author | wenzelm |
Sun, 13 Dec 2020 13:16:07 +0100 | |
changeset 72893 | fbdadf5760c2 |
parent 71398 | e0237f2eb49d |
child 73109 | 783406dd051e |
permissions | -rw-r--r-- |
63489 | 1 |
(* Title: HOL/GCD.thy |
2 |
Author: Christophe Tabacznyj |
|
3 |
Author: Lawrence C. Paulson |
|
4 |
Author: Amine Chaieb |
|
5 |
Author: Thomas M. Rasmussen |
|
6 |
Author: Jeremy Avigad |
|
7 |
Author: Tobias Nipkow |
|
31706 | 8 |
|
32479 | 9 |
This file deals with the functions gcd and lcm. Definitions and |
10 |
lemmas are proved uniformly for the natural numbers and integers. |
|
31706 | 11 |
|
12 |
This file combines and revises a number of prior developments. |
|
13 |
||
14 |
The original theories "GCD" and "Primes" were by Christophe Tabacznyj |
|
58623 | 15 |
and Lawrence C. Paulson, based on @{cite davenport92}. They introduced |
31706 | 16 |
gcd, lcm, and prime for the natural numbers. |
17 |
||
18 |
The original theory "IntPrimes" was by Thomas M. Rasmussen, and |
|
19 |
extended gcd, lcm, primes to the integers. Amine Chaieb provided |
|
20 |
another extension of the notions to the integers, and added a number |
|
21 |
of results to "Primes" and "GCD". IntPrimes also defined and developed |
|
22 |
the congruence relations on the integers. The notion was extended to |
|
34915 | 23 |
the natural numbers by Chaieb. |
31706 | 24 |
|
32036
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
25 |
Jeremy Avigad combined all of these, made everything uniform for the |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
26 |
natural numbers and the integers, and added a number of new theorems. |
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
avigad
parents:
31952
diff
changeset
|
27 |
|
31798 | 28 |
Tobias Nipkow cleaned up a lot. |
21256 | 29 |
*) |
30 |
||
60758 | 31 |
section \<open>Greatest common divisor and least common multiple\<close> |
21256 | 32 |
|
33 |
theory GCD |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
34 |
imports Groups_List |
31706 | 35 |
begin |
36 |
||
64850 | 37 |
subsection \<open>Abstract bounded quasi semilattices as common foundation\<close> |
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
38 |
|
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
39 |
locale bounded_quasi_semilattice = abel_semigroup + |
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
40 |
fixes top :: 'a ("\<^bold>\<top>") and bot :: 'a ("\<^bold>\<bottom>") |
64850 | 41 |
and normalize :: "'a \<Rightarrow> 'a" |
42 |
assumes idem_normalize [simp]: "a \<^bold>* a = normalize a" |
|
43 |
and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b" |
|
44 |
and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b" |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
45 |
and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
46 |
and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
47 |
and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
48 |
and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>" |
64850 | 49 |
begin |
50 |
||
51 |
lemma left_idem [simp]: |
|
52 |
"a \<^bold>* (a \<^bold>* b) = a \<^bold>* b" |
|
53 |
using assoc [of a a b, symmetric] by simp |
|
54 |
||
55 |
lemma right_idem [simp]: |
|
56 |
"(a \<^bold>* b) \<^bold>* b = a \<^bold>* b" |
|
57 |
using left_idem [of b a] by (simp add: ac_simps) |
|
58 |
||
59 |
lemma comp_fun_idem: "comp_fun_idem f" |
|
60 |
by standard (simp_all add: fun_eq_iff ac_simps) |
|
61 |
||
62 |
interpretation comp_fun_idem f |
|
63 |
by (fact comp_fun_idem) |
|
64 |
||
65 |
lemma top_right_normalize [simp]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
66 |
"a \<^bold>* \<^bold>\<top> = normalize a" |
64850 | 67 |
using top_left_normalize [of a] by (simp add: ac_simps) |
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
68 |
|
64850 | 69 |
lemma bottom_right_bottom [simp]: |
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
70 |
"a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>" |
64850 | 71 |
using bottom_left_bottom [of a] by (simp add: ac_simps) |
72 |
||
73 |
lemma normalize_right_idem [simp]: |
|
74 |
"a \<^bold>* normalize b = a \<^bold>* b" |
|
75 |
using normalize_left_idem [of b a] by (simp add: ac_simps) |
|
76 |
||
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
77 |
end |
64850 | 78 |
|
79 |
locale bounded_quasi_semilattice_set = bounded_quasi_semilattice |
|
80 |
begin |
|
81 |
||
82 |
interpretation comp_fun_idem f |
|
83 |
by (fact comp_fun_idem) |
|
84 |
||
85 |
definition F :: "'a set \<Rightarrow> 'a" |
|
86 |
where |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
87 |
eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
88 |
|
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
89 |
lemma infinite [simp]: |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
90 |
"infinite A \<Longrightarrow> F A = \<^bold>\<bottom>" |
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
91 |
by (simp add: eq_fold) |
64850 | 92 |
|
93 |
lemma set_eq_fold [code]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
94 |
"F (set xs) = fold f xs \<^bold>\<top>" |
64850 | 95 |
by (simp add: eq_fold fold_set_fold) |
96 |
||
97 |
lemma empty [simp]: |
|
65555
85ed070017b7
include GCD as integral part of computational algebra in session HOL
haftmann
parents:
65552
diff
changeset
|
98 |
"F {} = \<^bold>\<top>" |
64850 | 99 |
by (simp add: eq_fold) |
100 |
||
101 |
lemma insert [simp]: |
|
102 |
"F (insert a A) = a \<^bold>* F A" |
|
103 |
by (cases "finite A") (simp_all add: eq_fold) |
|
104 |
||
105 |
lemma normalize [simp]: |
|
106 |
"normalize (F A) = F A" |
|
107 |
by (induct A rule: infinite_finite_induct) simp_all |
|
108 |
||
109 |
lemma in_idem: |
|
110 |
assumes "a \<in> A" |
|
111 |
shows "a \<^bold>* F A = F A" |
|
112 |
using assms by (induct A rule: infinite_finite_induct) |
|
68708 | 113 |
(auto simp: left_commute [of a]) |
64850 | 114 |
|
115 |
lemma union: |
|
116 |
"F (A \<union> B) = F A \<^bold>* F B" |
|
117 |
by (induct A rule: infinite_finite_induct) |
|
118 |
(simp_all add: ac_simps) |
|
119 |
||
120 |
lemma remove: |
|
121 |
assumes "a \<in> A" |
|
122 |
shows "F A = a \<^bold>* F (A - {a})" |
|
123 |
proof - |
|
124 |
from assms obtain B where "A = insert a B" and "a \<notin> B" |
|
125 |
by (blast dest: mk_disjoint_insert) |
|
126 |
with assms show ?thesis by simp |
|
127 |
qed |
|
128 |
||
129 |
lemma insert_remove: |
|
130 |
"F (insert a A) = a \<^bold>* F (A - {a})" |
|
131 |
by (cases "a \<in> A") (simp_all add: insert_absorb remove) |
|
132 |
||
133 |
lemma subset: |
|
134 |
assumes "B \<subseteq> A" |
|
135 |
shows "F B \<^bold>* F A = F A" |
|
136 |
using assms by (simp add: union [symmetric] Un_absorb1) |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
137 |
|
64850 | 138 |
end |
63489 | 139 |
|
62345 | 140 |
subsection \<open>Abstract GCD and LCM\<close> |
31706 | 141 |
|
31992 | 142 |
class gcd = zero + one + dvd + |
41550 | 143 |
fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
144 |
and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
31706 | 145 |
|
60686 | 146 |
class Gcd = gcd + |
63025 | 147 |
fixes Gcd :: "'a set \<Rightarrow> 'a" |
148 |
and Lcm :: "'a set \<Rightarrow> 'a" |
|
62350 | 149 |
|
150 |
syntax |
|
63025 | 151 |
"_GCD1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _./ _)" [0, 10] 10) |
152 |
"_GCD" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3GCD _\<in>_./ _)" [0, 0, 10] 10) |
|
153 |
"_LCM1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _./ _)" [0, 10] 10) |
|
154 |
"_LCM" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3LCM _\<in>_./ _)" [0, 0, 10] 10) |
|
68795
210b687cdbbe
dropped redundant syntax translation rules for big operators
haftmann
parents:
68708
diff
changeset
|
155 |
|
62350 | 156 |
translations |
68796
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
157 |
"GCD x y. f" \<rightleftharpoons> "GCD x. GCD y. f" |
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
158 |
"GCD x. f" \<rightleftharpoons> "CONST Gcd (CONST range (\<lambda>x. f))" |
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
159 |
"GCD x\<in>A. f" \<rightleftharpoons> "CONST Gcd ((\<lambda>x. f) ` A)" |
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
160 |
"LCM x y. f" \<rightleftharpoons> "LCM x. LCM y. f" |
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
161 |
"LCM x. f" \<rightleftharpoons> "CONST Lcm (CONST range (\<lambda>x. f))" |
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
haftmann
parents:
68795
diff
changeset
|
162 |
"LCM x\<in>A. f" \<rightleftharpoons> "CONST Lcm ((\<lambda>x. f) ` A)" |
60686 | 163 |
|
164 |
class semiring_gcd = normalization_semidom + gcd + |
|
59008 | 165 |
assumes gcd_dvd1 [iff]: "gcd a b dvd a" |
59977 | 166 |
and gcd_dvd2 [iff]: "gcd a b dvd b" |
167 |
and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" |
|
60686 | 168 |
and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
169 |
and lcm_gcd: "lcm a b = normalize (a * b div gcd a b)" |
63489 | 170 |
begin |
171 |
||
172 |
lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" |
|
60686 | 173 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
174 |
||
63489 | 175 |
lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" |
60689 | 176 |
by (rule dvd_trans) (rule gcd_dvd1) |
177 |
||
63489 | 178 |
lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" |
60689 | 179 |
by (rule dvd_trans) (rule gcd_dvd2) |
180 |
||
63489 | 181 |
lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" |
62345 | 182 |
using gcd_dvd1 [of b c] by (blast intro: dvd_trans) |
183 |
||
63489 | 184 |
lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" |
62345 | 185 |
using gcd_dvd2 [of b c] by (blast intro: dvd_trans) |
186 |
||
63489 | 187 |
lemma gcd_0_left [simp]: "gcd 0 a = normalize a" |
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
188 |
by (rule associated_eqI) simp_all |
60686 | 189 |
|
63489 | 190 |
lemma gcd_0_right [simp]: "gcd a 0 = normalize a" |
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
191 |
by (rule associated_eqI) simp_all |
63489 | 192 |
|
193 |
lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" |
|
194 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 195 |
proof |
63489 | 196 |
assume ?P |
197 |
then have "0 dvd gcd a b" |
|
198 |
by simp |
|
199 |
then have "0 dvd a" and "0 dvd b" |
|
200 |
by (blast intro: dvd_trans)+ |
|
201 |
then show ?Q |
|
202 |
by simp |
|
60686 | 203 |
next |
63489 | 204 |
assume ?Q |
205 |
then show ?P |
|
206 |
by simp |
|
60686 | 207 |
qed |
208 |
||
63489 | 209 |
lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" |
60686 | 210 |
proof (cases "gcd a b = 0") |
63489 | 211 |
case True |
212 |
then show ?thesis by simp |
|
60686 | 213 |
next |
214 |
case False |
|
215 |
have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" |
|
216 |
by (rule unit_factor_mult_normalize) |
|
217 |
then have "unit_factor (gcd a b) * gcd a b = gcd a b" |
|
218 |
by simp |
|
219 |
then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" |
