
| 380 | val append_Cons = thm "append_Cons"; | |
| 381 | val append1_eq_conv = thm "append1_eq_conv"; | |
| 382 | val append_same_eq = thm "append_same_eq"; | |
| 383 | ||
| 13114 | 384 | fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
 | 
| 13462 | 385 |   (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
 | 
| 386 |   | last (Const("List.op @",_) $ _ $ ys) = last ys
 | |
| 387 | | last t = t; | |
| 13114 | 388 | |
| 389 | fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
 | |
| 13462 | 390 | | list1 _ = false; | 
| 13114 | 391 | |
| 392 | fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
 | |
| 13462 | 393 |   (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
 | 
| 394 |   | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
 | |
| 395 |   | butlast xs = Const("List.list.Nil",fastype_of xs);
 | |
| 13114 | 396 | |
| 16973 | 397 | val rearr_ss = HOL_basic_ss addsimps [append_assoc, append_Nil, append_Cons]; | 
| 398 | ||
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 399 | fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) = | 
| 13462 | 400 | let | 
| 401 | val lastl = last lhs and lastr = last rhs; | |
| 402 | fun rearr conv = | |
| 403 | let | |
| 404 | val lhs1 = butlast lhs and rhs1 = butlast rhs; | |
| 405 | val Type(_,listT::_) = eqT | |
| 406 | val appT = [listT,listT] ---> listT | |
| 407 |         val app = Const("List.op @",appT)
 | |
| 408 | val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) | |
| 13480 
bb72bd43c6c3
use Tactic.prove instead of prove_goalw_cterm in internal proofs!
 wenzelm parents: 
13462diff
changeset | 409 | val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2)); | 
| 20044 
92cc2f4c7335
simprocs: no theory argument -- use simpset context instead;
 wenzelm parents: 
19890diff
changeset | 410 | val thm = Goal.prove (Simplifier.the_context ss) [] [] eq | 
| 17877 
67d5ab1cb0d8
Simplifier.inherit_context instead of Simplifier.inherit_bounds;
 wenzelm parents: 
17830diff
changeset | 411 | (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1)); | 
| 15531 | 412 | in SOME ((conv RS (thm RS trans)) RS eq_reflection) end; | 
| 13114 | 413 | |
| 13462 | 414 | in | 
| 415 | if list1 lastl andalso list1 lastr then rearr append1_eq_conv | |
| 416 | else if lastl aconv lastr then rearr append_same_eq | |
| 15531 | 417 | else NONE | 
| 13462 | 418 | end; | 
| 419 | ||
| 13114 | 420 | in | 
| 13462 | 421 | |
| 422 | val list_eq_simproc = | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 423 | Simplifier.simproc (the_context ()) "list_eq" ["(xs::'a list) = ys"] (K list_eq); | 
| 13462 | 424 | |
| 13114 | 425 | end; | 
| 426 | ||
| 427 | Addsimprocs [list_eq_simproc]; | |
| 428 | *} | |
| 429 | ||
| 430 | ||
| 15392 | 431 | subsubsection {* @{text map} *}
 | 
| 13114 | 432 | |
| 13142 | 433 | lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" | 
| 13145 | 434 | by (induct xs) simp_all | 
| 13114 | 435 | |
| 13142 | 436 | lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" | 
| 13145 | 437 | by (rule ext, induct_tac xs) auto | 
| 13114 | 438 | |
| 13142 | 439 | lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" | 
| 13145 | 440 | by (induct xs) auto | 
| 13114 | 441 | |
| 13142 | 442 | lemma map_compose: "map (f o g) xs = map f (map g xs)" | 
| 13145 | 443 | by (induct xs) (auto simp add: o_def) | 
| 13114 | 444 | |
| 13142 | 445 | lemma rev_map: "rev (map f xs) = map f (rev xs)" | 
| 13145 | 446 | by (induct xs) auto | 
| 13114 | 447 | |
| 13737 | 448 | lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)" | 
| 449 | by (induct xs) auto | |
| 450 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 451 | lemma map_cong [fundef_cong, recdef_cong]: | 
| 13145 | 452 | "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" | 
| 453 | -- {* a congruence rule for @{text map} *}
 | |
| 13737 | 454 | by simp | 
| 13114 | 455 | |
| 13142 | 456 | lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" | 
| 13145 | 457 | by (cases xs) auto | 
| 13114 | 458 | |
| 13142 | 459 | lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" | 
| 13145 | 460 | by (cases xs) auto | 
| 13114 | 461 | |
| 18447 | 462 | lemma map_eq_Cons_conv: | 
| 14025 | 463 | "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)" | 
| 13145 | 464 | by (cases xs) auto | 
| 13114 | 465 | |
| 18447 | 466 | lemma Cons_eq_map_conv: | 
| 14025 | 467 | "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)" | 
| 468 | by (cases ys) auto | |
| 469 | ||
| 18447 | 470 | lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1] | 
| 471 | lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1] | |
| 472 | declare map_eq_Cons_D [dest!] Cons_eq_map_D [dest!] | |
| 473 | ||
| 14111 | 474 | lemma ex_map_conv: | 
| 475 | "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)" | |
| 18447 | 476 | by(induct ys, auto simp add: Cons_eq_map_conv) | 
| 14111 | 477 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 478 | lemma map_eq_imp_length_eq: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 479 | "!!xs. map f xs = map f ys ==> length xs = length ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 480 | apply (induct ys) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 481 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 482 | apply(simp (no_asm_use)) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 483 | apply clarify | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 484 | apply(simp (no_asm_use)) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 485 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 486 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 487 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 488 | lemma map_inj_on: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 489 | "[| map f xs = map f ys; inj_on f (set xs Un set ys) |] | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 490 | ==> xs = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 491 | apply(frule map_eq_imp_length_eq) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 492 | apply(rotate_tac -1) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 493 | apply(induct rule:list_induct2) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 494 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 495 | apply(simp) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 496 | apply (blast intro:sym) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 497 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 498 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 499 | lemma inj_on_map_eq_map: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 500 | "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 501 | by(blast dest:map_inj_on) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 502 | |
| 13114 | 503 | lemma map_injective: | 
| 14338 | 504 | "!!xs. map f xs = map f ys ==> inj f ==> xs = ys" | 
| 505 | by (induct ys) (auto dest!:injD) | |
| 13114 | 506 | |
| 14339 | 507 | lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)" | 
| 508 | by(blast dest:map_injective) | |
| 509 | ||
| 13114 | 510 | lemma inj_mapI: "inj f ==> inj (map f)" | 
| 17589 | 511 | by (iprover dest: map_injective injD intro: inj_onI) | 
| 13114 | 512 | |
| 513 | lemma inj_mapD: "inj (map f) ==> inj f" | |
| 14208 | 514 | apply (unfold inj_on_def, clarify) | 
| 13145 | 515 | apply (erule_tac x = "[x]" in ballE) | 
| 14208 | 516 | apply (erule_tac x = "[y]" in ballE, simp, blast) | 
| 13145 | 517 | apply blast | 
| 518 | done | |
| 13114 | 519 | |
| 14339 | 520 | lemma inj_map[iff]: "inj (map f) = inj f" | 
| 13145 | 521 | by (blast dest: inj_mapD intro: inj_mapI) | 
| 13114 | 522 | |
| 15303 | 523 | lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A" | 
| 524 | apply(rule inj_onI) | |
| 525 | apply(erule map_inj_on) | |
| 526 | apply(blast intro:inj_onI dest:inj_onD) | |
| 527 | done | |
| 528 | ||
| 14343 | 529 | lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs" | 
| 530 | by (induct xs, auto) | |
| 13114 | 531 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 532 | lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 533 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 534 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 535 | lemma map_fst_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 536 | "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 537 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 538 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 539 | lemma map_snd_zip[simp]: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 540 | "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 541 | by (induct rule:list_induct2, simp_all) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 542 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 543 | |
| 15392 | 544 | subsubsection {* @{text rev} *}
 | 
| 13114 | 545 | |
| 13142 | 546 | lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" | 
| 13145 | 547 | by (induct xs) auto | 
| 13114 | 548 | |
| 13142 | 549 | lemma rev_rev_ident [simp]: "rev (rev xs) = xs" | 
| 13145 | 550 | by (induct xs) auto | 
| 13114 | 551 | |
| 15870 | 552 | lemma rev_swap: "(rev xs = ys) = (xs = rev ys)" | 
| 553 | by auto | |
| 554 | ||
| 13142 | 555 | lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" | 
| 13145 | 556 | by (induct xs) auto | 
| 13114 | 557 | |
| 13142 | 558 | lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" | 
| 13145 | 559 | by (induct xs) auto | 
| 13114 | 560 | |
| 15870 | 561 | lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])" | 
| 562 | by (cases xs) auto | |
| 563 | ||
| 564 | lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])" | |
| 565 | by (cases xs) auto | |
| 566 | ||
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 567 | lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 568 | apply (induct xs arbitrary: ys, force) | 
| 14208 | 569 | apply (case_tac ys, simp, force) | 
| 13145 | 570 | done | 
| 13114 | 571 | |
| 15439 | 572 | lemma inj_on_rev[iff]: "inj_on rev A" | 
| 573 | by(simp add:inj_on_def) | |
| 574 | ||
| 13366 | 575 | lemma rev_induct [case_names Nil snoc]: | 
| 576 | "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" | |
| 15489 
d136af442665
Replaced application of subst by simplesubst in proof of rev_induct
 berghofe parents: 
15439diff
changeset | 577 | apply(simplesubst rev_rev_ident[symmetric]) | 
| 13145 | 578 | apply(rule_tac list = "rev xs" in list.induct, simp_all) | 
| 579 | done | |
| 13114 | 580 | |
| 13145 | 581 | ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
 | 
| 13114 | 582 | |
| 13366 | 583 | lemma rev_exhaust [case_names Nil snoc]: | 
| 584 | "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" | |
| 13145 | 585 | by (induct xs rule: rev_induct) auto | 
| 13114 | 586 | |
| 13366 | 587 | lemmas rev_cases = rev_exhaust | 
| 588 | ||
| 18423 | 589 | lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" | 
| 590 | by(rule rev_cases[of xs]) auto | |
| 591 | ||
| 13114 | 592 | |
| 15392 | 593 | subsubsection {* @{text set} *}
 | 
| 13114 | 594 | |
| 13142 | 595 | lemma finite_set [iff]: "finite (set xs)" | 
| 13145 | 596 | by (induct xs) auto | 
| 13114 | 597 | |
| 13142 | 598 | lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" | 
| 13145 | 599 | by (induct xs) auto | 
| 13114 | 600 | |
| 17830 | 601 | lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs" | 
| 602 | by(cases xs) auto | |
| 14099 | 603 | |
| 13142 | 604 | lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" | 
| 13145 | 605 | by auto | 
| 13114 | 606 | |
| 14099 | 607 | lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" | 
| 608 | by auto | |
| 609 | ||
| 13142 | 610 | lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
 | 
| 13145 | 611 | by (induct xs) auto | 
| 13114 | 612 | |
| 15245 | 613 | lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
 | 
| 614 | by(induct xs) auto | |
| 615 | ||
| 13142 | 616 | lemma set_rev [simp]: "set (rev xs) = set xs" | 
| 13145 | 617 | by (induct xs) auto | 
| 13114 | 618 | |
| 13142 | 619 | lemma set_map [simp]: "set (map f xs) = f`(set xs)" | 
| 13145 | 620 | by (induct xs) auto | 
| 13114 | 621 | |
| 13142 | 622 | lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
 | 
| 13145 | 623 | by (induct xs) auto | 
| 13114 | 624 | |
| 15425 | 625 | lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
 | 
| 14208 | 626 | apply (induct j, simp_all) | 
| 627 | apply (erule ssubst, auto) | |
| 13145 | 628 | done | 
| 13114 | 629 | |
| 13142 | 630 | lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)" | 
| 15113 | 631 | proof (induct xs) | 
| 632 | case Nil show ?case by simp | |
| 633 | case (Cons a xs) | |
| 634 | show ?case | |
| 635 | proof | |
| 636 | assume "x \<in> set (a # xs)" | |
| 637 | with prems show "\<exists>ys zs. a # xs = ys @ x # zs" | |
| 638 | by (simp, blast intro: Cons_eq_appendI) | |
| 639 | next | |
| 640 | assume "\<exists>ys zs. a # xs = ys @ x # zs" | |
| 641 | then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast | |
| 642 | show "x \<in> set (a # xs)" | |
| 643 | by (cases ys, auto simp add: eq) | |
| 644 | qed | |
| 645 | qed | |
| 13142 | 646 | |
| 18049 | 647 | lemma in_set_conv_decomp_first: | 
| 648 | "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)" | |
| 649 | proof (induct xs) | |
| 650 | case Nil show ?case by simp | |
| 651 | next | |
| 652 | case (Cons a xs) | |
| 653 | show ?case | |
| 654 | proof cases | |
| 655 | assume "x = a" thus ?case using Cons by force | |
| 656 | next | |
| 657 | assume "x \<noteq> a" | |
| 658 | show ?case | |
| 659 | proof | |
| 660 | assume "x \<in> set (a # xs)" | |
| 661 | from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 662 | by(fastsimp intro!: Cons_eq_appendI) | |
| 663 | next | |
| 664 | assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys" | |
| 665 | then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast | |
| 666 | show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq) | |
| 667 | qed | |
| 668 | qed | |
| 669 | qed | |
| 670 | ||
| 671 | lemmas split_list = in_set_conv_decomp[THEN iffD1, standard] | |
| 672 | lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard] | |
| 673 | ||
| 674 | ||
| 13508 | 675 | lemma finite_list: "finite A ==> EX l. set l = A" | 
| 676 | apply (erule finite_induct, auto) | |
| 677 | apply (rule_tac x="x#l" in exI, auto) | |
| 678 | done | |
| 679 | ||
| 14388 | 680 | lemma card_length: "card (set xs) \<le> length xs" | 
| 681 | by (induct xs) (auto simp add: card_insert_if) | |
| 13114 | 682 | |
| 15168 | 683 | |
| 15392 | 684 | subsubsection {* @{text filter} *}
 | 
| 13114 | 685 | |
| 13142 | 686 | lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" | 
| 13145 | 687 | by (induct xs) auto | 
| 13114 | 688 | |
| 15305 | 689 | lemma rev_filter: "rev (filter P xs) = filter P (rev xs)" | 
| 690 | by (induct xs) simp_all | |
| 691 | ||
| 13142 | 692 | lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" | 
| 13145 | 693 | by (induct xs) auto | 
| 13114 | 694 | |
| 16998 | 695 | lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs" | 
| 696 | by (induct xs) (auto simp add: le_SucI) | |
| 697 | ||
| 18423 | 698 | lemma sum_length_filter_compl: | 
| 699 | "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs" | |
| 700 | by(induct xs) simp_all | |
| 701 | ||
| 13142 | 702 | lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" | 
| 13145 | 703 | by (induct xs) auto | 
| 13114 | 704 | |
| 13142 | 705 | lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" | 
| 13145 | 706 | by (induct xs) auto | 
| 13114 | 707 | |
| 16998 | 708 | lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" | 
| 709 | by (induct xs) simp_all | |
| 710 | ||
| 711 | lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)" | |
| 712 | apply (induct xs) | |
| 713 | apply auto | |
| 714 | apply(cut_tac P=P and xs=xs in length_filter_le) | |
| 715 | apply simp | |
| 716 | done | |
| 13114 | 717 | |
| 16965 | 718 | lemma filter_map: | 
| 719 | "filter P (map f xs) = map f (filter (P o f) xs)" | |
| 720 | by (induct xs) simp_all | |
| 721 | ||
| 722 | lemma length_filter_map[simp]: | |
| 723 | "length (filter P (map f xs)) = length(filter (P o f) xs)" | |
| 724 | by (simp add:filter_map) | |
| 725 | ||
| 13142 | 726 | lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" | 
| 13145 | 727 | by auto | 
| 13114 | 728 | |
| 15246 | 729 | lemma length_filter_less: | 
| 730 | "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs" | |
| 731 | proof (induct xs) | |
| 732 | case Nil thus ?case by simp | |
| 733 | next | |
| 734 | case (Cons x xs) thus ?case | |
| 735 | apply (auto split:split_if_asm) | |
| 736 | using length_filter_le[of P xs] apply arith | |
| 737 | done | |
| 738 | qed | |
| 13114 | 739 | |
| 15281 | 740 | lemma length_filter_conv_card: | 
| 741 |  "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
 | |
| 742 | proof (induct xs) | |
| 743 | case Nil thus ?case by simp | |
| 744 | next | |
| 745 | case (Cons x xs) | |
| 746 |   let ?S = "{i. i < length xs & p(xs!i)}"
 | |
| 747 | have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite) | |
| 748 | show ?case (is "?l = card ?S'") | |
| 749 | proof (cases) | |
| 750 | assume "p x" | |
| 751 | hence eq: "?S' = insert 0 (Suc ` ?S)" | |
| 752 | by(auto simp add: nth_Cons image_def split:nat.split elim:lessE) | |
| 753 | have "length (filter p (x # xs)) = Suc(card ?S)" | |
| 754 | using Cons by simp | |
| 755 | also have "\<dots> = Suc(card(Suc ` ?S))" using fin | |
| 756 | by (simp add: card_image inj_Suc) | |
| 757 | also have "\<dots> = card ?S'" using eq fin | |
| 758 | by (simp add:card_insert_if) (simp add:image_def) | |
| 759 | finally show ?thesis . | |
| 760 | next | |
| 761 | assume "\<not> p x" | |
| 762 | hence eq: "?S' = Suc ` ?S" | |
| 763 | by(auto simp add: nth_Cons image_def split:nat.split elim:lessE) | |
| 764 | have "length (filter p (x # xs)) = card ?S" | |
| 765 | using Cons by simp | |
| 766 | also have "\<dots> = card(Suc ` ?S)" using fin | |
| 767 | by (simp add: card_image inj_Suc) | |
| 768 | also have "\<dots> = card ?S'" using eq fin | |
| 769 | by (simp add:card_insert_if) | |
| 770 | finally show ?thesis . | |
| 771 | qed | |
| 772 | qed | |
| 773 | ||
| 17629 | 774 | lemma Cons_eq_filterD: | 
| 775 | "x#xs = filter P ys \<Longrightarrow> | |
| 776 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 19585 | 777 | (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs") | 
| 17629 | 778 | proof(induct ys) | 
| 779 | case Nil thus ?case by simp | |
| 780 | next | |
| 781 | case (Cons y ys) | |
| 782 | show ?case (is "\<exists>x. ?Q x") | |
| 783 | proof cases | |
| 784 | assume Py: "P y" | |
| 785 | show ?thesis | |
| 786 | proof cases | |
| 787 | assume xy: "x = y" | |
| 788 | show ?thesis | |
| 789 | proof from Py xy Cons(2) show "?Q []" by simp qed | |
| 790 | next | |
| 791 | assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp | |
| 792 | qed | |
| 793 | next | |
| 794 | assume Py: "\<not> P y" | |
| 795 | with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp | |
| 796 | show ?thesis (is "? us. ?Q us") | |
| 797 | proof show "?Q (y#us)" using 1 by simp qed | |
| 798 | qed | |
| 799 | qed | |
| 800 | ||
| 801 | lemma filter_eq_ConsD: | |
| 802 | "filter P ys = x#xs \<Longrightarrow> | |
| 803 | \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs" | |
| 804 | by(rule Cons_eq_filterD) simp | |
| 805 | ||
| 806 | lemma filter_eq_Cons_iff: | |
| 807 | "(filter P ys = x#xs) = | |
| 808 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 809 | by(auto dest:filter_eq_ConsD) | |
| 810 | ||
| 811 | lemma Cons_eq_filter_iff: | |
| 812 | "(x#xs = filter P ys) = | |
| 813 | (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)" | |
| 814 | by(auto dest:Cons_eq_filterD) | |
| 815 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 816 | lemma filter_cong[fundef_cong, recdef_cong]: | 
| 17501 | 817 | "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys" | 
| 818 | apply simp | |
| 819 | apply(erule thin_rl) | |
| 820 | by (induct ys) simp_all | |
| 821 | ||
| 15281 | 822 | |
| 15392 | 823 | subsubsection {* @{text concat} *}
 | 
| 13114 | 824 | |
| 13142 | 825 | lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" | 
| 13145 | 826 | by (induct xs) auto | 
| 13114 | 827 | |
| 18447 | 828 | lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 829 | by (induct xss) auto | 
| 13114 | 830 | |
| 18447 | 831 | lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" | 
| 13145 | 832 | by (induct xss) auto | 
| 13114 | 833 | |
| 13142 | 834 | lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)" | 
| 13145 | 835 | by (induct xs) auto | 
| 13114 | 836 | |
| 13142 | 837 | lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" | 
| 13145 | 838 | by (induct xs) auto | 
| 13114 | 839 | |
| 13142 | 840 | lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" | 
| 13145 | 841 | by (induct xs) auto | 
| 13114 | 842 | |
| 13142 | 843 | lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" | 
| 13145 | 844 | by (induct xs) auto | 
| 13114 | 845 | |
| 846 | ||
| 15392 | 847 | subsubsection {* @{text nth} *}
 | 
| 13114 | 848 | |
| 13142 | 849 | lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" | 
| 13145 | 850 | by auto | 
| 13114 | 851 | |
| 13142 | 852 | lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" | 
| 13145 | 853 | by auto | 
| 13114 | 854 | |
| 13142 | 855 | declare nth.simps [simp del] | 
| 13114 | 856 | |
| 857 | lemma nth_append: | |
| 13145 | 858 | "!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" | 
| 14208 | 859 | apply (induct "xs", simp) | 
| 860 | apply (case_tac n, auto) | |
| 13145 | 861 | done | 
| 13114 | 862 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 863 | lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 864 | by (induct "xs") auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 865 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 866 | lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 867 | by (induct "xs") auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 868 | |
| 13142 | 869 | lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" | 
| 14208 | 870 | apply (induct xs, simp) | 
| 871 | apply (case_tac n, auto) | |
| 13145 | 872 | done | 
| 13114 | 873 | |
| 18423 | 874 | lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0" | 
| 875 | by(cases xs) simp_all | |
| 876 | ||
| 18049 | 877 | |
| 878 | lemma list_eq_iff_nth_eq: | |
| 879 | "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))" | |
| 880 | apply(induct xs) | |
| 881 | apply simp apply blast | |
| 882 | apply(case_tac ys) | |
| 883 | apply simp | |
| 884 | apply(simp add:nth_Cons split:nat.split)apply blast | |
| 885 | done | |
| 886 | ||
| 13142 | 887 | lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
 | 
| 15251 | 888 | apply (induct xs, simp, simp) | 
| 13145 | 889 | apply safe | 
| 14208 | 890 | apply (rule_tac x = 0 in exI, simp) | 
| 891 | apply (rule_tac x = "Suc i" in exI, simp) | |
| 892 | apply (case_tac i, simp) | |
| 13145 | 893 | apply (rename_tac j) | 
| 14208 | 894 | apply (rule_tac x = j in exI, simp) | 
| 13145 | 895 | done | 
| 13114 | 896 | |
| 17501 | 897 | lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)" | 
| 898 | by(auto simp:set_conv_nth) | |
| 899 | ||
| 13145 | 900 | lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" | 
| 901 | by (auto simp add: set_conv_nth) | |
| 13114 | 902 | |
| 13142 | 903 | lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" | 
| 13145 | 904 | by (auto simp add: set_conv_nth) | 
| 13114 | 905 | |
| 906 | lemma all_nth_imp_all_set: | |
| 13145 | 907 | "[| !i < length xs. P(xs!i); x : set xs|] ==> P x" | 
| 908 | by (auto simp add: set_conv_nth) | |
| 13114 | 909 | |
| 910 | lemma all_set_conv_all_nth: | |
| 13145 | 911 | "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" | 
| 912 | by (auto simp add: set_conv_nth) | |
| 13114 | 913 | |
| 914 | ||
| 15392 | 915 | subsubsection {* @{text list_update} *}
 | 
| 13114 | 916 | |
| 13142 | 917 | lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" | 
| 13145 | 918 | by (induct xs) (auto split: nat.split) | 
| 13114 | 919 | |
| 920 | lemma nth_list_update: | |
| 13145 | 921 | "!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" | 
| 922 | by (induct xs) (auto simp add: nth_Cons split: nat.split) | |
| 13114 | 923 | |
| 13142 | 924 | lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" | 
| 13145 | 925 | by (simp add: nth_list_update) | 
| 13114 | 926 | |
| 13142 | 927 | lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j" | 
| 13145 | 928 | by (induct xs) (auto simp add: nth_Cons split: nat.split) | 
| 13114 | 929 | |
| 13142 | 930 | lemma list_update_overwrite [simp]: | 
| 13145 | 931 | "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" | 
| 932 | by (induct xs) (auto split: nat.split) | |
| 13114 | 933 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 934 | lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs" | 
| 14208 | 935 | apply (induct xs, simp) | 
| 14187 | 936 | apply(simp split:nat.splits) | 
| 937 | done | |
| 938 | ||
| 17501 | 939 | lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs" | 
| 940 | apply (induct xs) | |
| 941 | apply simp | |
| 942 | apply (case_tac i) | |
| 943 | apply simp_all | |
| 944 | done | |
| 945 | ||
| 13114 | 946 | lemma list_update_same_conv: | 
| 13145 | 947 | "!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" | 
| 948 | by (induct xs) (auto split: nat.split) | |
| 13114 | 949 | |
| 14187 | 950 | lemma list_update_append1: | 
| 951 | "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys" | |
| 14208 | 952 | apply (induct xs, simp) | 
| 14187 | 953 | apply(simp split:nat.split) | 
| 954 | done | |
| 955 | ||
| 15868 | 956 | lemma list_update_append: | 
| 957 | "!!n. (xs @ ys) [n:= x] = | |
| 958 | (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))" | |
| 959 | by (induct xs) (auto split:nat.splits) | |
| 960 | ||
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 961 | lemma list_update_length [simp]: | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 962 | "(xs @ x # ys)[length xs := y] = (xs @ y # ys)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 963 | by (induct xs, auto) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 964 | |
| 13114 | 965 | lemma update_zip: | 
| 13145 | 966 | "!!i xy xs. length xs = length ys ==> | 
| 967 | (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" | |
| 968 | by (induct ys) (auto, case_tac xs, auto split: nat.split) | |
| 13114 | 969 | |
| 970 | lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" | |
| 13145 | 971 | by (induct xs) (auto split: nat.split) | 
| 13114 | 972 | |
| 973 | lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" | |
| 13145 | 974 | by (blast dest!: set_update_subset_insert [THEN subsetD]) | 
| 13114 | 975 | |
| 15868 | 976 | lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])" | 
| 977 | by (induct xs) (auto split:nat.splits) | |
| 978 | ||
| 13114 | 979 | |
| 15392 | 980 | subsubsection {* @{text last} and @{text butlast} *}
 | 
| 13114 | 981 | |
| 13142 | 982 | lemma last_snoc [simp]: "last (xs @ [x]) = x" | 
| 13145 | 983 | by (induct xs) auto | 
| 13114 | 984 | |
| 13142 | 985 | lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" | 
| 13145 | 986 | by (induct xs) auto | 
| 13114 | 987 | |
| 14302 | 988 | lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x" | 
| 989 | by(simp add:last.simps) | |
| 990 | ||
| 991 | lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs" | |
| 992 | by(simp add:last.simps) | |
| 993 | ||
| 994 | lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)" | |
| 995 | by (induct xs) (auto) | |
| 996 | ||
| 997 | lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs" | |
| 998 | by(simp add:last_append) | |
| 999 | ||
| 1000 | lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys" | |
| 1001 | by(simp add:last_append) | |
| 1002 | ||
| 17762 | 1003 | lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs" | 
| 1004 | by(rule rev_exhaust[of xs]) simp_all | |
| 1005 | ||
| 1006 | lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs" | |
| 1007 | by(cases xs) simp_all | |
| 1008 | ||
| 17765 | 1009 | lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as" | 
| 1010 | by (induct as) auto | |
| 17762 | 1011 | |
| 13142 | 1012 | lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" | 
| 13145 | 1013 | by (induct xs rule: rev_induct) auto | 
| 13114 | 1014 | |
| 1015 | lemma butlast_append: | |
| 13145 | 1016 | "!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" | 
| 1017 | by (induct xs) auto | |
| 13114 | 1018 | |
| 13142 | 1019 | lemma append_butlast_last_id [simp]: | 
| 13145 | 1020 | "xs \<noteq> [] ==> butlast xs @ [last xs] = xs" | 
| 1021 | by (induct xs) auto | |
| 13114 | 1022 | |
| 13142 | 1023 | lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" | 
| 13145 | 1024 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1025 | |
| 1026 | lemma in_set_butlast_appendI: | |
| 13145 | 1027 | "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" | 
| 1028 | by (auto dest: in_set_butlastD simp add: butlast_append) | |
| 13114 | 1029 | |
| 17501 | 1030 | lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs" | 
| 1031 | apply (induct xs) | |
| 1032 | apply simp | |
| 1033 | apply (auto split:nat.split) | |