|
220 |
by simp |
|
63489 | 221 |
with False show ?thesis |
222 |
by simp |
|
60686 | 223 |
qed |
224 |
||
67051 | 225 |
lemma is_unit_gcd_iff [simp]: |
226 |
"is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1" |
|
68708 | 227 |
by (cases "a = 0 \<and> b = 0") (auto simp: unit_factor_gcd dest: is_unit_unit_factor) |
60690 | 228 |
|
61605 | 229 |
sublocale gcd: abel_semigroup gcd |
60686 | 230 |
proof |
231 |
fix a b c |
|
232 |
show "gcd a b = gcd b a" |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
233 |
by (rule associated_eqI) simp_all |
60686 | 234 |
from gcd_dvd1 have "gcd (gcd a b) c dvd a" |
235 |
by (rule dvd_trans) simp |
|
236 |
moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" |
|
237 |
by (rule dvd_trans) simp |
|
238 |
ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" |
|
239 |
by (auto intro!: gcd_greatest) |
|
240 |
from gcd_dvd2 have "gcd a (gcd b c) dvd b" |
|
241 |
by (rule dvd_trans) simp |
|
242 |
moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" |
|
243 |
by (rule dvd_trans) simp |
|
244 |
ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" |
|
245 |
by (auto intro!: gcd_greatest) |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
246 |
from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" |
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
247 |
by (rule associated_eqI) simp_all |
60686 | 248 |
qed |
249 |
||
64850 | 250 |
sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize |
251 |
proof |
|
252 |
show "gcd a a = normalize a" for a |
|
253 |
proof - |
|
254 |
have "a dvd gcd a a" |
|
255 |
by (rule gcd_greatest) simp_all |
|
256 |
then show ?thesis |
|
257 |
by (auto intro: associated_eqI) |
|
258 |
qed |
|
259 |
show "gcd (normalize a) b = gcd a b" for a b |
|
260 |
using gcd_dvd1 [of "normalize a" b] |
|
60688
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents:
60687
diff
changeset
|
261 |
by (auto intro: associated_eqI) |
67051 | 262 |
show "gcd 1 a = 1" for a |
64850 | 263 |
by (rule associated_eqI) simp_all |
264 |
qed simp_all |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
265 |
|
64850 | 266 |
lemma gcd_self: "gcd a a = normalize a" |
267 |
by (fact gcd.idem_normalize) |
|
268 |
||
269 |
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" |
|
270 |
by (fact gcd.left_idem) |
|
271 |
||
272 |
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" |
|
273 |
by (fact gcd.right_idem) |
|
274 |
||
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
275 |
lemma gcdI: |
63489 | 276 |
assumes "c dvd a" and "c dvd b" |
277 |
and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
278 |
and "normalize c = c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
279 |
shows "c = gcd a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
280 |
by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
281 |
|
63489 | 282 |
lemma gcd_unique: |
283 |
"d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
284 |
by rule (auto intro: gcdI simp: gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
285 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
286 |
lemma gcd_dvd_prod: "gcd a b dvd k * b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
287 |
using mult_dvd_mono [of 1] by auto |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
288 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
289 |
lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
290 |
by (rule gcdI [symmetric]) simp_all |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
291 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
292 |
lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
293 |
by (rule gcdI [symmetric]) simp_all |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
294 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
295 |
lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
296 |
proof |
63489 | 297 |
assume *: "gcd m n = normalize m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
298 |
show "m dvd n" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
299 |
proof (cases "m = 0") |
63489 | 300 |
case True |
301 |
with * show ?thesis by simp |
|
302 |
next |
|
303 |
case [simp]: False |
|
304 |
from * have **: "m = gcd m n * unit_factor m" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
305 |
by (simp add: unit_eq_div2) |
63489 | 306 |
show ?thesis |
307 |
by (subst **) (simp add: mult_unit_dvd_iff) |
|
308 |
qed |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
309 |
next |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
310 |
assume "m dvd n" |
63489 | 311 |
then show "gcd m n = normalize m" |
312 |
by (rule gcd_proj1_if_dvd) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
313 |
qed |
63489 | 314 |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
315 |
lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
316 |
using gcd_proj1_iff [of n m] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
317 |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
318 |
lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize (c * gcd a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
319 |
proof (cases "c = 0") |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
320 |
case True |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
321 |
then show ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
322 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
323 |
case False |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
324 |
then have *: "c * gcd a b dvd gcd (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
325 |
by (auto intro: gcd_greatest) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
326 |
moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
327 |
by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
328 |
ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
329 |
by (auto intro: associated_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
330 |
then show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
331 |
by (simp add: normalize_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
332 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
333 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
334 |
lemma gcd_mult_right: "gcd (a * c) (b * c) = normalize (gcd b a * c)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
335 |
using gcd_mult_left [of c a b] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
336 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
337 |
lemma dvd_lcm1 [iff]: "a dvd lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
338 |
by (metis div_mult_swap dvd_mult2 dvd_normalize_iff dvd_refl gcd_dvd2 lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
339 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
340 |
lemma dvd_lcm2 [iff]: "b dvd lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
341 |
by (metis dvd_div_mult dvd_mult dvd_normalize_iff dvd_refl gcd_dvd1 lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
342 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
343 |
lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
344 |
by (rule dvd_trans) (assumption, blast) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
345 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
346 |
lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
347 |
by (rule dvd_trans) (assumption, blast) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
348 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
349 |
lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
350 |
using dvd_lcm1 [of a b] by (blast intro: dvd_trans) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
351 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
352 |
lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
353 |
using dvd_lcm2 [of a b] by (blast intro: dvd_trans) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
354 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
355 |
lemma lcm_least: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
356 |
assumes "a dvd c" and "b dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
357 |
shows "lcm a b dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
358 |
proof (cases "c = 0") |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
359 |
case True |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
360 |
then show ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
361 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
362 |
case False |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
363 |
then have *: "is_unit (unit_factor c)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
364 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
365 |
show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
366 |
proof (cases "gcd a b = 0") |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
367 |
case True |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
368 |
with assms show ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
369 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
370 |
case False |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
371 |
have "a * b dvd normalize (c * gcd a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
372 |
using assms by (subst gcd_mult_left [symmetric]) (auto intro!: gcd_greatest simp: mult_ac) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
373 |
with False have "(a * b div gcd a b) dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
374 |
by (subst div_dvd_iff_mult) auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
375 |
thus ?thesis by (simp add: lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
376 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
377 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
378 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
379 |
lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
380 |
by (blast intro!: lcm_least intro: dvd_trans) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
381 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
382 |
lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
383 |
by (simp add: lcm_gcd dvd_normalize_div) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
384 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
385 |
lemma lcm_0_left [simp]: "lcm 0 a = 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
386 |
by (simp add: lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
387 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
388 |
lemma lcm_0_right [simp]: "lcm a 0 = 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
389 |
by (simp add: lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
390 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
391 |
lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
392 |
(is "?P \<longleftrightarrow> ?Q") |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
393 |
proof |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
394 |
assume ?P |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