| 1034 | done | |
| 1035 | ||
| 17589 | 1036 | lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)" | 
| 1037 | by(induct xs)(auto simp:neq_Nil_conv) | |
| 1038 | ||
| 15392 | 1039 | subsubsection {* @{text take} and @{text drop} *}
 | 
| 13114 | 1040 | |
| 13142 | 1041 | lemma take_0 [simp]: "take 0 xs = []" | 
| 13145 | 1042 | by (induct xs) auto | 
| 13114 | 1043 | |
| 13142 | 1044 | lemma drop_0 [simp]: "drop 0 xs = xs" | 
| 13145 | 1045 | by (induct xs) auto | 
| 13114 | 1046 | |
| 13142 | 1047 | lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" | 
| 13145 | 1048 | by simp | 
| 13114 | 1049 | |
| 13142 | 1050 | lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" | 
| 13145 | 1051 | by simp | 
| 13114 | 1052 | |
| 13142 | 1053 | declare take_Cons [simp del] and drop_Cons [simp del] | 
| 13114 | 1054 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1055 | lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1056 | by(clarsimp simp add:neq_Nil_conv) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1057 | |
| 14187 | 1058 | lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)" | 
| 1059 | by(cases xs, simp_all) | |
| 1060 | ||
| 1061 | lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)" | |
| 1062 | by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split) | |
| 1063 | ||
| 1064 | lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y" | |
| 14208 | 1065 | apply (induct xs, simp) | 
| 14187 | 1066 | apply(simp add:drop_Cons nth_Cons split:nat.splits) | 
| 1067 | done | |
| 1068 | ||
| 13913 | 1069 | lemma take_Suc_conv_app_nth: | 
| 1070 | "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]" | |
| 14208 | 1071 | apply (induct xs, simp) | 
| 1072 | apply (case_tac i, auto) | |
| 13913 | 1073 | done | 
| 1074 | ||
| 14591 | 1075 | lemma drop_Suc_conv_tl: | 
| 1076 | "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs" | |
| 1077 | apply (induct xs, simp) | |
| 1078 | apply (case_tac i, auto) | |
| 1079 | done | |
| 1080 | ||
| 13142 | 1081 | lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" | 
| 13145 | 1082 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1083 | |
| 13142 | 1084 | lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)" | 
| 13145 | 1085 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1086 | |
| 13142 | 1087 | lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" | 
| 13145 | 1088 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1089 | |
| 13142 | 1090 | lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" | 
| 13145 | 1091 | by (induct n) (auto, case_tac xs, auto) | 
| 13114 | 1092 | |
| 13142 | 1093 | lemma take_append [simp]: | 
| 13145 | 1094 | "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" | 
| 1095 | by (induct n) (auto, case_tac xs, auto) | |
| 13114 | 1096 | |
| 13142 | 1097 | lemma drop_append [simp]: | 
| 13145 | 1098 | "!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" | 
| 1099 | by (induct n) (auto, case_tac xs, auto) | |
| 13114 | 1100 | |
| 13142 | 1101 | lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" | 
| 14208 | 1102 | apply (induct m, auto) | 
| 1103 | apply (case_tac xs, auto) | |
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
15176diff
changeset | 1104 | apply (case_tac n, auto) | 
| 13145 | 1105 | done | 
| 13114 | 1106 | |
| 13142 | 1107 | lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" | 
| 14208 | 1108 | apply (induct m, auto) | 
| 1109 | apply (case_tac xs, auto) | |
| 13145 | 1110 | done | 
| 13114 | 1111 | |
| 1112 | lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" | |
| 14208 | 1113 | apply (induct m, auto) | 
| 1114 | apply (case_tac xs, auto) | |
| 13145 | 1115 | done | 
| 13114 | 1116 | |
| 14802 | 1117 | lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)" | 
| 1118 | apply(induct xs) | |
| 1119 | apply simp | |
| 1120 | apply(simp add: take_Cons drop_Cons split:nat.split) | |
| 1121 | done | |
| 1122 | ||
| 13142 | 1123 | lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" | 
| 14208 | 1124 | apply (induct n, auto) | 
| 1125 | apply (case_tac xs, auto) | |
| 13145 | 1126 | done | 
| 13114 | 1127 | |
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1128 | lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1129 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1130 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1131 | apply(simp add:take_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1132 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1133 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1134 | lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1135 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1136 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1137 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1138 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1139 | |
| 13114 | 1140 | lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" | 
| 14208 | 1141 | apply (induct n, auto) | 
| 1142 | apply (case_tac xs, auto) | |
| 13145 | 1143 | done | 
| 13114 | 1144 | |
| 13142 | 1145 | lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" | 
| 14208 | 1146 | apply (induct n, auto) | 
| 1147 | apply (case_tac xs, auto) | |
| 13145 | 1148 | done | 
| 13114 | 1149 | |
| 1150 | lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)" | |
| 14208 | 1151 | apply (induct xs, auto) | 
| 1152 | apply (case_tac i, auto) | |
| 13145 | 1153 | done | 
| 13114 | 1154 | |
| 1155 | lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)" | |
| 14208 | 1156 | apply (induct xs, auto) | 
| 1157 | apply (case_tac i, auto) | |
| 13145 | 1158 | done | 
| 13114 | 1159 | |
| 13142 | 1160 | lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" | 
| 14208 | 1161 | apply (induct xs, auto) | 
| 1162 | apply (case_tac n, blast) | |
| 1163 | apply (case_tac i, auto) | |
| 13145 | 1164 | done | 
| 13114 | 1165 | |
| 13142 | 1166 | lemma nth_drop [simp]: | 
| 13145 | 1167 | "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" | 
| 14208 | 1168 | apply (induct n, auto) | 
| 1169 | apply (case_tac xs, auto) | |
| 13145 | 1170 | done | 
| 3507 | 1171 | |
| 18423 | 1172 | lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n" | 
| 1173 | by(simp add: hd_conv_nth) | |
| 1174 | ||
| 14025 | 1175 | lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs" | 
| 1176 | by(induct xs)(auto simp:take_Cons split:nat.split) | |
| 1177 | ||
| 1178 | lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs" | |
| 1179 | by(induct xs)(auto simp:drop_Cons split:nat.split) | |
| 1180 | ||
| 14187 | 1181 | lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs" | 
| 1182 | using set_take_subset by fast | |
| 1183 | ||
| 1184 | lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs" | |
| 1185 | using set_drop_subset by fast | |
| 1186 | ||
| 13114 | 1187 | lemma append_eq_conv_conj: | 
| 13145 | 1188 | "!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" | 
| 14208 | 1189 | apply (induct xs, simp, clarsimp) | 
| 1190 | apply (case_tac zs, auto) | |
| 13145 | 1191 | done | 
| 13142 | 1192 | |
| 14050 | 1193 | lemma take_add [rule_format]: | 
| 1194 | "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)" | |
| 1195 | apply (induct xs, auto) | |
| 1196 | apply (case_tac i, simp_all) | |
| 1197 | done | |
| 1198 | ||
| 14300 | 1199 | lemma append_eq_append_conv_if: | 
| 1200 | "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) = | |
| 1201 | (if size xs\<^isub>1 \<le> size ys\<^isub>1 | |
| 1202 | then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2 | |
| 1203 | else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)" | |
| 1204 | apply(induct xs\<^isub>1) | |
| 1205 | apply simp | |
| 1206 | apply(case_tac ys\<^isub>1) | |
| 1207 | apply simp_all | |
| 1208 | done | |
| 1209 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1210 | lemma take_hd_drop: | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1211 | "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1212 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1213 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1214 | apply(simp add:drop_Cons split:nat.split) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1215 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1216 | |
| 17501 | 1217 | lemma id_take_nth_drop: | 
| 1218 | "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" | |
| 1219 | proof - | |
| 1220 | assume si: "i < length xs" | |
| 1221 | hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto | |
| 1222 | moreover | |
| 1223 | from si have "take (Suc i) xs = take i xs @ [xs!i]" | |
| 1224 | apply (rule_tac take_Suc_conv_app_nth) by arith | |
| 1225 | ultimately show ?thesis by auto | |
| 1226 | qed | |
| 1227 | ||
| 1228 | lemma upd_conv_take_nth_drop: | |
| 1229 | "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs" | |
| 1230 | proof - | |
| 1231 | assume i: "i < length xs" | |
| 1232 | have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]" | |
| 1233 | by(rule arg_cong[OF id_take_nth_drop[OF i]]) | |
| 1234 | also have "\<dots> = take i xs @ a # drop (Suc i) xs" | |
| 1235 | using i by (simp add: list_update_append) | |
| 1236 | finally show ?thesis . | |
| 1237 | qed | |
| 1238 | ||
| 13114 | 1239 | |
| 15392 | 1240 | subsubsection {* @{text takeWhile} and @{text dropWhile} *}
 | 
| 13114 | 1241 | |
| 13142 | 1242 | lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" | 
| 13145 | 1243 | by (induct xs) auto | 
| 13114 | 1244 | |
| 13142 | 1245 | lemma takeWhile_append1 [simp]: | 
| 13145 | 1246 | "[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" | 
| 1247 | by (induct xs) auto | |
| 13114 | 1248 | |
| 13142 | 1249 | lemma takeWhile_append2 [simp]: | 
| 13145 | 1250 | "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" | 
| 1251 | by (induct xs) auto | |
| 13114 | 1252 | |
| 13142 | 1253 | lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" | 
| 13145 | 1254 | by (induct xs) auto | 
| 13114 | 1255 | |
| 13142 | 1256 | lemma dropWhile_append1 [simp]: | 
| 13145 | 1257 | "[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" | 
| 1258 | by (induct xs) auto | |
| 13114 | 1259 | |
| 13142 | 1260 | lemma dropWhile_append2 [simp]: | 
| 13145 | 1261 | "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" | 
| 1262 | by (induct xs) auto | |
| 13114 | 1263 | |
| 13142 | 1264 | lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" | 
| 13145 | 1265 | by (induct xs) (auto split: split_if_asm) | 
| 13114 | 1266 | |
| 13913 | 1267 | lemma takeWhile_eq_all_conv[simp]: | 
| 1268 | "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)" | |
| 1269 | by(induct xs, auto) | |
| 1270 | ||
| 1271 | lemma dropWhile_eq_Nil_conv[simp]: | |
| 1272 | "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)" | |
| 1273 | by(induct xs, auto) | |
| 1274 | ||
| 1275 | lemma dropWhile_eq_Cons_conv: | |
| 1276 | "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)" | |
| 1277 | by(induct xs, auto) | |
| 1278 | ||
| 17501 | 1279 | text{* The following two lemmmas could be generalized to an arbitrary
 | 
| 1280 | property. *} | |
| 1281 | ||
| 1282 | lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1283 | takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))" | |
| 1284 | by(induct xs) (auto simp: takeWhile_tail[where l="[]"]) | |
| 1285 | ||
| 1286 | lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow> | |
| 1287 | dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)" | |
| 1288 | apply(induct xs) | |
| 1289 | apply simp | |
| 1290 | apply auto | |
| 1291 | apply(subst dropWhile_append2) | |
| 1292 | apply auto | |
| 1293 | done | |
| 1294 | ||
| 18423 | 1295 | lemma takeWhile_not_last: | 
| 1296 | "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs" | |
| 1297 | apply(induct xs) | |
| 1298 | apply simp | |
| 1299 | apply(case_tac xs) | |
| 1300 | apply(auto) | |
| 1301 | done | |
| 1302 | ||
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1303 | lemma takeWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1304 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1305 | ==> takeWhile P l = takeWhile Q k" | 
| 20503 | 1306 | by (induct k arbitrary: l) (simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1307 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1308 | lemma dropWhile_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1309 | "[| l = k; !!x. x : set l ==> P x = Q x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1310 | ==> dropWhile P l = dropWhile Q k" | 
| 20503 | 1311 | by (induct k arbitrary: l, simp_all) | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1312 | |
| 13114 | 1313 | |
| 15392 | 1314 | subsubsection {* @{text zip} *}
 | 
| 13114 | 1315 | |
| 13142 | 1316 | lemma zip_Nil [simp]: "zip [] ys = []" | 
| 13145 | 1317 | by (induct ys) auto | 
| 13114 | 1318 | |
| 13142 | 1319 | lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" | 
| 13145 | 1320 | by simp | 
| 13114 | 1321 | |
| 13142 | 1322 | declare zip_Cons [simp del] | 
| 13114 | 1323 | |
| 15281 | 1324 | lemma zip_Cons1: | 
| 1325 | "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)" | |
| 1326 | by(auto split:list.split) | |
| 1327 | ||
| 13142 | 1328 | lemma length_zip [simp]: | 
| 13145 | 1329 | "!!xs. length (zip xs ys) = min (length xs) (length ys)" | 
| 14208 | 1330 | apply (induct ys, simp) | 
| 1331 | apply (case_tac xs, auto) | |
| 13145 | 1332 | done | 
| 13114 | 1333 | |
| 1334 | lemma zip_append1: | |
| 13145 | 1335 | "!!xs. zip (xs @ ys) zs = | 
| 1336 | zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" | |
| 14208 | 1337 | apply (induct zs, simp) | 
| 1338 | apply (case_tac xs, simp_all) | |
| 13145 | 1339 | done | 
| 13114 | 1340 | |
| 1341 | lemma zip_append2: | |
| 13145 | 1342 | "!!ys. zip xs (ys @ zs) = | 
| 1343 | zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" | |
| 14208 | 1344 | apply (induct xs, simp) | 
| 1345 | apply (case_tac ys, simp_all) | |
| 13145 | 1346 | done | 
| 13114 | 1347 | |
| 13142 | 1348 | lemma zip_append [simp]: | 
| 1349 | "[| length xs = length us; length ys = length vs |] ==> | |
| 13145 | 1350 | zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" | 
| 1351 | by (simp add: zip_append1) | |
| 13114 | 1352 | |
| 1353 | lemma zip_rev: | |
| 14247 | 1354 | "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" | 
| 1355 | by (induct rule:list_induct2, simp_all) | |
| 13114 | 1356 | |
| 13142 | 1357 | lemma nth_zip [simp]: | 
| 13145 | 1358 | "!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" | 
| 14208 | 1359 | apply (induct ys, simp) | 
| 13145 | 1360 | apply (case_tac xs) | 
| 1361 | apply (simp_all add: nth.simps split: nat.split) | |
| 1362 | done | |
| 13114 | 1363 | |
| 1364 | lemma set_zip: | |
| 13145 | 1365 | "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
 | 
| 1366 | by (simp add: set_conv_nth cong: rev_conj_cong) | |
| 13114 | 1367 | |
| 1368 | lemma zip_update: | |
| 13145 | 1369 | "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" | 
| 1370 | by (rule sym, simp add: update_zip) | |
| 13114 | 1371 | |
| 13142 | 1372 | lemma zip_replicate [simp]: | 
| 13145 | 1373 | "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" | 
| 14208 | 1374 | apply (induct i, auto) | 
| 1375 | apply (case_tac j, auto) | |
| 13145 | 1376 | done | 
| 13114 | 1377 | |
| 19487 | 1378 | lemma take_zip: | 
| 1379 | "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)" | |
| 1380 | apply (induct n) | |
| 1381 | apply simp | |
| 1382 | apply (case_tac xs, simp) | |
| 1383 | apply (case_tac ys, simp_all) | |
| 1384 | done | |
| 1385 | ||
| 1386 | lemma drop_zip: | |
| 1387 | "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)" | |
| 1388 | apply (induct n) | |
| 1389 | apply simp | |
| 1390 | apply (case_tac xs, simp) | |
| 1391 | apply (case_tac ys, simp_all) | |
| 1392 | done | |
| 1393 | ||
| 13142 | 1394 | |
| 15392 | 1395 | subsubsection {* @{text list_all2} *}
 | 
| 13114 | 1396 | |
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1397 | lemma list_all2_lengthD [intro?]: | 
| 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1398 | "list_all2 P xs ys ==> length xs = length ys" | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1399 | by (simp add: list_all2_def) | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1400 | |
| 19787 | 1401 | lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])" | 
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1402 | by (simp add: list_all2_def) | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1403 | |
| 19787 | 1404 | lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])" | 
| 1405 | by (simp add: list_all2_def) | |
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1406 | |
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1407 | lemma list_all2_Cons [iff, code]: | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1408 | "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" | 
| 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 1409 | by (auto simp add: list_all2_def) | 
| 13114 | 1410 | |
| 1411 | lemma list_all2_Cons1: | |
| 13145 | 1412 | "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" | 
| 1413 | by (cases ys) auto | |
| 13114 | 1414 | |
| 1415 | lemma list_all2_Cons2: | |
| 13145 | 1416 | "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" | 
| 1417 | by (cases xs) auto | |
| 13114 | 1418 | |
| 13142 | 1419 | lemma list_all2_rev [iff]: | 
| 13145 | 1420 | "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" | 
| 1421 | by (simp add: list_all2_def zip_rev cong: conj_cong) | |
| 13114 | 1422 | |
| 13863 | 1423 | lemma list_all2_rev1: | 
| 1424 | "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)" | |
| 1425 | by (subst list_all2_rev [symmetric]) simp | |
| 1426 | ||
| 13114 | 1427 | lemma list_all2_append1: | 
| 13145 | 1428 | "list_all2 P (xs @ ys) zs = | 
| 1429 | (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> | |
| 1430 | list_all2 P xs us \<and> list_all2 P ys vs)" | |
| 1431 | apply (simp add: list_all2_def zip_append1) | |
| 1432 | apply (rule iffI) | |
| 1433 | apply (rule_tac x = "take (length xs) zs" in exI) | |
| 1434 | apply (rule_tac x = "drop (length xs) zs" in exI) | |
| 14208 | 1435 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 1436 | apply (simp add: ball_Un) | 
| 1437 | done | |
| 13114 | 1438 | |
| 1439 | lemma list_all2_append2: | |
| 13145 | 1440 | "list_all2 P xs (ys @ zs) = | 
| 1441 | (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> | |
| 1442 | list_all2 P us ys \<and> list_all2 P vs zs)" | |
| 1443 | apply (simp add: list_all2_def zip_append2) | |
| 1444 | apply (rule iffI) | |
| 1445 | apply (rule_tac x = "take (length ys) xs" in exI) | |
| 1446 | apply (rule_tac x = "drop (length ys) xs" in exI) | |
| 14208 | 1447 | apply (force split: nat_diff_split simp add: min_def, clarify) | 
| 13145 | 1448 | apply (simp add: ball_Un) | 
| 1449 | done | |
| 13114 | 1450 | |
| 13863 | 1451 | lemma list_all2_append: | 
| 14247 | 1452 | "length xs = length ys \<Longrightarrow> | 
| 1453 | list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)" | |
| 1454 | by (induct rule:list_induct2, simp_all) | |
| 13863 | 1455 | |
| 1456 | lemma list_all2_appendI [intro?, trans]: | |
| 1457 | "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)" | |
| 1458 | by (simp add: list_all2_append list_all2_lengthD) | |
| 1459 | ||
| 13114 | 1460 | lemma list_all2_conv_all_nth: | 
| 13145 | 1461 | "list_all2 P xs ys = | 
| 1462 | (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" | |
| 1463 | by (force simp add: list_all2_def set_zip) | |
| 13114 | 1464 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1465 | lemma list_all2_trans: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1466 | assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1467 | shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1468 | (is "!!bs cs. PROP ?Q as bs cs") | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1469 | proof (induct as) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1470 | fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1471 | show "!!cs. PROP ?Q (x # xs) bs cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1472 | proof (induct bs) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1473 | fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1474 | show "PROP ?Q (x # xs) (y # ys) cs" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1475 | by (induct cs) (auto intro: tr I1 I2) | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1476 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1477 | qed simp | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1478 | |
| 13863 | 1479 | lemma list_all2_all_nthI [intro?]: | 
| 1480 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b" | |
| 1481 | by (simp add: list_all2_conv_all_nth) | |
| 1482 | ||
| 14395 | 1483 | lemma list_all2I: | 
| 1484 | "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b" | |
| 1485 | by (simp add: list_all2_def) | |
| 1486 | ||
| 14328 | 1487 | lemma list_all2_nthD: | 
| 13863 | 1488 | "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | 
| 1489 | by (simp add: list_all2_conv_all_nth) | |
| 1490 | ||
| 14302 | 1491 | lemma list_all2_nthD2: | 
| 1492 | "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)" | |
| 1493 | by (frule list_all2_lengthD) (auto intro: list_all2_nthD) | |
| 1494 | ||
| 13863 | 1495 | lemma list_all2_map1: | 
| 1496 | "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs" | |
| 1497 | by (simp add: list_all2_conv_all_nth) | |
| 1498 | ||
| 1499 | lemma list_all2_map2: | |
| 1500 | "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs" | |
| 1501 | by (auto simp add: list_all2_conv_all_nth) | |
| 1502 | ||
| 14316 
91b897b9a2dc
added some [intro?] and [trans] for list_all2 lemmas
 kleing parents: 
14302diff
changeset | 1503 | lemma list_all2_refl [intro?]: | 
| 13863 | 1504 | "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs" | 
| 1505 | by (simp add: list_all2_conv_all_nth) | |
| 1506 | ||
| 1507 | lemma list_all2_update_cong: | |
| 1508 | "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 1509 | by (simp add: list_all2_conv_all_nth nth_list_update) | |
| 1510 | ||
| 1511 | lemma list_all2_update_cong2: | |
| 1512 | "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])" | |
| 1513 | by (simp add: list_all2_lengthD list_all2_update_cong) | |
| 1514 | ||
| 14302 | 1515 | lemma list_all2_takeI [simp,intro?]: | 
| 1516 | "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)" | |
| 1517 | apply (induct xs) | |
| 1518 | apply simp | |
| 1519 | apply (clarsimp simp add: list_all2_Cons1) | |
| 1520 | apply (case_tac n) | |
| 1521 | apply auto | |
| 1522 | done | |
| 1523 | ||
| 1524 | lemma list_all2_dropI [simp,intro?]: | |
| 13863 | 1525 | "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)" | 
| 14208 | 1526 | apply (induct as, simp) | 
| 13863 | 1527 | apply (clarsimp simp add: list_all2_Cons1) | 
| 14208 | 1528 | apply (case_tac n, simp, simp) | 
| 13863 | 1529 | done | 
| 1530 | ||
| 14327 | 1531 | lemma list_all2_mono [intro?]: | 
| 13863 | 1532 | "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y" | 
| 14208 | 1533 | apply (induct x, simp) | 
| 1534 | apply (case_tac y, auto) | |
| 13863 | 1535 | done | 
| 1536 | ||
| 13142 | 1537 | |
| 15392 | 1538 | subsubsection {* @{text foldl} and @{text foldr} *}
 | 
| 13142 | 1539 | |
| 1540 | lemma foldl_append [simp]: | |
| 13145 | 1541 | "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" | 
| 1542 | by (induct xs) auto | |
| 13142 | 1543 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1544 | lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1545 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1546 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1547 | lemma foldl_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1548 | "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1549 | ==> foldl f a l = foldl g b k" | 
| 20503 | 1550 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1551 | |
| 19770 
be5c23ebe1eb
HOL/Tools/function_package: Added support for mutual recursive definitions.
 krauss parents: 
19623diff
changeset | 1552 | lemma foldr_cong [fundef_cong, recdef_cong]: | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1553 | "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] | 
| 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1554 | ==> foldr f l a = foldr g k b" | 
| 20503 | 1555 | by (induct k arbitrary: a b l) simp_all | 
| 18336 
1a2e30b37ed3
Added recdef congruence rules for bounded quantifiers and commonly used
 krauss parents: 
18049diff
changeset | 1556 | |
| 14402 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1557 | lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1558 | by (induct xs) auto | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1559 | |
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1560 | lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a" | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1561 | by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"]) | 
| 
4201e1916482
moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
 nipkow parents: 
14395diff
changeset | 1562 | |
| 13142 | 1563 | text {*
 | 
| 13145 | 1564 | Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
 | 
| 1565 | difficult to use because it requires an additional transitivity step. | |
| 13142 | 1566 | *} | 
| 1567 | ||
| 1568 | lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" | |
| 13145 | 1569 | by (induct ns) auto | 
| 13142 | 1570 | |
| 1571 | lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" | |
| 13145 | 1572 | by (force intro: start_le_sum simp add: in_set_conv_decomp) | 
| 13142 | 1573 | |
| 1574 | lemma sum_eq_0_conv [iff]: | |
| 13145 | 1575 | "!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" | 
| 1576 | by (induct ns) auto | |
| 13114 | 1577 | |
| 1578 | ||
| 15392 | 1579 | subsubsection {* @{text upto} *}
 | 
| 13114 | 1580 | |
| 17090 | 1581 | lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])" | 
| 1582 | -- {* simp does not terminate! *}
 | |
| 13145 | 1583 | by (induct j) auto | 
| 13142 | 1584 | |
| 15425 | 1585 | lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []" | 
| 13145 | 1586 | by (subst upt_rec) simp | 
| 13114 | 1587 | |
| 15425 | 1588 | lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)" | 
| 15281 | 1589 | by(induct j)simp_all | 
| 1590 | ||
| 1591 | lemma upt_eq_Cons_conv: | |
| 15425 | 1592 | "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)" | 
| 15281 | 1593 | apply(induct j) | 
| 1594 | apply simp | |
| 1595 | apply(clarsimp simp add: append_eq_Cons_conv) | |
| 1596 | apply arith | |
| 1597 | done | |
| 1598 | ||
| 15425 | 1599 | lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]" | 
| 13145 | 1600 | -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
 | 
| 1601 | by simp | |
| 13114 | 1602 | |
| 15425 | 1603 | lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]" | 
| 13145 | 1604 | apply(rule trans) | 
| 1605 | apply(subst upt_rec) | |
| 14208 | 1606 | prefer 2 apply (rule refl, simp) | 
| 13145 | 1607 | done | 
| 13114 | 1608 | |
| 15425 | 1609 | lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]" | 
| 13145 | 1610 | -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
 | 
| 1611 | by (induct k) auto | |
| 13114 | 1612 | |
| 15425 | 1613 | lemma length_upt [simp]: "length [i..<j] = j - i" | 
| 13145 | 1614 | by (induct j) (auto simp add: Suc_diff_le) | 
| 13114 | 1615 | |
| 15425 | 1616 | lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k" | 
| 13145 | 1617 | apply (induct j) | 
| 1618 | apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) | |
| 1619 | done | |
| 13114 | 1620 | |
| 17906 | 1621 | |
| 1622 | lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i" | |
| 1623 | by(simp add:upt_conv_Cons) | |
| 1624 | ||
| 1625 | lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1" | |
| 1626 | apply(cases j) | |
| 1627 | apply simp | |
| 1628 | by(simp add:upt_Suc_append) | |
| 1629 | ||
| 15425 | 1630 | lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]" | 
| 14208 | 1631 | apply (induct m, simp) | 
| 13145 | 1632 | apply (subst upt_rec) | 
| 1633 | apply (rule sym) | |
| 1634 | apply (subst upt_rec) | |
| 1635 | apply (simp del: upt.simps) | |
| 1636 | done | |
| 3507 | 1637 | |
| 17501 | 1638 | lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]" | 
| 1639 | apply(induct j) | |
| 1640 | apply auto | |
| 1641 | done | |
| 1642 | ||
| 15425 | 1643 | lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]" | 
| 13145 | 1644 | by (induct n) auto | 
| 13114 | 1645 | |
| 15425 | 1646 | lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)" | 
| 13145 | 1647 | apply (induct n m rule: diff_induct) | 
| 1648 | prefer 3 apply (subst map_Suc_upt[symmetric]) | |
| 1649 | apply (auto simp add: less_diff_conv nth_upt) | |
| 1650 | done | |
| 13114 | 1651 | |
| 13883 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1652 | lemma nth_take_lemma: | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1653 | "!!xs ys. k <= length xs ==> k <= length ys ==> | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1654 | (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys" | 
| 
0451e0fb3f22
Re-structured some proofs in order to get rid of rule_format attribute.