395 |
then have "0 dvd lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
396 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
397 |
also have "lcm a b dvd (a * b)" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
398 |
by simp |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
399 |
finally show ?Q |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
400 |
by auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
401 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
402 |
assume ?Q |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
403 |
then show ?P |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
404 |
by auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
405 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
406 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
407 |
lemma zero_eq_lcm_iff: "0 = lcm a b \<longleftrightarrow> a = 0 \<or> b = 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
408 |
using lcm_eq_0_iff[of a b] by auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
409 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
410 |
lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
411 |
by (auto intro: associated_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
412 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
413 |
lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
414 |
using lcm_eq_0_iff[of a b] by (cases "lcm a b = 0") (auto simp: lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
415 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
416 |
sublocale lcm: abel_semigroup lcm |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
417 |
proof |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
418 |
fix a b c |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
419 |
show "lcm a b = lcm b a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
420 |
by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
421 |
have "lcm (lcm a b) c dvd lcm a (lcm b c)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
422 |
and "lcm a (lcm b c) dvd lcm (lcm a b) c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
423 |
by (auto intro: lcm_least |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
424 |
dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
425 |
dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
426 |
dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
427 |
dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
428 |
then show "lcm (lcm a b) c = lcm a (lcm b c)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
429 |
by (rule associated_eqI) simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
430 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
431 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
432 |
sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
433 |
proof |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
434 |
show "lcm a a = normalize a" for a |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
435 |
proof - |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
436 |
have "lcm a a dvd a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
437 |
by (rule lcm_least) simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
438 |
then show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
439 |
by (auto intro: associated_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
440 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
441 |
show "lcm (normalize a) b = lcm a b" for a b |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
442 |
using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
443 |
by (auto intro: associated_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
444 |
show "lcm 1 a = normalize a" for a |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
445 |
by (rule associated_eqI) simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
446 |
qed simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
447 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
448 |
lemma lcm_self: "lcm a a = normalize a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
449 |
by (fact lcm.idem_normalize) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
450 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
451 |
lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
452 |
by (fact lcm.left_idem) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
453 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
454 |
lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
455 |
by (fact lcm.right_idem) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
456 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
457 |
lemma gcd_lcm: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
458 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
459 |
shows "gcd a b = normalize (a * b div lcm a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
460 |
proof - |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
461 |
from assms have [simp]: "a * b div gcd a b \<noteq> 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
462 |
by (subst dvd_div_eq_0_iff) auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
463 |
let ?u = "unit_factor (a * b div gcd a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
464 |
have "gcd a b * normalize (a * b div gcd a b) = |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
465 |
gcd a b * ((a * b div gcd a b) * (1 div ?u))" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
466 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
467 |
also have "\<dots> = a * b div ?u" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
468 |
by (subst mult.assoc [symmetric]) auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
469 |
also have "\<dots> dvd a * b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
470 |
by (subst div_unit_dvd_iff) auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
471 |
finally have "gcd a b dvd ((a * b) div lcm a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
472 |
by (intro dvd_mult_imp_div) (auto simp: lcm_gcd) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
473 |
moreover have "a * b div lcm a b dvd a" and "a * b div lcm a b dvd b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
474 |
using assms by (subst div_dvd_iff_mult; simp add: lcm_eq_0_iff mult.commute[of b "lcm a b"])+ |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
475 |
ultimately have "normalize (gcd a b) = normalize (a * b div lcm a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
476 |
apply - |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
477 |
apply (rule associated_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
478 |
using assms |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
479 |
apply (auto simp: div_dvd_iff_mult zero_eq_lcm_iff) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
480 |
done |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
481 |
thus ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
482 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
483 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
484 |
lemma lcm_1_left: "lcm 1 a = normalize a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
485 |
by (fact lcm.top_left_normalize) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
486 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
487 |
lemma lcm_1_right: "lcm a 1 = normalize a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
488 |
by (fact lcm.top_right_normalize) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
489 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
490 |
lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize (c * lcm a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
491 |
proof (cases "c = 0") |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
492 |
case True |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
493 |
then show ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
494 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
495 |
case False |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
496 |
then have *: "lcm (c * a) (c * b) dvd c * lcm a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
497 |
by (auto intro: lcm_least) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
498 |
moreover have "lcm a b dvd lcm (c * a) (c * b) div c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
499 |
by (intro lcm_least) (auto intro!: dvd_mult_imp_div simp: mult_ac) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
500 |
hence "c * lcm a b dvd lcm (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
501 |
using False by (subst (asm) dvd_div_iff_mult) (auto simp: mult_ac intro: dvd_lcmI1) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
502 |
ultimately have "normalize (lcm (c * a) (c * b)) = normalize (c * lcm a b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
503 |
by (auto intro: associated_eqI) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
504 |
then show ?thesis |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
505 |
by (simp add: normalize_mult) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
506 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
507 |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
508 |
lemma lcm_mult_right: "lcm (a * c) (b * c) = normalize (lcm b a * c)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
509 |
using lcm_mult_left [of c a b] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
510 |
|
63489 | 511 |
lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
512 |
by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
513 |
|
63489 | 514 |
lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
515 |
using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
516 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
517 |
lemma lcm_div_unit1: |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
518 |
"is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" |
63489 | 519 |
by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) |
520 |
||
521 |
lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
522 |
by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
523 |
|
64850 | 524 |
lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b" |
525 |
by (fact lcm.normalize_left_idem) |
|
526 |
||
527 |
lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b" |
|
528 |
by (fact lcm.normalize_right_idem) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
529 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
530 |
lemma comp_fun_idem_gcd: "comp_fun_idem gcd" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
531 |
by standard (simp_all add: fun_eq_iff ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
532 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
533 |
lemma comp_fun_idem_lcm: "comp_fun_idem lcm" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
534 |
by standard (simp_all add: fun_eq_iff ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
535 |
|
63489 | 536 |
lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
537 |
proof (rule gcdI) |
63489 | 538 |
assume *: "gcd a b dvd gcd c d" |
539 |
and **: "gcd c d dvd gcd a b" |
|
540 |
have "gcd c d dvd c" |
|
541 |
by simp |
|
542 |
with * show "gcd a b dvd c" |
|
543 |
by (rule dvd_trans) |
|
544 |
have "gcd c d dvd d" |
|
545 |
by simp |
|
546 |
with * show "gcd a b dvd d" |
|
547 |
by (rule dvd_trans) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
548 |
show "normalize (gcd a b) = gcd a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
549 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
550 |
fix l assume "l dvd c" and "l dvd d" |
63489 | 551 |
then have "l dvd gcd c d" |
552 |
by (rule gcd_greatest) |
|
553 |
from this and ** show "l dvd gcd a b" |
|
554 |
by (rule dvd_trans) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
555 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
556 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
557 |
declare unit_factor_lcm [simp] |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
558 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
559 |
lemma lcmI: |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
560 |
assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
561 |
and "normalize c = c" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
562 |
shows "c = lcm a b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
563 |
by (rule associated_eqI) (auto simp: assms intro: lcm_least) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
564 |
|
63489 | 565 |
lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
566 |
using gcd_dvd2 by (rule dvd_lcmI2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
567 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
568 |
lemmas lcm_0 = lcm_0_right |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
569 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
570 |
lemma lcm_unique: |
63489 | 571 |
"a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
572 |
by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
573 |
|
68708 | 574 |
lemma lcm_proj1_if_dvd: |
575 |
assumes "b dvd a" shows "lcm a b = normalize a" |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
576 |
proof - |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
577 |
have "normalize (lcm a b) = normalize a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
578 |
by (rule associatedI) (use assms in auto) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
579 |
thus ?thesis by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
580 |
qed |
63489 | 581 |
|
582 |
lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
583 |
using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
584 |
|
63489 | 585 |
lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
586 |
proof |
63489 | 587 |
assume *: "lcm m n = normalize m" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
588 |
show "n dvd m" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
589 |
proof (cases "m = 0") |
63489 | 590 |
case True |
591 |
then show ?thesis by simp |
|
592 |
next |
|
593 |
case [simp]: False |
|
594 |
from * have **: "m = lcm m n * unit_factor m" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
595 |
by (simp add: unit_eq_div2) |
63489 | 596 |
show ?thesis by (subst **) simp |
597 |
qed |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
598 |
next |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
599 |
assume "n dvd m" |
63489 | 600 |
then show "lcm m n = normalize m" |
601 |
by (rule lcm_proj1_if_dvd) |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
602 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
603 |
|
63489 | 604 |
lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
605 |
using lcm_proj1_iff [of n m] by (simp add: ac_simps) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
606 |
|
69785
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
607 |
lemma gcd_mono: "a dvd c \<Longrightarrow> b dvd d \<Longrightarrow> gcd a b dvd gcd c d" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
608 |
by (simp add: gcd_dvdI1 gcd_dvdI2) |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
609 |
|
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
610 |
lemma lcm_mono: "a dvd c \<Longrightarrow> b dvd d \<Longrightarrow> lcm a b dvd lcm c d" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
611 |
by (simp add: dvd_lcmI1 dvd_lcmI2) |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
612 |
|
63924 | 613 |
lemma dvd_productE: |
67051 | 614 |
assumes "p dvd a * b" |
63924 | 615 |
obtains x y where "p = x * y" "x dvd a" "y dvd b" |
616 |
proof (cases "a = 0") |
|
617 |
case True |
|
618 |
thus ?thesis by (intro that[of p 1]) simp_all |
|
619 |
next |
|
620 |
case False |
|
621 |
define x y where "x = gcd a p" and "y = p div x" |
|
622 |
have "p = x * y" by (simp add: x_def y_def) |
|
623 |
moreover have "x dvd a" by (simp add: x_def) |
|
624 |
moreover from assms have "p dvd gcd (b * a) (b * p)" |
|
625 |
by (intro gcd_greatest) (simp_all add: mult.commute) |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
626 |
hence "p dvd b * gcd a p" by (subst (asm) gcd_mult_left) auto |
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
627 |
with False have "y dvd b" |
63924 | 628 |
by (simp add: x_def y_def div_dvd_iff_mult assms) |
629 |
ultimately show ?thesis by (rule that) |
|
630 |
qed |
|
631 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
632 |
lemma gcd_mult_unit1: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
633 |
assumes "is_unit a" shows "gcd (b * a) c = gcd b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
634 |
proof - |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
635 |
have "gcd (b * a) c dvd b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
636 |
using assms dvd_mult_unit_iff by blast |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
637 |
then show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
638 |
by (rule gcdI) simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
639 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
640 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
641 |
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
642 |
using gcd.commute gcd_mult_unit1 by auto |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
643 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
644 |
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
645 |
by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
646 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
647 |
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
648 |
by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
649 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
650 |
lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
651 |
by (fact gcd.normalize_left_idem) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
652 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
653 |
lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
654 |
by (fact gcd.normalize_right_idem) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
655 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
656 |
lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
657 |
by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
658 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
659 |
lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
660 |
using gcd_add1 [of n m] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
661 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
662 |
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
663 |
by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
664 |
|
60686 | 665 |
end |
666 |
||
62345 | 667 |
class ring_gcd = comm_ring_1 + semiring_gcd |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
668 |
begin |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
669 |
|
63489 | 670 |
lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" |
671 |
by (rule sym, rule gcdI) (simp_all add: gcd_greatest) |
|
672 |
||
673 |
lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" |
|
674 |
by (rule sym, rule gcdI) (simp_all add: gcd_greatest) |
|
675 |
||
676 |
lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
677 |
by (fact gcd_neg1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
678 |
|
63489 | 679 |
lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
680 |
by (fact gcd_neg2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
681 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
682 |
lemma gcd_diff1: "gcd (m - n) n = gcd m n" |
63489 | 683 |
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
684 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
685 |
lemma gcd_diff2: "gcd (n - m) n = gcd m n" |
63489 | 686 |
by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
687 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
688 |
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" |
63489 | 689 |
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
690 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
691 |
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" |
63489 | 692 |
by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
693 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
694 |
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
695 |
by (fact lcm_neg1) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
696 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
697 |
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
698 |
by (fact lcm_neg2) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
699 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
700 |
end |
62345 | 701 |
|
60686 | 702 |
class semiring_Gcd = semiring_gcd + Gcd + |
703 |
assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" |
|
704 |
and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" |
|
705 |
and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" |
|
62345 | 706 |
assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" |
707 |
and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" |
|
708 |
and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" |
|
60686 | 709 |
begin |
710 |
||
63489 | 711 |
lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}" |
62345 | 712 |
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) |
713 |
||
63489 | 714 |
lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}" |
62345 | 715 |
by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) |
716 |
||
63489 | 717 |
lemma Gcd_empty [simp]: "Gcd {} = 0" |
60686 | 718 |
by (rule dvd_0_left, rule Gcd_greatest) simp |
719 |
||
63489 | 720 |
lemma Lcm_empty [simp]: "Lcm {} = 1" |
62345 | 721 |
by (auto intro: associated_eqI Lcm_least) |
722 |
||
63489 | 723 |
lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" |
62345 | 724 |
proof - |
725 |
have "Gcd (insert a A) dvd gcd a (Gcd A)" |
|
726 |
by (auto intro: Gcd_dvd Gcd_greatest) |