 berghofe parents: 
13863diff
changeset | 1655 | apply (atomize, induct k) | 
| 14208 | 1656 | apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify) | 
| 13145 | 1657 | txt {* Both lists must be non-empty *}
 | 
| 14208 | 1658 | apply (case_tac xs, simp) | 
| 1659 | apply (case_tac ys, clarify) | |
| 13145 | 1660 | apply (simp (no_asm_use)) | 
| 1661 | apply clarify | |
| 1662 | txt {* prenexing's needed, not miniscoping *}
 | |
| 1663 | apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) | |
| 1664 | apply blast | |
| 1665 | done | |
| 13114 | 1666 | |
| 1667 | lemma nth_equalityI: | |
| 1668 | "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" | |
| 13145 | 1669 | apply (frule nth_take_lemma [OF le_refl eq_imp_le]) | 
| 1670 | apply (simp_all add: take_all) | |
| 1671 | done | |
| 13142 | 1672 | |
| 13863 | 1673 | (* needs nth_equalityI *) | 
| 1674 | lemma list_all2_antisym: | |
| 1675 | "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> | |
| 1676 | \<Longrightarrow> xs = ys" | |
| 1677 | apply (simp add: list_all2_conv_all_nth) | |
| 14208 | 1678 | apply (rule nth_equalityI, blast, simp) | 
| 13863 | 1679 | done | 
| 1680 | ||
| 13142 | 1681 | lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" | 
| 13145 | 1682 | -- {* The famous take-lemma. *}
 | 
| 1683 | apply (drule_tac x = "max (length xs) (length ys)" in spec) | |
| 1684 | apply (simp add: le_max_iff_disj take_all) | |
| 1685 | done | |
| 13142 | 1686 | |
| 1687 | ||
| 15302 | 1688 | lemma take_Cons': | 
| 1689 | "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" | |
| 1690 | by (cases n) simp_all | |
| 1691 | ||
| 1692 | lemma drop_Cons': | |
| 1693 | "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" | |
| 1694 | by (cases n) simp_all | |
| 1695 | ||
| 1696 | lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" | |
| 1697 | by (cases n) simp_all | |
| 1698 | ||
| 18622 | 1699 | lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard] | 
| 1700 | lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard] | |
| 1701 | lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard] | |
| 1702 | ||
| 1703 | declare take_Cons_number_of [simp] | |
| 1704 | drop_Cons_number_of [simp] | |
| 1705 | nth_Cons_number_of [simp] | |
| 15302 | 1706 | |
| 1707 | ||
| 15392 | 1708 | subsubsection {* @{text "distinct"} and @{text remdups} *}
 | 
| 13142 | 1709 | |
| 1710 | lemma distinct_append [simp]: | |
| 13145 | 1711 | "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
 | 
| 1712 | by (induct xs) auto | |
| 13142 | 1713 | |
| 15305 | 1714 | lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs" | 
| 1715 | by(induct xs) auto | |
| 1716 | ||
| 13142 | 1717 | lemma set_remdups [simp]: "set (remdups xs) = set xs" | 
| 13145 | 1718 | by (induct xs) (auto simp add: insert_absorb) | 
| 13142 | 1719 | |
| 1720 | lemma distinct_remdups [iff]: "distinct (remdups xs)" | |
| 13145 | 1721 | by (induct xs) auto | 
| 13142 | 1722 | |
| 15072 | 1723 | lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])" | 
| 15251 | 1724 | by (induct x, auto) | 
| 15072 | 1725 | |
| 1726 | lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])" | |
| 15251 | 1727 | by (induct x, auto) | 
| 15072 | 1728 | |
| 15245 | 1729 | lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs" | 
| 1730 | by (induct xs) auto | |
| 1731 | ||
| 1732 | lemma length_remdups_eq[iff]: | |
| 1733 | "(length (remdups xs) = length xs) = (remdups xs = xs)" | |
| 1734 | apply(induct xs) | |
| 1735 | apply auto | |
| 1736 | apply(subgoal_tac "length (remdups xs) <= length xs") | |
| 1737 | apply arith | |
| 1738 | apply(rule length_remdups_leq) | |
| 1739 | done | |
| 1740 | ||
| 18490 | 1741 | |
| 1742 | lemma distinct_map: | |
| 1743 | "distinct(map f xs) = (distinct xs & inj_on f (set xs))" | |
| 1744 | by (induct xs) auto | |
| 1745 | ||
| 1746 | ||
| 13142 | 1747 | lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" | 
| 13145 | 1748 | by (induct xs) auto | 
| 13114 | 1749 | |
| 17501 | 1750 | lemma distinct_upt[simp]: "distinct[i..<j]" | 
| 1751 | by (induct j) auto | |
| 1752 | ||
| 1753 | lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)" | |
| 1754 | apply(induct xs) | |
| 1755 | apply simp | |
| 1756 | apply (case_tac i) | |
| 1757 | apply simp_all | |
| 1758 | apply(blast dest:in_set_takeD) | |
| 1759 | done | |
| 1760 | ||
| 1761 | lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)" | |
| 1762 | apply(induct xs) | |
| 1763 | apply simp | |
| 1764 | apply (case_tac i) | |
| 1765 | apply simp_all | |
| 1766 | done | |
| 1767 | ||
| 1768 | lemma distinct_list_update: | |
| 1769 | assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
 | |
| 1770 | shows "distinct (xs[i:=a])" | |
| 1771 | proof (cases "i < length xs") | |
| 1772 | case True | |
| 1773 |   with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
 | |
| 1774 | apply (drule_tac id_take_nth_drop) by simp | |
| 1775 | with d True show ?thesis | |
| 1776 | apply (simp add: upd_conv_take_nth_drop) | |
| 1777 | apply (drule subst [OF id_take_nth_drop]) apply assumption | |
| 1778 | apply simp apply (cases "a = xs!i") apply simp by blast | |
| 1779 | next | |
| 1780 | case False with d show ?thesis by auto | |
| 1781 | qed | |
| 1782 | ||
| 1783 | ||
| 1784 | text {* It is best to avoid this indexed version of distinct, but
 | |
| 1785 | sometimes it is useful. *} | |
| 1786 | ||
| 13142 | 1787 | lemma distinct_conv_nth: | 
| 17501 | 1788 | "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)" | 
| 15251 | 1789 | apply (induct xs, simp, simp) | 
| 14208 | 1790 | apply (rule iffI, clarsimp) | 
| 13145 | 1791 | apply (case_tac i) | 
| 14208 | 1792 | apply (case_tac j, simp) | 
| 13145 | 1793 | apply (simp add: set_conv_nth) | 
| 1794 | apply (case_tac j) | |
| 14208 | 1795 | apply (clarsimp simp add: set_conv_nth, simp) | 
| 13145 | 1796 | apply (rule conjI) | 
| 1797 | apply (clarsimp simp add: set_conv_nth) | |
| 17501 | 1798 | apply (erule_tac x = 0 in allE, simp) | 
| 14208 | 1799 | apply (erule_tac x = "Suc i" in allE, simp, clarsimp) | 
| 17501 | 1800 | apply (erule_tac x = "Suc i" in allE, simp) | 
| 14208 | 1801 | apply (erule_tac x = "Suc j" in allE, simp) | 
| 13145 | 1802 | done | 
| 13114 | 1803 | |
| 18490 | 1804 | lemma nth_eq_iff_index_eq: | 
| 1805 | "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)" | |
| 1806 | by(auto simp: distinct_conv_nth) | |
| 1807 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1808 | lemma distinct_card: "distinct xs ==> card (set xs) = size xs" | 
| 14388 | 1809 | by (induct xs) auto | 
| 1810 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1811 | lemma card_distinct: "card (set xs) = size xs ==> distinct xs" | 
| 14388 | 1812 | proof (induct xs) | 
| 1813 | case Nil thus ?case by simp | |
| 1814 | next | |
| 1815 | case (Cons x xs) | |
| 1816 | show ?case | |
| 1817 | proof (cases "x \<in> set xs") | |
| 1818 | case False with Cons show ?thesis by simp | |
| 1819 | next | |
| 1820 | case True with Cons.prems | |
| 1821 | have "card (set xs) = Suc (length xs)" | |
| 1822 | by (simp add: card_insert_if split: split_if_asm) | |
| 1823 | moreover have "card (set xs) \<le> length xs" by (rule card_length) | |
| 1824 | ultimately have False by simp | |
| 1825 | thus ?thesis .. | |
| 1826 | qed | |
| 1827 | qed | |
| 1828 | ||
| 18490 | 1829 | |
| 1830 | lemma length_remdups_concat: | |
| 1831 | "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)" | |
| 1832 | by(simp add: distinct_card[symmetric]) | |
| 17906 | 1833 | |
| 1834 | ||
| 15392 | 1835 | subsubsection {* @{text remove1} *}
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1836 | |
| 18049 | 1837 | lemma remove1_append: | 
| 1838 | "remove1 x (xs @ ys) = | |
| 1839 | (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)" | |
| 1840 | by (induct xs) auto | |
| 1841 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1842 | lemma set_remove1_subset: "set(remove1 x xs) <= set xs" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1843 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1844 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1845 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1846 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1847 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1848 | |
| 17724 | 1849 | lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
 | 
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1850 | apply(induct xs) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1851 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1852 | apply simp | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1853 | apply blast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1854 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1855 | |
| 18049 | 1856 | lemma remove1_filter_not[simp]: | 
| 1857 | "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs" | |
| 1858 | by(induct xs) auto | |
| 1859 | ||
| 15110 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1860 | lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1861 | apply(insert set_remove1_subset) | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1862 | apply fast | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1863 | done | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1864 | |
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1865 | lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)" | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1866 | by (induct xs) simp_all | 
| 
78b5636eabc7
Added a number of new thms and the new function remove1
 nipkow parents: 
15072diff
changeset | 1867 | |
| 13114 | 1868 | |
| 15392 | 1869 | subsubsection {* @{text replicate} *}
 | 
| 13114 | 1870 | |
| 13142 | 1871 | lemma length_replicate [simp]: "length (replicate n x) = n" | 
| 13145 | 1872 | by (induct n) auto | 
| 13124 | 1873 | |
| 13142 | 1874 | lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" | 
| 13145 | 1875 | by (induct n) auto | 
| 13114 | 1876 | |
| 1877 | lemma replicate_app_Cons_same: | |
| 13145 | 1878 | "(replicate n x) @ (x # xs) = x # replicate n x @ xs" | 
| 1879 | by (induct n) auto | |
| 13114 | 1880 | |
| 13142 | 1881 | lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" | 
| 14208 | 1882 | apply (induct n, simp) | 
| 13145 | 1883 | apply (simp add: replicate_app_Cons_same) | 
| 1884 | done | |
| 13114 | 1885 | |
| 13142 | 1886 | lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" | 
| 13145 | 1887 | by (induct n) auto | 
| 13114 | 1888 | |
| 16397 | 1889 | text{* Courtesy of Matthias Daum: *}
 | 
| 1890 | lemma append_replicate_commute: | |
| 1891 | "replicate n x @ replicate k x = replicate k x @ replicate n x" | |
| 1892 | apply (simp add: replicate_add [THEN sym]) | |
| 1893 | apply (simp add: add_commute) | |
| 1894 | done | |
| 1895 | ||
| 13142 | 1896 | lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" | 
| 13145 | 1897 | by (induct n) auto | 
| 13114 | 1898 | |
| 13142 | 1899 | lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" | 
| 13145 | 1900 | by (induct n) auto | 
| 13114 | 1901 | |
| 13142 | 1902 | lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" | 
| 13145 | 1903 | by (atomize (full), induct n) auto | 
| 13114 | 1904 | |
| 13142 | 1905 | lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" | 
| 14208 | 1906 | apply (induct n, simp) | 
| 13145 | 1907 | apply (simp add: nth_Cons split: nat.split) | 
| 1908 | done | |
| 13114 | 1909 | |
| 16397 | 1910 | text{* Courtesy of Matthias Daum (2 lemmas): *}
 | 
| 1911 | lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x" | |
| 1912 | apply (case_tac "k \<le> i") | |
| 1913 | apply (simp add: min_def) | |
| 1914 | apply (drule not_leE) | |
| 1915 | apply (simp add: min_def) | |
| 1916 | apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x") | |
| 1917 | apply simp | |
| 1918 | apply (simp add: replicate_add [symmetric]) | |
| 1919 | done | |
| 1920 | ||
| 1921 | lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x" | |
| 1922 | apply (induct k) | |
| 1923 | apply simp | |
| 1924 | apply clarsimp | |
| 1925 | apply (case_tac i) | |
| 1926 | apply simp | |
| 1927 | apply clarsimp | |
| 1928 | done | |
| 1929 | ||
| 1930 | ||
| 13142 | 1931 | lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 | 
| 13145 | 1932 | by (induct n) auto | 
| 13114 | 1933 | |
| 13142 | 1934 | lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
 | 
| 13145 | 1935 | by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) | 
| 13114 | 1936 | |
| 13142 | 1937 | lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
 | 
| 13145 | 1938 | by auto | 
| 13114 | 1939 | |
| 13142 | 1940 | lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" | 
| 13145 | 1941 | by (simp add: set_replicate_conv_if split: split_if_asm) | 
| 13114 | 1942 | |
| 1943 | ||
| 15392 | 1944 | subsubsection{*@{text rotate1} and @{text rotate}*}
 | 
| 15302 | 1945 | |
| 1946 | lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]" | |
| 1947 | by(simp add:rotate1_def) | |
| 1948 | ||
| 1949 | lemma rotate0[simp]: "rotate 0 = id" | |
| 1950 | by(simp add:rotate_def) | |
| 1951 | ||
| 1952 | lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)" | |
| 1953 | by(simp add:rotate_def) | |
| 1954 | ||
| 1955 | lemma rotate_add: | |
| 1956 | "rotate (m+n) = rotate m o rotate n" | |
| 1957 | by(simp add:rotate_def funpow_add) | |
| 1958 | ||
| 1959 | lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs" | |
| 1960 | by(simp add:rotate_add) | |
| 1961 | ||
| 18049 | 1962 | lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)" | 
| 1963 | by(simp add:rotate_def funpow_swap1) | |
| 1964 | ||
| 15302 | 1965 | lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs" | 
| 1966 | by(cases xs) simp_all | |
| 1967 | ||
| 1968 | lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs" | |
| 1969 | apply(induct n) | |
| 1970 | apply simp | |
| 1971 | apply (simp add:rotate_def) | |
| 13145 | 1972 | done | 
| 13114 | 1973 | |
| 15302 | 1974 | lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]" | 
| 1975 | by(simp add:rotate1_def split:list.split) | |
| 1976 | ||
| 1977 | lemma rotate_drop_take: | |
| 1978 | "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs" | |
| 1979 | apply(induct n) | |
| 1980 | apply simp | |
| 1981 | apply(simp add:rotate_def) | |
| 1982 | apply(cases "xs = []") | |
| 1983 | apply (simp) | |