|
727 |
moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" |
|
728 |
proof (rule Gcd_greatest) |
|
729 |
fix b |
|
730 |
assume "b \<in> insert a A" |
|
731 |
then show "gcd a (Gcd A) dvd b" |
|
732 |
proof |
|
63489 | 733 |
assume "b = a" |
734 |
then show ?thesis |
|
735 |
by simp |
|
62345 | 736 |
next |
737 |
assume "b \<in> A" |
|
63489 | 738 |
then have "Gcd A dvd b" |
739 |
by (rule Gcd_dvd) |
|
740 |
moreover have "gcd a (Gcd A) dvd Gcd A" |
|
741 |
by simp |
|
742 |
ultimately show ?thesis |
|
743 |
by (blast intro: dvd_trans) |
|
62345 | 744 |
qed |
745 |
qed |
|
746 |
ultimately show ?thesis |
|
747 |
by (auto intro: associated_eqI) |
|
748 |
qed |
|
749 |
||
63489 | 750 |
lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" |
62345 | 751 |
proof (rule sym) |
752 |
have "lcm a (Lcm A) dvd Lcm (insert a A)" |
|
753 |
by (auto intro: dvd_Lcm Lcm_least) |
|
754 |
moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" |
|
755 |
proof (rule Lcm_least) |
|
756 |
fix b |
|
757 |
assume "b \<in> insert a A" |
|
758 |
then show "b dvd lcm a (Lcm A)" |
|
759 |
proof |
|
63489 | 760 |
assume "b = a" |
761 |
then show ?thesis by simp |
|
62345 | 762 |
next |
763 |
assume "b \<in> A" |
|
63489 | 764 |
then have "b dvd Lcm A" |
765 |
by (rule dvd_Lcm) |
|
766 |
moreover have "Lcm A dvd lcm a (Lcm A)" |
|
767 |
by simp |
|
768 |
ultimately show ?thesis |
|
769 |
by (blast intro: dvd_trans) |
|
62345 | 770 |
qed |
771 |
qed |
|
772 |
ultimately show "lcm a (Lcm A) = Lcm (insert a A)" |
|
773 |
by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) |
|
774 |
qed |
|
775 |
||
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
776 |
lemma LcmI: |
63489 | 777 |
assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" |
778 |
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" |
|
779 |
and "normalize b = b" |
|
780 |
shows "b = Lcm A" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
781 |
by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
782 |
|
63489 | 783 |
lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
784 |
by (blast intro: Lcm_least dvd_Lcm) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
785 |
|
63489 | 786 |
lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" |
68708 | 787 |
proof - |
788 |
have "\<And>d. \<lbrakk>Lcm A dvd d; Lcm B dvd d\<rbrakk> \<Longrightarrow> Lcm (A \<union> B) dvd d" |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
789 |
by (meson UnE Lcm_least dvd_Lcm dvd_trans) |
68708 | 790 |
then show ?thesis |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
791 |
by (meson Lcm_subset lcm_unique normalize_Lcm sup.cobounded1 sup.cobounded2) |
68708 | 792 |
qed |
63489 | 793 |
|
794 |
lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}" |
|
795 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 796 |
proof |
797 |
assume ?P |
|
798 |
show ?Q |
|
799 |
proof |
|
800 |
fix a |
|
801 |
assume "a \<in> A" |
|
63489 | 802 |
then have "Gcd A dvd a" |
803 |
by (rule Gcd_dvd) |
|
804 |
with \<open>?P\<close> have "a = 0" |
|
805 |
by simp |
|
806 |
then show "a \<in> {0}" |
|
807 |
by simp |
|
60686 | 808 |
qed |
809 |
next |
|
810 |
assume ?Q |
|
811 |
have "0 dvd Gcd A" |
|
812 |
proof (rule Gcd_greatest) |
|
813 |
fix a |
|
814 |
assume "a \<in> A" |
|
63489 | 815 |
with \<open>?Q\<close> have "a = 0" |
816 |
by auto |
|
817 |
then show "0 dvd a" |
|
818 |
by simp |
|
60686 | 819 |
qed |
63489 | 820 |
then show ?P |
821 |
by simp |
|
60686 | 822 |
qed |
823 |
||
63489 | 824 |
lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" |
825 |
(is "?P \<longleftrightarrow> ?Q") |
|
60686 | 826 |
proof |
827 |
assume ?P |
|
828 |
show ?Q |
|
829 |
proof |
|
830 |
fix a |
|
831 |
assume "a \<in> A" |
|
832 |
then have "a dvd Lcm A" |
|
833 |
by (rule dvd_Lcm) |
|
834 |
with \<open>?P\<close> show "is_unit a" |
|
835 |
by simp |
|
836 |
qed |
|
837 |
next |
|
838 |
assume ?Q |
|
839 |
then have "is_unit (Lcm A)" |
|
840 |
by (blast intro: Lcm_least) |
|
841 |
then have "normalize (Lcm A) = 1" |
|
842 |
by (rule is_unit_normalize) |
|
843 |
then show ?P |
|
844 |
by simp |
|
845 |
qed |
|
846 |
||
63489 | 847 |
lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" |
62345 | 848 |
proof (cases "Lcm A = 0") |
63489 | 849 |
case True |
850 |
then show ?thesis |
|
851 |
by simp |
|
62345 | 852 |
next |
853 |
case False |
|
854 |
with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" |
|
855 |
by blast |
|
856 |
with False show ?thesis |
|
857 |
by simp |
|
858 |
qed |
|
859 |
||
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
860 |
lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
63489 | 861 |
by (simp add: Gcd_Lcm unit_factor_Lcm) |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
862 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
863 |
lemma GcdI: |
63489 | 864 |
assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" |
865 |
and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
866 |
and "normalize b = b" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
867 |
shows "b = Gcd A" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
868 |
by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
869 |
|
62345 | 870 |
lemma Gcd_eq_1_I: |
871 |
assumes "is_unit a" and "a \<in> A" |
|
872 |
shows "Gcd A = 1" |
|
873 |
proof - |
|
874 |
from assms have "is_unit (Gcd A)" |
|
875 |
by (blast intro: Gcd_dvd dvd_unit_imp_unit) |
|
876 |
then have "normalize (Gcd A) = 1" |
|
877 |
by (rule is_unit_normalize) |
|
878 |
then show ?thesis |
|
879 |
by simp |
|
880 |
qed |
|
881 |
||
60686 | 882 |
lemma Lcm_eq_0_I: |
883 |
assumes "0 \<in> A" |
|
884 |
shows "Lcm A = 0" |
|
885 |
proof - |
|
886 |
from assms have "0 dvd Lcm A" |
|
887 |
by (rule dvd_Lcm) |
|
888 |
then show ?thesis |
|
889 |
by simp |
|
890 |
qed |
|
891 |
||
63489 | 892 |
lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" |
62345 | 893 |
using dvd_refl by (rule Gcd_eq_1_I) simp |
894 |
||
63489 | 895 |
lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" |
61929 | 896 |
by (rule Lcm_eq_0_I) simp |
60686 | 897 |
|
61929 | 898 |
lemma Lcm_0_iff: |
899 |
assumes "finite A" |
|
900 |
shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" |
|
901 |
proof (cases "A = {}") |
|
63489 | 902 |
case True |
903 |
then show ?thesis by simp |
|
61929 | 904 |
next |
63489 | 905 |
case False |
906 |
with assms show ?thesis |
|
68708 | 907 |
by (induct A rule: finite_ne_induct) (auto simp: lcm_eq_0_iff) |
60686 | 908 |
qed |
61929 | 909 |
|
63489 | 910 |
lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" |
62345 | 911 |
proof - |
912 |
have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a |
|
913 |
proof - |
|
63489 | 914 |
from that obtain B where "A = insert a B" |
915 |
by blast |
|
62350 | 916 |
moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" |
62345 | 917 |
by (rule gcd_dvd1) |
918 |
ultimately show "Gcd (normalize ` A) dvd a" |
|
919 |
by simp |
|
920 |
qed |
|
921 |
then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" |
|
922 |
by (auto intro!: Gcd_greatest intro: Gcd_dvd) |
|
923 |
then show ?thesis |
|
924 |
by (auto intro: associated_eqI) |
|
925 |
qed |
|
926 |
||
62346 | 927 |
lemma Gcd_eqI: |
928 |
assumes "normalize a = a" |
|
929 |
assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" |
|
930 |
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" |
|
931 |
shows "Gcd A = a" |
|
932 |
using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) |
|
933 |
||
63489 | 934 |
lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" |
935 |
using Gcd_dvd dvd_trans by blast |
|
936 |
||
937 |
lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" |
|
63359 | 938 |
by (blast dest: dvd_GcdD intro: Gcd_greatest) |
939 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
940 |
lemma Gcd_mult: "Gcd ((*) c ` A) = normalize (c * Gcd A)" |
63359 | 941 |
proof (cases "c = 0") |
63489 | 942 |
case True |
943 |
then show ?thesis by auto |
|
944 |
next |
|
63359 | 945 |
case [simp]: False |
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
69038
diff
changeset
|
946 |
have "Gcd ((*) c ` A) div c dvd Gcd A" |
63359 | 947 |
by (intro Gcd_greatest, subst div_dvd_iff_mult) |
948 |
(auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) |
|
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
69038
diff
changeset
|
949 |
then have "Gcd ((*) c ` A) dvd c * Gcd A" |
63359 | 950 |
by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
951 |
moreover have "c * Gcd A dvd Gcd ((*) c ` A)" |
63359 | 952 |
by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
953 |
ultimately have "normalize (Gcd ((*) c ` A)) = normalize (c * Gcd A)" |
63359 | 954 |
by (rule associatedI) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
955 |
then show ?thesis by simp |
63489 | 956 |
qed |
63359 | 957 |
|
62346 | 958 |
lemma Lcm_eqI: |
959 |
assumes "normalize a = a" |
|
63489 | 960 |
and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" |
62346 | 961 |
and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" |
962 |
shows "Lcm A = a" |
|
963 |
using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) |
|
964 |
||
63489 | 965 |
lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" |
966 |
using dvd_Lcm dvd_trans by blast |
|
967 |
||
968 |
lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" |
|
63359 | 969 |
by (blast dest: Lcm_dvdD intro: Lcm_least) |
970 |
||
63489 | 971 |
lemma Lcm_mult: |
63359 | 972 |
assumes "A \<noteq> {}" |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
973 |
shows "Lcm ((*) c ` A) = normalize (c * Lcm A)" |
63359 | 974 |
proof (cases "c = 0") |
975 |
case True |
|
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
69038
diff
changeset
|
976 |
with assms have "(*) c ` A = {0}" |
63489 | 977 |
by auto |
978 |
with True show ?thesis by auto |
|
63359 | 979 |
next |
980 |
case [simp]: False |
|
63489 | 981 |
from assms obtain x where x: "x \<in> A" |
982 |
by blast |
|
983 |
have "c dvd c * x" |
|
984 |
by simp |
|
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
69038
diff
changeset
|
985 |
also from x have "c * x dvd Lcm ((*) c ` A)" |
63489 | 986 |
by (intro dvd_Lcm) auto |
69064
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents:
69038
diff
changeset
|
987 |
finally have dvd: "c dvd Lcm ((*) c ` A)" . |
69768 | 988 |
moreover have "Lcm A dvd Lcm ((*) c ` A) div c" |
63359 | 989 |
by (intro Lcm_least dvd_mult_imp_div) |
63489 | 990 |
(auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) |
69768 | 991 |
ultimately have "c * Lcm A dvd Lcm ((*) c ` A)" |
992 |
by auto |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
993 |
moreover have "Lcm ((*) c ` A) dvd c * Lcm A" |
63359 | 994 |
by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
995 |
ultimately have "normalize (c * Lcm A) = normalize (Lcm ((*) c ` A))" |
63359 | 996 |
by (rule associatedI) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
997 |
then show ?thesis by simp |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
998 |
qed |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
999 |
|
63489 | 1000 |
lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})" |
1001 |
proof - |
|
1002 |
have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" |
|
1003 |
by blast |
|
1004 |
then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})" |
|
1005 |
by (simp add: Lcm_Un [symmetric]) |
|
1006 |
also have "Lcm {a\<in>A. is_unit a} = 1" |
|
1007 |
by simp |
|
1008 |
finally show ?thesis |
|
1009 |
by simp |
|
1010 |
qed |
|
1011 |
||
1012 |
lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1013 |
by (metis Lcm_least dvd_0_left dvd_Lcm) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1014 |
|
63489 | 1015 |
lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1016 |
by (auto simp: Lcm_0_iff') |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1017 |
|
63489 | 1018 |
lemma Lcm_singleton [simp]: "Lcm {a} = normalize a" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1019 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1020 |
|
63489 | 1021 |
lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1022 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1023 |
|
63489 | 1024 |
lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1025 |
by (auto intro!: Gcd_eq_1_I) |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1026 |
|
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1027 |
lemma Gcd_singleton [simp]: "Gcd {a} = normalize a" |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1028 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1029 |
|
63489 | 1030 |
lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b" |
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1031 |
by simp |
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
1032 |
|
69785
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1033 |
lemma Gcd_mono: |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1034 |
assumes "\<And>x. x \<in> A \<Longrightarrow> f x dvd g x" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1035 |
shows "(GCD x\<in>A. f x) dvd (GCD x\<in>A. g x)" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1036 |
proof (intro Gcd_greatest, safe) |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1037 |
fix x assume "x \<in> A" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1038 |
hence "(GCD x\<in>A. f x) dvd f x" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1039 |
by (intro Gcd_dvd) auto |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1040 |
also have "f x dvd g x" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1041 |
using \<open>x \<in> A\<close> assms by blast |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1042 |
finally show "(GCD x\<in>A. f x) dvd \<dots>" . |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1043 |
qed |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1044 |
|
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1045 |
lemma Lcm_mono: |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1046 |
assumes "\<And>x. x \<in> A \<Longrightarrow> f x dvd g x" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1047 |
shows "(LCM x\<in>A. f x) dvd (LCM x\<in>A. g x)" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1048 |
proof (intro Lcm_least, safe) |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1049 |
fix x assume "x \<in> A" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1050 |
hence "f x dvd g x" by (rule assms) |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1051 |
also have "g x dvd (LCM x\<in>A. g x)" |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1052 |
using \<open>x \<in> A\<close> by (intro dvd_Lcm) auto |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1053 |
finally show "f x dvd \<dots>" . |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1054 |
qed |
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
Manuel Eberl <eberlm@in.tum.de>
parents:
69768
diff
changeset
|
1055 |
|
62350 | 1056 |
end |
62345 | 1057 |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1058 |
|
64850 | 1059 |
subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close> |
1060 |
||
1061 |
context semiring_gcd |
|
1062 |
begin |
|
1063 |
||
1064 |
sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize |
|
1065 |
defines |
|
69038 | 1066 |
Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n") = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" .. |
64850 | 1067 |
|
1068 |
abbreviation gcd_list :: "'a list \<Rightarrow> 'a" |
|
1069 |
where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)" |
|
1070 |
||
1071 |
sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize |
|
1072 |
defines |
|
69038 | 1073 |
Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n") = Lcm_fin.F .. |
64850 | 1074 |
|
1075 |
abbreviation lcm_list :: "'a list \<Rightarrow> 'a" |
|
1076 |
where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1077 |
|
64850 | 1078 |
lemma Gcd_fin_dvd: |
1079 |
"a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1080 |
by (induct A rule: infinite_finite_induct) |
64850 | 1081 |
(auto intro: dvd_trans) |
1082 |
||
1083 |
lemma dvd_Lcm_fin: |
|
1084 |
"a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A" |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1085 |
by (induct A rule: infinite_finite_induct) |
64850 | 1086 |
(auto intro: dvd_trans) |
1087 |
||
1088 |
lemma Gcd_fin_greatest: |
|
1089 |
"a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b" |
|
1090 |
using that by (induct A) simp_all |
|
1091 |
||
1092 |
lemma Lcm_fin_least: |
|
1093 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" |
|
1094 |
using that by (induct A) simp_all |
|
1095 |
||
1096 |
lemma gcd_list_greatest: |
|
1097 |
"a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b" |
|
1098 |
by (rule Gcd_fin_greatest) (simp_all add: that) |
|
1099 |
||
1100 |
lemma lcm_list_least: |
|
1101 |
"lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a" |
|
1102 |
by (rule Lcm_fin_least) (simp_all add: that) |
|
1103 |
||
1104 |
lemma dvd_Gcd_fin_iff: |
|
1105 |
"b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A" |
|
1106 |
using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"]) |
|
1107 |
||
1108 |
lemma dvd_gcd_list_iff: |
|
1109 |
"b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)" |
|
1110 |
by (simp add: dvd_Gcd_fin_iff) |
|
65552
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
wenzelm
parents:
64850
diff
changeset
|
1111 |
|
64850 | 1112 |
lemma Lcm_fin_dvd_iff: |
1113 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A" |
|
1114 |
using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b]) |
|
1115 |
||
1116 |
lemma lcm_list_dvd_iff: |
|
1117 |
"lcm_list xs dvd b \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)" |
|
1118 |
by (simp add: Lcm_fin_dvd_iff) |
|
1119 |
||
1120 |
lemma Gcd_fin_mult: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1121 |
"Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A)" if "finite A" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1122 |
using that by induction (auto simp: gcd_mult_left) |
64850 | 1123 |
|
1124 |
lemma Lcm_fin_mult: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1125 |
"Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A)" if "A \<noteq> {}" |
64850 | 1126 |
proof (cases "b = 0") |
1127 |
case True |
|
1128 |
moreover from that have "times 0 ` A = {0}" |
|
1129 |
by auto |
|
1130 |
ultimately show ?thesis |
|
1131 |
by simp |
|
1132 |
next |
|
1133 |
case False |
|
1134 |
show ?thesis proof (cases "finite A") |
|
1135 |
case False |
|
66936 | 1136 |
moreover have "inj_on (times b) A" |
1137 |
using \<open>b \<noteq> 0\<close> by (rule inj_on_mult) |
|
64850 | 1138 |
ultimately have "infinite (times b ` A)" |
1139 |
by (simp add: finite_image_iff) |
|
1140 |
with False show ?thesis |
|
1141 |
by simp |
|
1142 |
next |
|
1143 |
case True |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1144 |
then show ?thesis using that |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1145 |
by (induct A rule: finite_ne_induct) (auto simp: lcm_mult_left) |
64850 | 1146 |
qed |
1147 |
qed |
|
1148 |
||
65811 | 1149 |
lemma unit_factor_Gcd_fin: |
1150 |
"unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" |
|
1151 |
by (rule normalize_idem_imp_unit_factor_eq) simp |
|
1152 |
||
1153 |
lemma unit_factor_Lcm_fin: |
|
1154 |
"unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" |
|
1155 |
by (rule normalize_idem_imp_unit_factor_eq) simp |
|
1156 |
||
1157 |
lemma is_unit_Gcd_fin_iff [simp]: |
|
1158 |
"is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1" |
|
1159 |
by (rule normalize_idem_imp_is_unit_iff) simp |
|
1160 |
||
1161 |
lemma is_unit_Lcm_fin_iff [simp]: |
|
1162 |
"is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1" |
|
1163 |
by (rule normalize_idem_imp_is_unit_iff) simp |
|
1164 |
||
1165 |
lemma Gcd_fin_0_iff: |
|
1166 |
"Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A" |
|
1167 |
by (induct A rule: infinite_finite_induct) simp_all |
|
1168 |
||
1169 |
lemma Lcm_fin_0_iff: |
|
1170 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A" |
|
68708 | 1171 |
using that by (induct A) (auto simp: lcm_eq_0_iff) |
65811 | 1172 |
|
1173 |
lemma Lcm_fin_1_iff: |
|
1174 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A" |
|
1175 |
by (induct A rule: infinite_finite_induct) simp_all |
|
1176 |
||
64850 | 1177 |
end |
1178 |
||
1179 |
context semiring_Gcd |
|
1180 |
begin |
|
1181 |
||
1182 |
lemma Gcd_fin_eq_Gcd [simp]: |
|
1183 |
"Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set" |
|
1184 |
using that by induct simp_all |
|
1185 |
||
1186 |
lemma Gcd_set_eq_fold [code_unfold]: |
|
1187 |
"Gcd (set xs) = fold gcd xs 0" |
|
1188 |
by (simp add: Gcd_fin.set_eq_fold [symmetric]) |
|
1189 |
||
1190 |
lemma Lcm_fin_eq_Lcm [simp]: |
|
1191 |
"Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set" |
|
1192 |
using that by induct simp_all |
|
1193 |
||
1194 |
lemma Lcm_set_eq_fold [code_unfold]: |
|
1195 |
"Lcm (set xs) = fold lcm xs 1" |
|
1196 |
by (simp add: Lcm_fin.set_eq_fold [symmetric]) |
|
1197 |
||
1198 |
end |
|
63489 | 1199 |
|
67051 | 1200 |
|
1201 |
subsection \<open>Coprimality\<close> |
|
1202 |
||
1203 |
context semiring_gcd |
|
1204 |
begin |
|
1205 |
||
1206 |
lemma coprime_imp_gcd_eq_1 [simp]: |
|
1207 |
"gcd a b = 1" if "coprime a b" |
|
1208 |
proof - |
|
1209 |
define t r s where "t = gcd a b" and "r = a div t" and "s = b div t" |
|
1210 |
then have "a = t * r" and "b = t * s" |
|
1211 |
by simp_all |
|
1212 |
with that have "coprime (t * r) (t * s)" |
|
1213 |
by simp |
|
1214 |
then show ?thesis |
|
1215 |
by (simp add: t_def) |
|
1216 |
qed |
|
1217 |
||
68270
2bc921b2159b
treat gcd_eq_1_imp_coprime analogously to mod_0_imp_dvd
haftmann
parents:
67399
diff
changeset
|
1218 |
lemma gcd_eq_1_imp_coprime [dest!]: |
67051 | 1219 |
"coprime a b" if "gcd a b = 1" |
1220 |
proof (rule coprimeI) |