| 1984 | apply(case_tac "n mod length xs = 0") | |
| 1985 | apply(simp add:mod_Suc) | |
| 1986 | apply(simp add: rotate1_hd_tl drop_Suc take_Suc) | |
| 1987 | apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric] | |
| 1988 | take_hd_drop linorder_not_le) | |
| 13145 | 1989 | done | 
| 13114 | 1990 | |
| 15302 | 1991 | lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs" | 
| 1992 | by(simp add:rotate_drop_take) | |
| 1993 | ||
| 1994 | lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs" | |
| 1995 | by(simp add:rotate_drop_take) | |
| 1996 | ||
| 1997 | lemma length_rotate1[simp]: "length(rotate1 xs) = length xs" | |
| 1998 | by(simp add:rotate1_def split:list.split) | |
| 1999 | ||
| 2000 | lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs" | |
| 2001 | by (induct n) (simp_all add:rotate_def) | |
| 2002 | ||
| 2003 | lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs" | |
| 2004 | by(simp add:rotate1_def split:list.split) blast | |
| 2005 | ||
| 2006 | lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs" | |
| 2007 | by (induct n) (simp_all add:rotate_def) | |
| 2008 | ||
| 2009 | lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)" | |
| 2010 | by(simp add:rotate_drop_take take_map drop_map) | |
| 2011 | ||
| 2012 | lemma set_rotate1[simp]: "set(rotate1 xs) = set xs" | |
| 2013 | by(simp add:rotate1_def split:list.split) | |
| 2014 | ||
| 2015 | lemma set_rotate[simp]: "set(rotate n xs) = set xs" | |
| 2016 | by (induct n) (simp_all add:rotate_def) | |
| 2017 | ||
| 2018 | lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])" | |
| 2019 | by(simp add:rotate1_def split:list.split) | |
| 2020 | ||
| 2021 | lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])" | |
| 2022 | by (induct n) (simp_all add:rotate_def) | |
| 13114 | 2023 | |
| 15439 | 2024 | lemma rotate_rev: | 
| 2025 | "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)" | |
| 2026 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 2027 | apply(cases "length xs = 0") | |
| 2028 | apply simp | |
| 2029 | apply(cases "n mod length xs = 0") | |
| 2030 | apply simp | |
| 2031 | apply(simp add:rotate_drop_take rev_drop rev_take) | |
| 2032 | done | |
| 2033 | ||
| 18423 | 2034 | lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)" | 
| 2035 | apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth) | |
| 2036 | apply(subgoal_tac "length xs \<noteq> 0") | |
| 2037 | prefer 2 apply simp | |
| 2038 | using mod_less_divisor[of "length xs" n] by arith | |
| 2039 | ||
| 13114 | 2040 | |
| 15392 | 2041 | subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
 | 
| 13114 | 2042 | |
| 13142 | 2043 | lemma sublist_empty [simp]: "sublist xs {} = []"
 | 
| 13145 | 2044 | by (auto simp add: sublist_def) | 
| 13114 | 2045 | |
| 13142 | 2046 | lemma sublist_nil [simp]: "sublist [] A = []" | 
| 13145 | 2047 | by (auto simp add: sublist_def) | 
| 13114 | 2048 | |
| 15281 | 2049 | lemma length_sublist: | 
| 2050 |   "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
 | |
| 2051 | by(simp add: sublist_def length_filter_conv_card cong:conj_cong) | |
| 2052 | ||
| 2053 | lemma sublist_shift_lemma_Suc: | |
| 2054 | "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) = | |
| 2055 | map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))" | |
| 2056 | apply(induct xs) | |
| 2057 | apply simp | |
| 2058 | apply (case_tac "is") | |
| 2059 | apply simp | |
| 2060 | apply simp | |
| 2061 | done | |
| 2062 | ||
| 13114 | 2063 | lemma sublist_shift_lemma: | 
| 15425 | 2064 | "map fst [p:zip xs [i..<i + length xs] . snd p : A] = | 
| 2065 | map fst [p:zip xs [0..<length xs] . snd p + i : A]" | |
| 13145 | 2066 | by (induct xs rule: rev_induct) (simp_all add: add_commute) | 
| 13114 | 2067 | |
| 2068 | lemma sublist_append: | |
| 15168 | 2069 |      "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
 | 
| 13145 | 2070 | apply (unfold sublist_def) | 
| 14208 | 2071 | apply (induct l' rule: rev_induct, simp) | 
| 13145 | 2072 | apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) | 
| 2073 | apply (simp add: add_commute) | |
| 2074 | done | |
| 13114 | 2075 | |
| 2076 | lemma sublist_Cons: | |
| 13145 | 2077 | "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
 | 
| 2078 | apply (induct l rule: rev_induct) | |
| 2079 | apply (simp add: sublist_def) | |
| 2080 | apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) | |
| 2081 | done | |
| 13114 | 2082 | |
| 15281 | 2083 | lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
 | 
| 2084 | apply(induct xs) | |
| 2085 | apply simp | |
| 2086 | apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE) | |
| 2087 | apply(erule lessE) | |
| 2088 | apply auto | |
| 2089 | apply(erule lessE) | |
| 2090 | apply auto | |
| 2091 | done | |
| 2092 | ||
| 2093 | lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs" | |
| 2094 | by(auto simp add:set_sublist) | |
| 2095 | ||
| 2096 | lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)" | |
| 2097 | by(auto simp add:set_sublist) | |
| 2098 | ||
| 2099 | lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs" | |
| 2100 | by(auto simp add:set_sublist) | |
| 2101 | ||
| 13142 | 2102 | lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" | 
| 13145 | 2103 | by (simp add: sublist_Cons) | 
| 13114 | 2104 | |
| 15281 | 2105 | |
| 2106 | lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)" | |
| 2107 | apply(induct xs) | |
| 2108 | apply simp | |
| 2109 | apply(auto simp add:sublist_Cons) | |
| 2110 | done | |
| 2111 | ||
| 2112 | ||
| 15045 | 2113 | lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
 | 
| 14208 | 2114 | apply (induct l rule: rev_induct, simp) | 
| 13145 | 2115 | apply (simp split: nat_diff_split add: sublist_append) | 
| 2116 | done | |
| 13114 | 2117 | |
| 17501 | 2118 | lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow> | 
| 2119 | filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s" | |
| 2120 | proof (induct xs) | |
| 2121 | case Nil thus ?case by simp | |
| 2122 | next | |
| 2123 | case (Cons a xs) | |
| 2124 | moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto | |
| 2125 | ultimately show ?case by(simp add: sublist_Cons cong:filter_cong) | |
| 2126 | qed | |
| 2127 | ||
| 13114 | 2128 | |
| 19390 | 2129 | subsubsection {* @{const splice} *}
 | 
| 2130 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2131 | lemma splice_Nil2 [simp, code]: | 
| 19390 | 2132 | "splice xs [] = xs" | 
| 2133 | by (cases xs) simp_all | |
| 2134 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2135 | lemma splice_Cons_Cons [simp, code]: | 
| 19390 | 2136 | "splice (x#xs) (y#ys) = x # y # splice xs ys" | 
| 2137 | by simp | |
| 2138 | ||
| 19607 
07eeb832f28d
introduced characters for code generator; some improved code lemmas for some list functions
 haftmann parents: 
19585diff
changeset | 2139 | declare splice.simps(2) [simp del, code del] | 
| 19390 | 2140 | |
| 15392 | 2141 | subsubsection{*Sets of Lists*}
 | 
| 2142 | ||
| 2143 | subsubsection {* @{text lists}: the list-forming operator over sets *}
 | |
| 15302 | 2144 | |
| 2145 | consts lists :: "'a set => 'a list set" | |
| 2146 | inductive "lists A" | |
| 2147 | intros | |
| 2148 | Nil [intro!]: "[]: lists A" | |
| 2149 | Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A" | |
| 2150 | ||
| 2151 | inductive_cases listsE [elim!]: "x#l : lists A" | |
| 2152 | ||
| 2153 | lemma lists_mono [mono]: "A \<subseteq> B ==> lists A \<subseteq> lists B" | |
| 2154 | by (unfold lists.defs) (blast intro!: lfp_mono) | |
| 2155 | ||
| 2156 | lemma lists_IntI: | |
| 2157 | assumes l: "l: lists A" shows "l: lists B ==> l: lists (A Int B)" using l | |
| 2158 | by induct blast+ | |
| 2159 | ||
| 2160 | lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B" | |
| 2161 | proof (rule mono_Int [THEN equalityI]) | |
| 2162 | show "mono lists" by (simp add: mono_def lists_mono) | |
| 2163 | show "lists A \<inter> lists B \<subseteq> lists (A \<inter> B)" by (blast intro: lists_IntI) | |
| 14388 | 2164 | qed | 
| 2165 | ||
| 15302 | 2166 | lemma append_in_lists_conv [iff]: | 
| 2167 | "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)" | |
| 2168 | by (induct xs) auto | |
| 2169 | ||
| 2170 | lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)" | |
| 2171 | -- {* eliminate @{text lists} in favour of @{text set} *}
 | |
| 2172 | by (induct xs) auto | |
| 2173 | ||
| 2174 | lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A" | |
| 2175 | by (rule in_lists_conv_set [THEN iffD1]) | |
| 2176 | ||
| 2177 | lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A" | |
| 2178 | by (rule in_lists_conv_set [THEN iffD2]) | |
| 2179 | ||
| 2180 | lemma lists_UNIV [simp]: "lists UNIV = UNIV" | |
| 2181 | by auto | |
| 2182 | ||
| 17086 | 2183 | |
| 2184 | ||
| 2185 | subsubsection{* Inductive definition for membership *}
 | |
| 2186 | ||
| 2187 | consts ListMem :: "('a \<times> 'a list)set"
 | |
| 2188 | inductive ListMem | |
| 2189 | intros | |
| 2190 | elem: "(x,x#xs) \<in> ListMem" | |
| 2191 | insert: "(x,xs) \<in> ListMem \<Longrightarrow> (x,y#xs) \<in> ListMem" | |
| 2192 | ||
| 2193 | lemma ListMem_iff: "((x,xs) \<in> ListMem) = (x \<in> set xs)" | |
| 2194 | apply (rule iffI) | |
| 2195 | apply (induct set: ListMem) | |
| 2196 | apply auto | |
| 2197 | apply (induct xs) | |
| 2198 | apply (auto intro: ListMem.intros) | |
| 2199 | done | |
| 2200 | ||
| 2201 | ||
| 2202 | ||
| 15392 | 2203 | subsubsection{*Lists as Cartesian products*}
 | 
| 15302 | 2204 | |
| 2205 | text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
 | |
| 2206 | @{term A} and tail drawn from @{term Xs}.*}
 | |
| 2207 | ||
| 2208 | constdefs | |
| 2209 | set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set" | |
| 2210 |   "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
 | |
| 2211 | ||
| 17724 | 2212 | lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
 | 
| 15302 | 2213 | by (auto simp add: set_Cons_def) | 
| 2214 | ||
| 2215 | text{*Yields the set of lists, all of the same length as the argument and
 | |
| 2216 | with elements drawn from the corresponding element of the argument.*} | |
| 2217 | ||
| 2218 | consts listset :: "'a set list \<Rightarrow> 'a list set" | |
| 2219 | primrec | |
| 2220 |    "listset []    = {[]}"
 | |
| 2221 | "listset(A#As) = set_Cons A (listset As)" | |
| 2222 | ||
| 2223 | ||
| 15656 | 2224 | subsection{*Relations on Lists*}
 | 
| 2225 | ||
| 2226 | subsubsection {* Length Lexicographic Ordering *}
 | |
| 2227 | ||
| 2228 | text{*These orderings preserve well-foundedness: shorter lists 
 | |
| 2229 | precede longer lists. These ordering are not used in dictionaries.*} | |
| 2230 | ||
| 2231 | consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
 | |
| 2232 |         --{*The lexicographic ordering for lists of the specified length*}
 | |
| 15302 | 2233 | primrec | 
| 15656 | 2234 |   "lexn r 0 = {}"
 | 
| 2235 | "lexn r (Suc n) = | |
| 2236 | (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int | |
| 2237 |     {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
 | |
| 15302 | 2238 | |
| 2239 | constdefs | |
| 15656 | 2240 |   lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
 | 
| 2241 | "lex r == \<Union>n. lexn r n" | |
| 2242 |         --{*Holds only between lists of the same length*}
 | |
| 2243 | ||
| 15693 | 2244 |   lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
 | 
| 2245 | "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" | |
| 15656 | 2246 |         --{*Compares lists by their length and then lexicographically*}
 | 
| 15302 | 2247 | |
| 2248 | ||
| 2249 | lemma wf_lexn: "wf r ==> wf (lexn r n)" | |
| 2250 | apply (induct n, simp, simp) | |
| 2251 | apply(rule wf_subset) | |
| 2252 | prefer 2 apply (rule Int_lower1) | |
| 2253 | apply(rule wf_prod_fun_image) | |
| 2254 | prefer 2 apply (rule inj_onI, auto) | |
| 2255 | done | |
| 2256 | ||
| 2257 | lemma lexn_length: | |
| 2258 | "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" | |
| 2259 | by (induct n) auto | |
| 2260 | ||
| 2261 | lemma wf_lex [intro!]: "wf r ==> wf (lex r)" | |
| 2262 | apply (unfold lex_def) | |
| 2263 | apply (rule wf_UN) | |
| 2264 | apply (blast intro: wf_lexn, clarify) | |
| 2265 | apply (rename_tac m n) | |
| 2266 | apply (subgoal_tac "m \<noteq> n") | |
| 2267 | prefer 2 apply blast | |
| 2268 | apply (blast dest: lexn_length not_sym) | |
| 2269 | done | |
| 2270 | ||
| 2271 | lemma lexn_conv: | |
| 15656 | 2272 | "lexn r n = | 
| 2273 |     {(xs,ys). length xs = n \<and> length ys = n \<and>
 | |
| 2274 | (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" | |
| 18423 | 2275 | apply (induct n, simp) | 
| 15302 | 2276 | apply (simp add: image_Collect lex_prod_def, safe, blast) | 
| 2277 | apply (rule_tac x = "ab # xys" in exI, simp) | |
| 2278 | apply (case_tac xys, simp_all, blast) | |
| 2279 | done | |
| 2280 | ||
| 2281 | lemma lex_conv: | |
| 15656 | 2282 | "lex r = | 
| 2283 |     {(xs,ys). length xs = length ys \<and>
 | |
| 2284 | (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" | |
| 15302 | 2285 | by (force simp add: lex_def lexn_conv) | 
| 2286 | ||
| 15693 | 2287 | lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)" | 
| 2288 | by (unfold lenlex_def) blast | |
| 2289 | ||
| 2290 | lemma lenlex_conv: | |
| 2291 |     "lenlex r = {(xs,ys). length xs < length ys |
 | |
| 15656 | 2292 | length xs = length ys \<and> (xs, ys) : lex r}" | 
| 19623 | 2293 | by (simp add: lenlex_def diag_def lex_prod_def inv_image_def) | 
| 15302 | 2294 | |
| 2295 | lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" | |
| 2296 | by (simp add: lex_conv) | |
| 2297 | ||
| 2298 | lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" | |
| 2299 | by (simp add:lex_conv) | |
| 2300 | ||
| 18447 | 2301 | lemma Cons_in_lex [simp]: | 
| 15656 | 2302 | "((x # xs, y # ys) : lex r) = | 
| 2303 | ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" | |
| 15302 | 2304 | apply (simp add: lex_conv) | 
| 2305 | apply (rule iffI) | |
| 2306 | prefer 2 apply (blast intro: Cons_eq_appendI, clarify) | |
| 2307 | apply (case_tac xys, simp, simp) | |
| 2308 | apply blast | |
| 2309 | done | |
| 2310 | ||
| 2311 | ||
| 15656 | 2312 | subsubsection {* Lexicographic Ordering *}
 | 
| 2313 | ||
| 2314 | text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
 | |
| 2315 |     This ordering does \emph{not} preserve well-foundedness.