|
1221 |
fix c |
|
1222 |
assume "c dvd a" and "c dvd b" |
|
1223 |
then have "c dvd gcd a b" |
|
1224 |
by (rule gcd_greatest) |
|
1225 |
with that show "is_unit c" |
|
1226 |
by simp |
|
1227 |
qed |
|
1228 |
||
1229 |
lemma coprime_iff_gcd_eq_1 [presburger, code]: |
|
1230 |
"coprime a b \<longleftrightarrow> gcd a b = 1" |
|
1231 |
by rule (simp_all add: gcd_eq_1_imp_coprime) |
|
1232 |
||
1233 |
lemma is_unit_gcd [simp]: |
|
1234 |
"is_unit (gcd a b) \<longleftrightarrow> coprime a b" |
|
1235 |
by (simp add: coprime_iff_gcd_eq_1) |
|
1236 |
||
1237 |
lemma coprime_add_one_left [simp]: "coprime (a + 1) a" |
|
1238 |
by (simp add: gcd_eq_1_imp_coprime ac_simps) |
|
1239 |
||
1240 |
lemma coprime_add_one_right [simp]: "coprime a (a + 1)" |
|
1241 |
using coprime_add_one_left [of a] by (simp add: ac_simps) |
|
1242 |
||
1243 |
lemma coprime_mult_left_iff [simp]: |
|
1244 |
"coprime (a * b) c \<longleftrightarrow> coprime a c \<and> coprime b c" |
|
1245 |
proof |
|
1246 |
assume "coprime (a * b) c" |
|
1247 |
with coprime_common_divisor [of "a * b" c] |
|
1248 |
have *: "is_unit d" if "d dvd a * b" and "d dvd c" for d |
|
1249 |
using that by blast |
|
1250 |
have "coprime a c" |
|
1251 |
by (rule coprimeI, rule *) simp_all |
|
1252 |
moreover have "coprime b c" |
|
1253 |
by (rule coprimeI, rule *) simp_all |
|
1254 |
ultimately show "coprime a c \<and> coprime b c" .. |
|
1255 |
next |
|
1256 |
assume "coprime a c \<and> coprime b c" |
|
1257 |
then have "coprime a c" "coprime b c" |
|
1258 |
by simp_all |
|
1259 |
show "coprime (a * b) c" |
|
1260 |
proof (rule coprimeI) |
|
1261 |
fix d |
|
1262 |
assume "d dvd a * b" |
|
1263 |
then obtain r s where d: "d = r * s" "r dvd a" "s dvd b" |
|
1264 |
by (rule dvd_productE) |
|
1265 |
assume "d dvd c" |
|
1266 |
with d have "r * s dvd c" |
|
1267 |
by simp |
|
1268 |
then have "r dvd c" "s dvd c" |
|
1269 |
by (auto intro: dvd_mult_left dvd_mult_right) |
|
1270 |
from \<open>coprime a c\<close> \<open>r dvd a\<close> \<open>r dvd c\<close> |
|
1271 |
have "is_unit r" |
|
1272 |
by (rule coprime_common_divisor) |
|
1273 |
moreover from \<open>coprime b c\<close> \<open>s dvd b\<close> \<open>s dvd c\<close> |
|
1274 |
have "is_unit s" |
|
1275 |
by (rule coprime_common_divisor) |
|
1276 |
ultimately show "is_unit d" |
|
1277 |
by (simp add: d is_unit_mult_iff) |
|
1278 |
qed |
|
1279 |
qed |
|
1280 |
||
1281 |
lemma coprime_mult_right_iff [simp]: |
|
1282 |
"coprime c (a * b) \<longleftrightarrow> coprime c a \<and> coprime c b" |
|
1283 |
using coprime_mult_left_iff [of a b c] by (simp add: ac_simps) |
|
1284 |
||
1285 |
lemma coprime_power_left_iff [simp]: |
|
1286 |
"coprime (a ^ n) b \<longleftrightarrow> coprime a b \<or> n = 0" |
|
1287 |
proof (cases "n = 0") |
|
1288 |
case True |
|
1289 |
then show ?thesis |
|
1290 |
by simp |
|
1291 |
next |
|
1292 |
case False |
|
1293 |
then have "n > 0" |
|
1294 |
by simp |
|
1295 |
then show ?thesis |
|
1296 |
by (induction n rule: nat_induct_non_zero) simp_all |
|
1297 |
qed |
|
1298 |
||
1299 |
lemma coprime_power_right_iff [simp]: |
|
1300 |
"coprime a (b ^ n) \<longleftrightarrow> coprime a b \<or> n = 0" |
|
1301 |
using coprime_power_left_iff [of b n a] by (simp add: ac_simps) |
|
1302 |
||
1303 |
lemma prod_coprime_left: |
|
1304 |
"coprime (\<Prod>i\<in>A. f i) a" if "\<And>i. i \<in> A \<Longrightarrow> coprime (f i) a" |
|
1305 |
using that by (induct A rule: infinite_finite_induct) simp_all |
|
1306 |
||
1307 |
lemma prod_coprime_right: |
|
1308 |
"coprime a (\<Prod>i\<in>A. f i)" if "\<And>i. i \<in> A \<Longrightarrow> coprime a (f i)" |
|
1309 |
using that prod_coprime_left [of A f a] by (simp add: ac_simps) |
|
1310 |
||
1311 |
lemma prod_list_coprime_left: |
|
1312 |
"coprime (prod_list xs) a" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime x a" |
|
1313 |
using that by (induct xs) simp_all |
|
1314 |
||
1315 |
lemma prod_list_coprime_right: |
|
1316 |
"coprime a (prod_list xs)" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime a x" |
|
1317 |
using that prod_list_coprime_left [of xs a] by (simp add: ac_simps) |
|
1318 |
||
1319 |
lemma coprime_dvd_mult_left_iff: |
|
1320 |
"a dvd b * c \<longleftrightarrow> a dvd b" if "coprime a c" |
|
1321 |
proof |
|
1322 |
assume "a dvd b" |
|
1323 |
then show "a dvd b * c" |
|
1324 |
by simp |
|
1325 |
next |
|
1326 |
assume "a dvd b * c" |
|
1327 |
show "a dvd b" |
|
1328 |
proof (cases "b = 0") |
|
1329 |
case True |
|
1330 |
then show ?thesis |
|
1331 |
by simp |
|
1332 |
next |
|
1333 |
case False |
|
1334 |
then have unit: "is_unit (unit_factor b)" |
|
1335 |
by simp |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1336 |
from \<open>coprime a c\<close> |
67051 | 1337 |
have "gcd (b * a) (b * c) * unit_factor b = b" |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1338 |
by (subst gcd_mult_left) (simp add: ac_simps) |
67051 | 1339 |
moreover from \<open>a dvd b * c\<close> |
1340 |
have "a dvd gcd (b * a) (b * c) * unit_factor b" |
|
1341 |
by (simp add: dvd_mult_unit_iff unit) |
|
1342 |
ultimately show ?thesis |
|
1343 |
by simp |
|
1344 |
qed |
|
1345 |
qed |
|
1346 |
||
1347 |
lemma coprime_dvd_mult_right_iff: |
|
1348 |
"a dvd c * b \<longleftrightarrow> a dvd b" if "coprime a c" |
|
1349 |
using that coprime_dvd_mult_left_iff [of a c b] by (simp add: ac_simps) |
|
1350 |
||
1351 |
lemma divides_mult: |
|
1352 |
"a * b dvd c" if "a dvd c" and "b dvd c" and "coprime a b" |
|
1353 |
proof - |
|
1354 |
from \<open>b dvd c\<close> obtain b' where "c = b * b'" .. |
|
1355 |
with \<open>a dvd c\<close> have "a dvd b' * b" |
|
1356 |
by (simp add: ac_simps) |
|
1357 |
with \<open>coprime a b\<close> have "a dvd b'" |
|
1358 |
by (simp add: coprime_dvd_mult_left_iff) |
|
1359 |
then obtain a' where "b' = a * a'" .. |
|
1360 |
with \<open>c = b * b'\<close> have "c = (a * b) * a'" |
|
1361 |
by (simp add: ac_simps) |
|
1362 |
then show ?thesis .. |
|
1363 |
qed |
|
1364 |
||
1365 |
lemma div_gcd_coprime: |
|
1366 |
assumes "a \<noteq> 0 \<or> b \<noteq> 0" |
|
1367 |
shows "coprime (a div gcd a b) (b div gcd a b)" |
|
1368 |
proof - |
|
1369 |
let ?g = "gcd a b" |
|
1370 |
let ?a' = "a div ?g" |
|
1371 |
let ?b' = "b div ?g" |
|
1372 |
let ?g' = "gcd ?a' ?b'" |
|
1373 |
have dvdg: "?g dvd a" "?g dvd b" |
|
1374 |
by simp_all |
|
1375 |
have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" |
|
1376 |
by simp_all |
|
1377 |
from dvdg dvdg' obtain ka kb ka' kb' where |
|
1378 |
kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" |
|
1379 |
unfolding dvd_def by blast |
|
1380 |
from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" |
|
1381 |
by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) |
|
1382 |
then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" |
|
68708 | 1383 |
by (auto simp: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) |
67051 | 1384 |
have "?g \<noteq> 0" |
1385 |
using assms by simp |
|
1386 |
moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . |
|
1387 |
ultimately show ?thesis |
|
1388 |
using dvd_times_left_cancel_iff [of "gcd a b" _ 1] |
|
1389 |
by simp (simp only: coprime_iff_gcd_eq_1) |
|
1390 |
qed |
|
1391 |
||
1392 |
lemma gcd_coprime: |
|
1393 |
assumes c: "gcd a b \<noteq> 0" |
|
1394 |
and a: "a = a' * gcd a b" |
|
1395 |
and b: "b = b' * gcd a b" |
|
1396 |
shows "coprime a' b'" |
|
1397 |
proof - |
|
1398 |
from c have "a \<noteq> 0 \<or> b \<noteq> 0" |
|
1399 |
by simp |
|
1400 |
with div_gcd_coprime have "coprime (a div gcd a b) (b div gcd a b)" . |
|
1401 |
also from assms have "a div gcd a b = a'" |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1402 |
using dvd_div_eq_mult gcd_dvd1 by blast |
67051 | 1403 |
also from assms have "b div gcd a b = b'" |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1404 |
using dvd_div_eq_mult gcd_dvd1 by blast |
67051 | 1405 |
finally show ?thesis . |
1406 |
qed |
|
1407 |
||
1408 |
lemma gcd_coprime_exists: |
|
1409 |
assumes "gcd a b \<noteq> 0" |
|
1410 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" |
|
68708 | 1411 |
proof - |
1412 |
have "coprime (a div gcd a b) (b div gcd a b)" |
|
1413 |
using assms div_gcd_coprime by auto |
|
1414 |
then show ?thesis |
|
1415 |
by force |
|
1416 |
qed |
|
67051 | 1417 |
|
1418 |
lemma pow_divides_pow_iff [simp]: |
|
1419 |
"a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0" |
|
1420 |
proof (cases "gcd a b = 0") |
|
1421 |
case True |
|
1422 |
then show ?thesis |
|
1423 |
by simp |
|
1424 |
next |
|
1425 |
case False |
|
1426 |
show ?thesis |
|
1427 |
proof |
|
1428 |
let ?d = "gcd a b" |
|
1429 |
from \<open>n > 0\<close> obtain m where m: "n = Suc m" |
|
1430 |
by (cases n) simp_all |
|
1431 |
from False have zn: "?d ^ n \<noteq> 0" |
|
1432 |
by (rule power_not_zero) |
|
1433 |
from gcd_coprime_exists [OF False] |
|
1434 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" |
|
1435 |
by blast |
|
1436 |
assume "a ^ n dvd b ^ n" |
|
1437 |
then have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" |
|
1438 |
by (simp add: ab'(1,2)[symmetric]) |
|
1439 |
then have "?d^n * a'^n dvd ?d^n * b'^n" |
|
1440 |
by (simp only: power_mult_distrib ac_simps) |
|
1441 |
with zn have "a' ^ n dvd b' ^ n" |
|
1442 |
by simp |
|
1443 |
then have "a' dvd b' ^ n" |
|
1444 |
using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) |
|
1445 |
then have "a' dvd b' ^ m * b'" |
|
1446 |
by (simp add: m ac_simps) |
|
1447 |
moreover have "coprime a' (b' ^ n)" |
|
1448 |
using \<open>coprime a' b'\<close> by simp |
|
1449 |
then have "a' dvd b'" |
|
1450 |
using \<open>a' dvd b' ^ n\<close> coprime_dvd_mult_left_iff dvd_mult by blast |
|
1451 |
then have "a' * ?d dvd b' * ?d" |
|
1452 |
by (rule mult_dvd_mono) simp |
|
1453 |
with ab'(1,2) show "a dvd b" |
|
1454 |
by simp |
|
1455 |
next |
|
1456 |
assume "a dvd b" |
|
1457 |
with \<open>n > 0\<close> show "a ^ n dvd b ^ n" |
|
1458 |
by (induction rule: nat_induct_non_zero) |
|
1459 |
(simp_all add: mult_dvd_mono) |
|
1460 |
qed |
|
1461 |
qed |
|
1462 |
||
1463 |
lemma coprime_crossproduct: |
|
1464 |
fixes a b c d :: 'a |
|
1465 |
assumes "coprime a d" and "coprime b c" |
|
1466 |
shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> |
|
1467 |
normalize a = normalize b \<and> normalize c = normalize d" |
|
1468 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
1469 |
proof |
|
1470 |
assume ?rhs |
|
1471 |
then show ?lhs by simp |
|
1472 |
next |
|
1473 |
assume ?lhs |
|
1474 |
from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" |
|
1475 |
by (auto intro: dvdI dest: sym) |
|
1476 |
with \<open>coprime a d\<close> have "a dvd b" |
|
1477 |
by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) |
|
1478 |
from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" |
|
1479 |
by (auto intro: dvdI dest: sym) |
|
1480 |
with \<open>coprime b c\<close> have "b dvd a" |
|
1481 |
by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) |
|
1482 |