 | |
| 17090 | 2316 | Author: N. Voelker, March 2005. *} | 
| 15656 | 2317 | |
| 2318 | constdefs | |
| 2319 |   lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
 | |
| 2320 |   "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
 | |
| 2321 | (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}" | |
| 2322 | ||
| 2323 | lemma lexord_Nil_left[simp]: "([],y) \<in> lexord r = (\<exists> a x. y = a # x)" | |
| 2324 | by (unfold lexord_def, induct_tac y, auto) | |
| 2325 | ||
| 2326 | lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r" | |
| 2327 | by (unfold lexord_def, induct_tac x, auto) | |
| 2328 | ||
| 2329 | lemma lexord_cons_cons[simp]: | |
| 2330 | "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))" | |
| 2331 | apply (unfold lexord_def, safe, simp_all) | |
| 2332 | apply (case_tac u, simp, simp) | |
| 2333 | apply (case_tac u, simp, clarsimp, blast, blast, clarsimp) | |
| 2334 | apply (erule_tac x="b # u" in allE) | |
| 2335 | by force | |
| 2336 | ||
| 2337 | lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons | |
| 2338 | ||
| 2339 | lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r" | |
| 2340 | by (induct_tac x, auto) | |
| 2341 | ||
| 2342 | lemma lexord_append_left_rightI: | |
| 2343 | "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r" | |
| 2344 | by (induct_tac u, auto) | |
| 2345 | ||
| 2346 | lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r" | |
| 2347 | by (induct x, auto) | |
| 2348 | ||
| 2349 | lemma lexord_append_leftD: | |
| 2350 | "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r" | |
| 2351 | by (erule rev_mp, induct_tac x, auto) | |
| 2352 | ||
| 2353 | lemma lexord_take_index_conv: | |
| 2354 | "((x,y) : lexord r) = | |
| 2355 | ((length x < length y \<and> take (length x) y = x) \<or> | |
| 2356 | (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))" | |
| 2357 | apply (unfold lexord_def Let_def, clarsimp) | |
| 2358 | apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2) | |
| 2359 | apply auto | |
| 2360 | apply (rule_tac x="hd (drop (length x) y)" in exI) | |
| 2361 | apply (rule_tac x="tl (drop (length x) y)" in exI) | |
| 2362 | apply (erule subst, simp add: min_def) | |
| 2363 | apply (rule_tac x ="length u" in exI, simp) | |
| 2364 | apply (rule_tac x ="take i x" in exI) | |
| 2365 | apply (rule_tac x ="x ! i" in exI) | |
| 2366 | apply (rule_tac x ="y ! i" in exI, safe) | |
| 2367 | apply (rule_tac x="drop (Suc i) x" in exI) | |
| 2368 | apply (drule sym, simp add: drop_Suc_conv_tl) | |
| 2369 | apply (rule_tac x="drop (Suc i) y" in exI) | |
| 2370 | by (simp add: drop_Suc_conv_tl) | |
| 2371 | ||
| 2372 | -- {* lexord is extension of partial ordering List.lex *} 
 | |
| 2373 | lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)" | |
| 2374 | apply (rule_tac x = y in spec) | |
| 2375 | apply (induct_tac x, clarsimp) | |
| 2376 | by (clarify, case_tac x, simp, force) | |
| 2377 | ||
| 2378 | lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r" | |
| 2379 | by (induct y, auto) | |
| 2380 | ||
| 2381 | lemma lexord_trans: | |
| 2382 | "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r" | |
| 2383 | apply (erule rev_mp)+ | |
| 2384 | apply (rule_tac x = x in spec) | |
| 2385 | apply (rule_tac x = z in spec) | |
| 2386 | apply ( induct_tac y, simp, clarify) | |
| 2387 | apply (case_tac xa, erule ssubst) | |
| 2388 |   apply (erule allE, erule allE) -- {* avoid simp recursion *} 
 | |
| 2389 | apply (case_tac x, simp, simp) | |
| 2390 | apply (case_tac x, erule allE, erule allE, simp) | |
| 2391 | apply (erule_tac x = listb in allE) | |
| 2392 | apply (erule_tac x = lista in allE, simp) | |
| 2393 | apply (unfold trans_def) | |
| 2394 | by blast | |
| 2395 | ||
| 2396 | lemma lexord_transI: "trans r \<Longrightarrow> trans (lexord r)" | |
| 2397 | by (rule transI, drule lexord_trans, blast) | |
| 2398 | ||
| 2399 | lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r" | |
| 2400 | apply (rule_tac x = y in spec) | |
| 2401 | apply (induct_tac x, rule allI) | |
| 2402 | apply (case_tac x, simp, simp) | |
| 2403 | apply (rule allI, case_tac x, simp, simp) | |
| 2404 | by blast | |
| 2405 | ||
| 2406 | ||
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2407 | subsection {* Lexicographic combination of measure functions *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2408 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2409 | text {* These are useful for termination proofs *}
 | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2410 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2411 | definition | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2412 | "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2413 | |
| 21106 
51599a81b308
Added "recdef_wf" and "simp" attribute to "wf_measures"
 krauss parents: 
21103diff
changeset | 2414 | lemma wf_measures[recdef_wf, simp]: "wf (measures fs)" | 
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2415 | unfolding measures_def | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2416 | by blast | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2417 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2418 | lemma in_measures[simp]: | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2419 | "(x, y) \<in> measures [] = False" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2420 | "(x, y) \<in> measures (f # fs) | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2421 | = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2422 | unfolding measures_def | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2423 | by auto | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2424 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2425 | lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2426 | by simp | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2427 | |
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2428 | lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)" | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2429 | by auto | 
| 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2430 | |
| 21211 
5370cfbf3070
Preparations for making "lexicographic_order" part of "fun"
 krauss parents: 
21193diff
changeset | 2431 | (* install the lexicographic_order method and the "fun" command *) | 
| 21131 | 2432 | use "Tools/function_package/lexicographic_order.ML" | 
| 21211 
5370cfbf3070
Preparations for making "lexicographic_order" part of "fun"
 krauss parents: 
21193diff
changeset | 2433 | use "Tools/function_package/fundef_datatype.ML" | 
| 
5370cfbf3070
Preparations for making "lexicographic_order" part of "fun"
 krauss parents: 
21193diff
changeset | 2434 | setup LexicographicOrder.setup | 
| 
5370cfbf3070
Preparations for making "lexicographic_order" part of "fun"
 krauss parents: 
21193diff
changeset | 2435 | setup FundefDatatype.setup | 
| 
5370cfbf3070
Preparations for making "lexicographic_order" part of "fun"
 krauss parents: 
21193diff
changeset | 2436 | |
| 21103 
367b4ad7c7cc
Added "measures" combinator for lexicographic combinations of multiple measures.
 krauss parents: 
21079diff
changeset | 2437 | |
| 15392 | 2438 | subsubsection{*Lifting a Relation on List Elements to the Lists*}
 | 
| 15302 | 2439 | |
| 2440 | consts  listrel :: "('a * 'a)set => ('a list * 'a list)set"
 | |
| 2441 | ||
| 2442 | inductive "listrel(r)" | |
| 2443 | intros | |
| 2444 | Nil: "([],[]) \<in> listrel r" | |
| 2445 | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r" | |
| 2446 | ||
| 2447 | inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r" | |
| 2448 | inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r" | |
| 2449 | inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r" | |
| 2450 | inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r" | |
| 2451 | ||
| 2452 | ||
| 2453 | lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s" | |
| 2454 | apply clarify | |
| 2455 | apply (erule listrel.induct) | |
| 2456 | apply (blast intro: listrel.intros)+ | |
| 2457 | done | |
| 2458 | ||
| 2459 | lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A" | |
| 2460 | apply clarify | |
| 2461 | apply (erule listrel.induct, auto) | |
| 2462 | done | |
| 2463 | ||
| 2464 | lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" | |
| 2465 | apply (simp add: refl_def listrel_subset Ball_def) | |
| 2466 | apply (rule allI) | |
| 2467 | apply (induct_tac x) | |
| 2468 | apply (auto intro: listrel.intros) | |
| 2469 | done | |
| 2470 | ||
| 2471 | lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" | |
| 2472 | apply (auto simp add: sym_def) | |
| 2473 | apply (erule listrel.induct) | |
| 2474 | apply (blast intro: listrel.intros)+ | |
| 2475 | done | |
| 2476 | ||
| 2477 | lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" | |
| 2478 | apply (simp add: trans_def) | |
| 2479 | apply (intro allI) | |
| 2480 | apply (rule impI) | |
| 2481 | apply (erule listrel.induct) | |
| 2482 | apply (blast intro: listrel.intros)+ | |
| 2483 | done | |
| 2484 | ||
| 2485 | theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)" | |
| 2486 | by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) | |
| 2487 | ||
| 2488 | lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
 | |
| 2489 | by (blast intro: listrel.intros) | |
| 2490 | ||
| 2491 | lemma listrel_Cons: | |
| 2492 |      "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
 | |
| 2493 | by (auto simp add: set_Cons_def intro: listrel.intros) | |
| 2494 | ||
| 2495 | ||
| 15392 | 2496 | subsection{*Miscellany*}
 | 
| 2497 | ||
| 2498 | subsubsection {* Characters and strings *}
 | |
| 13366 | 2499 | |
| 2500 | datatype nibble = | |
| 2501 | Nibble0 | Nibble1 | Nibble2 | Nibble3 | Nibble4 | Nibble5 | Nibble6 | Nibble7 | |
| 2502 | | Nibble8 | Nibble9 | NibbleA | NibbleB | NibbleC | NibbleD | NibbleE | NibbleF | |
| 2503 | ||
| 2504 | datatype char = Char nibble nibble | |
| 2505 | -- "Note: canonical order of character encoding coincides with standard term ordering" | |
| 2506 | ||
| 2507 | types string = "char list" | |
| 2508 | ||
| 2509 | syntax | |
| 2510 |   "_Char" :: "xstr => char"    ("CHR _")
 | |
| 2511 |   "_String" :: "xstr => string"    ("_")
 | |
| 2512 | ||
| 2513 | parse_ast_translation {*
 | |
| 2514 | let | |
| 2515 | val constants = Syntax.Appl o map Syntax.Constant; | |
| 2516 | ||
| 2517 | fun mk_nib n = "Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10)); | |
| 2518 | fun mk_char c = | |
| 2519 | if Symbol.is_ascii c andalso Symbol.is_printable c then | |
| 2520 | constants ["Char", mk_nib (ord c div 16), mk_nib (ord c mod 16)] | |
| 2521 |       else error ("Printable ASCII character expected: " ^ quote c);
 | |
| 2522 | ||
| 2523 | fun mk_string [] = Syntax.Constant "Nil" | |
| 2524 | | mk_string (c :: cs) = Syntax.Appl [Syntax.Constant "Cons", mk_char c, mk_string cs]; | |
| 2525 | ||
| 2526 | fun char_ast_tr [Syntax.Variable xstr] = | |
| 2527 | (case Syntax.explode_xstr xstr of | |
| 2528 | [c] => mk_char c | |
| 2529 |         | _ => error ("Single character expected: " ^ xstr))
 | |
| 2530 |       | char_ast_tr asts = raise AST ("char_ast_tr", asts);
 | |
| 2531 | ||
| 2532 | fun string_ast_tr [Syntax.Variable xstr] = | |
| 2533 | (case Syntax.explode_xstr xstr of | |
| 2534 | [] => constants [Syntax.constrainC, "Nil", "string"] | |
| 2535 | | cs => mk_string cs) | |
| 2536 |       | string_ast_tr asts = raise AST ("string_tr", asts);
 | |
| 2537 |   in [("_Char", char_ast_tr), ("_String", string_ast_tr)] end;
 | |
| 2538 | *} | |
| 2539 | ||
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2540 | ML {*
 | 
| 20184 | 2541 | structure HOList = | 
| 2542 | struct | |
| 2543 | ||
| 2544 | local | |
| 2545 | val thy = the_context (); | |
| 2546 | in | |
| 2547 | val typ_string = Type (Sign.intern_type thy "string", []); | |
| 2548 | fun typ_list ty = Type (Sign.intern_type thy "list", [ty]); | |
| 2549 | fun term_list ty f [] = Const (Sign.intern_const thy "Nil", typ_list ty) | |
| 2550 | | term_list ty f (x::xs) = Const (Sign.intern_const thy "Cons", | |
| 2551 | ty --> typ_list ty --> typ_list ty) $ f x $ term_list ty f xs; | |
| 2552 | end; | |
| 2553 | ||
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2554 | fun int_of_nibble h = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2555 | if "0" <= h andalso h <= "9" then ord h - ord "0" | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2556 | else if "A" <= h andalso h <= "F" then ord h - ord "A" + 10 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2557 | else raise Match; | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2558 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2559 | fun nibble_of_int i = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2560 | if i <= 9 then chr (ord "0" + i) else chr (ord "A" + i - 10); | 
| 20181 | 2561 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2562 | fun dest_char (Const ("List.char.Char", _) $ c1 $ c2) =
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2563 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2564 | fun dest_nibble (Const (s, _)) = (int_of_nibble o unprefix "List.nibble.Nibble") s | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2565 | | dest_nibble _ = raise Match; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2566 | in | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2567 | (SOME (dest_nibble c1 * 16 + dest_nibble c2) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2568 | handle Fail _ => NONE | Match => NONE) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2569 | end | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2570 | | dest_char _ = NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2571 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2572 | val print_list = Pretty.enum "," "[" "]"; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2573 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2574 | fun print_char c = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2575 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2576 | val i = ord c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2577 | in if i < 32 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2578 | then prefix "\\" (string_of_int i) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2579 | else c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2580 | end; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2581 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2582 | val print_string = quote; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2583 | |
| 20184 | 2584 | fun term_string s = | 
| 20181 | 2585 | let | 
| 2586 |     val ty_n = Type ("List.nibble", []);
 | |
| 2587 |     val ty_c = Type ("List.char", []);
 | |
| 2588 |     val ty_l = Type ("List.list", [ty_c]);
 | |
| 2589 |     fun mk_nib n = Const ("List.nibble.Nibble" ^ chr (n + (if n <= 9 then ord "0" else ord "A" - 10)), ty_n);
 | |
| 2590 | fun mk_char c = | |
| 2591 | if Symbol.is_ascii c andalso Symbol.is_printable c then | |
| 2592 |         Const ("List.char.Char", ty_n --> ty_n --> ty_c) $ mk_nib (ord c div 16) $ mk_nib (ord c mod 16)
 | |
| 2593 |       else error ("Printable ASCII character expected: " ^ quote c);
 | |
| 2594 |     fun mk_string c t = Const ("List.list.Cons", ty_c --> ty_l --> ty_l)
 | |
| 2595 | $ mk_char c $ t; | |
| 2596 |   in fold_rev mk_string (explode s) (Const ("List.list.Nil", ty_l)) end;
 | |
| 20184 | 2597 | |
| 2598 | end; | |
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2599 | *} | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2600 | |
| 13366 | 2601 | print_ast_translation {*
 | 
| 2602 | let | |
| 2603 | fun dest_nib (Syntax.Constant c) = | |
| 2604 | (case explode c of | |
| 20184 | 2605 | ["N", "i", "b", "b", "l", "e", h] => HOList.int_of_nibble h | 
| 13366 | 2606 | | _ => raise Match) | 
| 2607 | | dest_nib _ = raise Match; | |
| 2608 | ||
| 2609 | fun dest_chr c1 c2 = | |
| 2610 | let val c = chr (dest_nib c1 * 16 + dest_nib c2) | |
| 2611 | in if Symbol.is_printable c then c else raise Match end; | |
| 2612 | ||
| 2613 | fun dest_char (Syntax.Appl [Syntax.Constant "Char", c1, c2]) = dest_chr c1 c2 | |
| 2614 | | dest_char _ = raise Match; | |
| 2615 | ||
| 2616 | fun xstr cs = Syntax.Appl [Syntax.Constant "_xstr", Syntax.Variable (Syntax.implode_xstr cs)]; | |
| 2617 | ||
| 2618 | fun char_ast_tr' [c1, c2] = Syntax.Appl [Syntax.Constant "_Char", xstr [dest_chr c1 c2]] | |
| 2619 | | char_ast_tr' _ = raise Match; | |
| 2620 | ||
| 2621 | fun list_ast_tr' [args] = Syntax.Appl [Syntax.Constant "_String", | |
| 2622 | xstr (map dest_char (Syntax.unfold_ast "_args" args))] | |
| 2623 | | list_ast_tr' ts = raise Match; | |
| 2624 |   in [("Char", char_ast_tr'), ("@list", list_ast_tr')] end;
 | |
| 2625 | *} | |
| 2626 | ||
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2627 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2628 | subsection {* Code generator *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2629 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2630 | subsubsection {* Setup *}
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2631 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2632 | types_code | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2633 |   "list" ("_ list")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2634 | attach (term_of) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2635 | val term_of_list = HOLogic.mk_list; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2636 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2637 | attach (test) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2638 | fun gen_list' aG i j = frequency | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2639 | [(i, fn () => aG j :: gen_list' aG (i-1) j), (1, fn () => [])] () | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2640 | and gen_list aG i = gen_list' aG i i; | 
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2641 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2642 |   "char" ("string")
 | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2643 | attach (term_of) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2644 | val nibbleT = Type ("List.nibble", []);
 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2645 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2646 | fun term_of_char c = | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2647 |   Const ("List.char.Char", nibbleT --> nibbleT --> Type ("List.char", [])) $
 | 
| 20184 | 2648 |     Const ("List.nibble.Nibble" ^ HOList.nibble_of_int (ord c div 16), nibbleT) $
 | 
| 2649 |     Const ("List.nibble.Nibble" ^ HOList.nibble_of_int (ord c mod 16), nibbleT);
 | |
| 16770 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2650 | *} | 
| 
1f1b1fae30e4
Auxiliary functions to be used in generated code are now defined using "attach".
 berghofe parents: 
16634diff
changeset | 2651 | attach (test) {*
 | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2652 | fun gen_char i = chr (random_range (ord "a") (Int.min (ord "a" + i, ord "z"))); | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2653 | *} | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2654 | |
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2655 | consts_code "Cons" ("(_ ::/ _)")
 | 
| 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2656 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2657 | code_type list | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2658 | (SML "_ list") | 
| 21113 | 2659 | (Haskell "![_]") | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2660 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2661 | code_const Nil | 
| 21113 | 2662 | (SML "[]") | 
| 2663 | (Haskell "[]") | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2664 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2665 | code_type char | 
| 21113 | 2666 | (SML "char") | 
| 2667 | (Haskell "Char") | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2668 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2669 | code_const Char | 
| 21126 | 2670 | (SML "!((_),/ (_))") | 
| 2671 | (Haskell "!((_),/ (_))") | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2672 | |
| 20588 | 2673 | code_instance list :: eq and char :: eq | 
| 2674 | (Haskell - and -) | |
| 2675 | ||
| 21046 
fe1db2f991a7
moved HOL code generator setup to Code_Generator
 haftmann parents: 
20699diff
changeset | 2676 | code_const "Code_Generator.eq \<Colon> 'a\<Colon>eq list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 20588 | 2677 | (Haskell infixl 4 "==") | 
| 2678 | ||
| 21046 
fe1db2f991a7
moved HOL code generator setup to Code_Generator
 haftmann parents: 
20699diff
changeset | 2679 | code_const "Code_Generator.eq \<Colon> char \<Rightarrow> char \<Rightarrow> bool" | 
| 20588 | 2680 | (Haskell infixl 4 "==") | 
| 2681 | ||
| 21079 | 2682 | code_reserved SML | 
| 2683 | list char | |
| 2684 | ||
| 2685 | code_reserved Haskell | |
| 2686 | Char | |
| 2687 | ||
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2688 | setup {*
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2689 | let | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2690 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2691 | fun list_codegen thy defs gr dep thyname b t = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2692 | let val (gr', ps) = foldl_map (Codegen.invoke_codegen thy defs dep thyname false) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2693 | (gr, HOLogic.dest_list t) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2694 | in SOME (gr', Pretty.list "[" "]" ps) end handle TERM _ => NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2695 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2696 | fun char_codegen thy defs gr dep thyname b t = | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2697 | case (Option.map chr o HOList.dest_char) t | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2698 | of SOME c => | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2699 | if Symbol.is_printable c | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2700 | then SOME (gr, (Pretty.quote o Pretty.str) c) | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2701 | else NONE | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2702 | | NONE => NONE; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2703 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2704 | in | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2705 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2706 | Codegen.add_codegen "list_codegen" list_codegen | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2707 | #> Codegen.add_codegen "char_codegen" char_codegen | 
| 20699 | 2708 | #> CodegenSerializer.add_pretty_list "SML" "List.list.Nil" "List.list.Cons" | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2709 | HOList.print_list NONE (7, "::") | 
| 20699 | 2710 | #> CodegenSerializer.add_pretty_list "Haskell" "List.list.Nil" "List.list.Cons" | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2711 | HOList.print_list (SOME (HOList.print_char, HOList.print_string)) (5, ":") | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2712 | #> CodegenPackage.add_appconst | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2713 |        ("List.char.Char", CodegenPackage.appgen_char HOList.dest_char)
 | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2714 | |
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2715 | end; | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20439diff
changeset | 2716 | *} | 
| 15064 
4f3102b50197
- Moved code generator setup for lists from Main.thy to List.thy
 berghofe parents: 
15045diff
changeset | 2717 | |
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2718 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2719 | subsubsection {* Generation of efficient code *}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2720 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2721 | consts | 
| 21079 | 2722 | memberl :: "'a \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "mem" 55) | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2723 | null:: "'a list \<Rightarrow> bool" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2724 | list_inter :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2725 |   list_ex :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2726 |   list_all :: "('a \<Rightarrow> bool) \<Rightarrow> ('a list \<Rightarrow> bool)"
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2727 | itrev :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2728 |   filtermap :: "('a \<Rightarrow> 'b option) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2729 |   map_filter :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2730 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2731 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2732 | "x mem [] = False" | 
| 21079 | 2733 | "x mem (y#ys) = (x = y \<or> x mem ys)" | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2734 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2735 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2736 | "null [] = True" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2737 | "null (x#xs) = False" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2738 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2739 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2740 | "list_inter [] bs = []" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2741 | "list_inter (a#as) bs = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2742 | (if a \<in> set bs then a # list_inter as bs else list_inter as bs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2743 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2744 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2745 | "list_all P [] = True" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2746 | "list_all P (x#xs) = (P x \<and> list_all P xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2747 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2748 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2749 | "list_ex P [] = False" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2750 | "list_ex P (x#xs) = (P x \<or> list_ex P xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2751 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2752 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2753 | "filtermap f [] = []" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2754 | "filtermap f (x#xs) = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2755 | (case f x of None \<Rightarrow> filtermap f xs | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2756 | | Some y \<Rightarrow> y # filtermap f xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2757 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2758 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2759 | "map_filter f P [] = []" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2760 | "map_filter f P (x#xs) = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2761 | (if P x then f x # map_filter f P xs else map_filter f P xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2762 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2763 | primrec | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2764 | "itrev [] ys = ys" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2765 | "itrev (x#xs) ys = itrev xs (x#ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2766 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2767 | text {*
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2768 |   Only use @{text mem} for generating executable code.  Otherwise
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2769 |   use @{prop "x : set xs"} instead --- it is much easier to reason about.
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2770 |   The same is true for @{const list_all} and @{const list_ex}: write
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2771 |   @{text "\<forall>x\<in>set xs"} and @{text "\<exists>x\<in>set xs"} instead because the HOL
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2772 | quantifiers are aleady known to the automatic provers. In fact, | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2773 |   the declarations in the code subsection make sure that @{text "\<in>"}, @{text "\<forall>x\<in>set xs"}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2774 |   and @{text "\<exists>x\<in>set xs"} are implemented efficiently.
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2775 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2776 |   Efficient emptyness check is implemented by @{const null}.
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2777 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2778 |   The functions @{const itrev}, @{const filtermap} and @{const map_filter}
 | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2779 | are just there to generate efficient code. Do not use them | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2780 | for modelling and proving. | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2781 | *} | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2782 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2783 | lemma mem_iff [normal post]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2784 | "(x mem xs) = (x \<in> set xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2785 | by (induct xs) auto | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2786 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2787 | lemmas in_set_code [code unfold] = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2788 | mem_iff [symmetric, THEN eq_reflection] | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2789 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2790 | lemma empty_null [code inline]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2791 | "(xs = []) = null xs" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2792 | by (cases xs) simp_all | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2793 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2794 | lemmas null_empty [normal post] = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2795 | empty_null [symmetric] | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2796 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2797 | lemma list_inter_conv: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2798 | "set (list_inter xs ys) = set xs \<inter> set ys" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2799 | by (induct xs) auto | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2800 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2801 | lemma list_all_iff [normal post]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2802 | "list_all P xs = (\<forall>x \<in> set xs. P x)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2803 | by (induct xs) auto | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2804 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2805 | lemmas list_ball_code [code unfold] = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2806 | list_all_iff [symmetric, THEN eq_reflection] | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2807 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2808 | lemma list_all_append [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2809 | "list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2810 | by (induct xs) auto | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2811 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2812 | lemma list_all_rev [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2813 | "list_all P (rev xs) = list_all P xs" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2814 | by (simp add: list_all_iff) | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2815 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2816 | lemma list_ex_iff [normal post]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2817 | "list_ex P xs = (\<exists>x \<in> set xs. P x)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2818 | by (induct xs) simp_all | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2819 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2820 | lemmas list_bex_code [code unfold] = | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2821 | list_ex_iff [symmetric, THEN eq_reflection] | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2822 | |
| 21193 | 2823 | lemma itrev [simp]: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2824 | "itrev xs ys = rev xs @ ys" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2825 | by (induct xs arbitrary: ys) simp_all | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2826 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2827 | lemma filtermap_conv: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2828 | "filtermap f xs = map (\<lambda>x. the (f x)) (filter (\<lambda>x. f x \<noteq> None) xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2829 | by (induct xs) (simp_all split: option.split) | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2830 | |
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2831 | lemma map_filter_conv [simp]: | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2832 | "map_filter f P xs = map f (filter P xs)" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2833 | by (induct xs) auto | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2834 | |
| 21193 | 2835 | lemma rev_code [code func, code unfold, code noinline]: | 
| 21061 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2836 | "rev xs == itrev xs []" | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2837 | by simp | 
| 
580dfc999ef6
added normal post setup; cleaned up "execution" constants
 haftmann parents: 
21046diff
changeset | 2838 | |
| 13122 | 2839 | end |