from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" |
|
1483 |
by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
1484 |
with \<open>coprime b c\<close> have "c dvd d" |
|
1485 |
by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) |
|
1486 |
from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" |
|
1487 |
by (auto intro: dvdI dest: sym simp add: mult.commute) |
|
1488 |
with \<open>coprime a d\<close> have "d dvd c" |
|
1489 |
by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) |
|
1490 |
from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" |
|
1491 |
by (rule associatedI) |
|
1492 |
moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" |
|
1493 |
by (rule associatedI) |
|
1494 |
ultimately show ?rhs .. |
|
1495 |
qed |
|
1496 |
||
1497 |
lemma gcd_mult_left_left_cancel: |
|
1498 |
"gcd (c * a) b = gcd a b" if "coprime b c" |
|
1499 |
proof - |
|
1500 |
have "coprime (gcd b (a * c)) c" |
|
1501 |
by (rule coprimeI) (auto intro: that coprime_common_divisor) |
|
1502 |
then have "gcd b (a * c) dvd a" |
|
1503 |
using coprime_dvd_mult_left_iff [of "gcd b (a * c)" c a] |
|
1504 |
by simp |
|
1505 |
then show ?thesis |
|
1506 |
by (auto intro: associated_eqI simp add: ac_simps) |
|
1507 |
qed |
|
1508 |
||
1509 |
lemma gcd_mult_left_right_cancel: |
|
1510 |
"gcd (a * c) b = gcd a b" if "coprime b c" |
|
1511 |
using that gcd_mult_left_left_cancel [of b c a] |
|
1512 |
by (simp add: ac_simps) |
|
1513 |
||
1514 |
lemma gcd_mult_right_left_cancel: |
|
1515 |
"gcd a (c * b) = gcd a b" if "coprime a c" |
|
1516 |
using that gcd_mult_left_left_cancel [of a c b] |
|
1517 |
by (simp add: ac_simps) |
|
1518 |
||
1519 |
lemma gcd_mult_right_right_cancel: |
|
1520 |
"gcd a (b * c) = gcd a b" if "coprime a c" |
|
1521 |
using that gcd_mult_right_left_cancel [of a c b] |
|
1522 |
by (simp add: ac_simps) |
|
1523 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1524 |
lemma gcd_exp_weak: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1525 |
"gcd (a ^ n) (b ^ n) = normalize (gcd a b ^ n)" |
67051 | 1526 |
proof (cases "a = 0 \<and> b = 0 \<or> n = 0") |
1527 |
case True |
|
1528 |
then show ?thesis |
|
1529 |
by (cases n) simp_all |
|
1530 |
next |
|
1531 |
case False |
|
1532 |
then have "coprime (a div gcd a b) (b div gcd a b)" and "n > 0" |
|
1533 |
by (auto intro: div_gcd_coprime) |
|
1534 |
then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" |
|
1535 |
by simp |
|
1536 |
then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" |
|
1537 |
by simp |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1538 |
then have "normalize (gcd a b ^ n) = normalize (gcd a b ^ n * \<dots>)" |
67051 | 1539 |
by simp |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1540 |
also have "\<dots> = gcd (gcd a b ^ n * (a div gcd a b) ^ n) (gcd a b ^ n * (b div gcd a b) ^ n)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1541 |
by (rule gcd_mult_left [symmetric]) |
67051 | 1542 |
also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n" |
1543 |
by (simp add: ac_simps div_power dvd_power_same) |
|
1544 |
also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n" |
|
1545 |
by (simp add: ac_simps div_power dvd_power_same) |
|
1546 |
finally show ?thesis by simp |
|
1547 |
qed |
|
1548 |
||
1549 |
lemma division_decomp: |
|
1550 |
assumes "a dvd b * c" |
|
1551 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
|
1552 |
proof (cases "gcd a b = 0") |
|
1553 |
case True |
|
1554 |
then have "a = 0 \<and> b = 0" |
|
1555 |
by simp |
|
1556 |
then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" |
|
1557 |
by simp |
|
1558 |
then show ?thesis by blast |
|
1559 |
next |
|
1560 |
case False |
|
1561 |
let ?d = "gcd a b" |
|
1562 |
from gcd_coprime_exists [OF False] |
|
1563 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" |
|
1564 |
by blast |
|
1565 |
from ab'(1) have "a' dvd a" .. |
|
1566 |
with assms have "a' dvd b * c" |
|
1567 |
using dvd_trans [of a' a "b * c"] by simp |
|
1568 |
from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" |
|
1569 |
by simp |
|
1570 |
then have "?d * a' dvd ?d * (b' * c)" |
|
1571 |
by (simp add: mult_ac) |
|
1572 |
with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" |
|
1573 |
by simp |
|
1574 |
then have "a' dvd c" |
|
1575 |
using \<open>coprime a' b'\<close> by (simp add: coprime_dvd_mult_right_iff) |
|
1576 |
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" |
|
1577 |
by (simp add: ac_simps) |
|
1578 |
then show ?thesis by blast |
|
1579 |
qed |
|
1580 |
||
1581 |
lemma lcm_coprime: "coprime a b \<Longrightarrow> lcm a b = normalize (a * b)" |
|
1582 |
by (subst lcm_gcd) simp |
|
1583 |
||
1584 |
end |
|
1585 |
||
1586 |
context ring_gcd |
|
1587 |
begin |
|
1588 |
||
1589 |
lemma coprime_minus_left_iff [simp]: |
|
1590 |
"coprime (- a) b \<longleftrightarrow> coprime a b" |
|
1591 |
by (rule; rule coprimeI) (auto intro: coprime_common_divisor) |
|
1592 |
||
1593 |
lemma coprime_minus_right_iff [simp]: |
|
1594 |
"coprime a (- b) \<longleftrightarrow> coprime a b" |
|
1595 |
using coprime_minus_left_iff [of b a] by (simp add: ac_simps) |
|
1596 |
||
1597 |
lemma coprime_diff_one_left [simp]: "coprime (a - 1) a" |
|
1598 |
using coprime_add_one_right [of "a - 1"] by simp |
|
1599 |
||
1600 |
lemma coprime_doff_one_right [simp]: "coprime a (a - 1)" |
|
1601 |
using coprime_diff_one_left [of a] by (simp add: ac_simps) |
|
1602 |
||
1603 |
end |
|
1604 |
||
1605 |
context semiring_Gcd |
|
1606 |
begin |
|
1607 |
||
1608 |
lemma Lcm_coprime: |
|
1609 |
assumes "finite A" |
|
1610 |
and "A \<noteq> {}" |
|
1611 |
and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b" |
|
1612 |
shows "Lcm A = normalize (\<Prod>A)" |
|
1613 |
using assms |
|
1614 |
proof (induct rule: finite_ne_induct) |
|
1615 |
case singleton |
|
1616 |
then show ?case by simp |
|
1617 |
next |
|
1618 |
case (insert a A) |
|
1619 |
have "Lcm (insert a A) = lcm a (Lcm A)" |
|
1620 |
by simp |
|
1621 |
also from insert have "Lcm A = normalize (\<Prod>A)" |
|
1622 |
by blast |
|
1623 |
also have "lcm a \<dots> = lcm a (\<Prod>A)" |
|
1624 |
by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) |
|
1625 |
also from insert have "coprime a (\<Prod>A)" |
|
1626 |
by (subst coprime_commute, intro prod_coprime_left) auto |
|
1627 |
with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" |
|
1628 |
by (simp add: lcm_coprime) |
|
1629 |
finally show ?case . |
|
1630 |
qed |
|
1631 |
||
1632 |
lemma Lcm_coprime': |
|
1633 |
"card A \<noteq> 0 \<Longrightarrow> |
|
1634 |
(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b) \<Longrightarrow> |
|
1635 |
Lcm A = normalize (\<Prod>A)" |
|
1636 |
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) |
|
1637 |
||
1638 |
end |
|
1639 |
||
1640 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1641 |
subsection \<open>GCD and LCM for multiplicative normalisation functions\<close> |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1642 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1643 |
class semiring_gcd_mult_normalize = semiring_gcd + normalization_semidom_multiplicative |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1644 |
begin |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1645 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1646 |
lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1647 |
by (simp add: gcd_mult_left normalize_mult mult.assoc [symmetric]) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1648 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1649 |
lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1650 |
using mult_gcd_left [of c a b] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1651 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1652 |
lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1653 |
by (subst gcd_mult_left) (simp_all add: normalize_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1654 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1655 |
lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1656 |
proof- |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1657 |
have "normalize k * gcd a b = gcd (k * a) (k * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1658 |
by (simp add: gcd_mult_distrib') |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1659 |
then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1660 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1661 |
then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1662 |
by (simp only: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1663 |
then show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1664 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1665 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1666 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1667 |
lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1668 |
by (simp add: lcm_gcd normalize_mult dvd_normalize_div) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1669 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1670 |
lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1671 |
using gcd_mult_lcm [of a b] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1672 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1673 |
lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1674 |
by (simp add: lcm_mult_left mult.assoc [symmetric] normalize_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1675 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1676 |
lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1677 |
using mult_lcm_left [of c a b] by (simp add: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1678 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1679 |
lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1680 |
by (simp add: lcm_gcd dvd_normalize_div normalize_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1681 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1682 |
lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1683 |
by (subst lcm_mult_left) (simp add: normalize_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1684 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1685 |
lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1686 |
proof- |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1687 |
have "normalize k * lcm a b = lcm (k * a) (k * b)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1688 |
by (simp add: lcm_mult_distrib') |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1689 |
then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1690 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1691 |
then have "normalize k * unit_factor k * lcm a b = lcm (k * a) (k * b) * unit_factor k" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1692 |
by (simp only: ac_simps) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1693 |
then show ?thesis |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1694 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1695 |
qed |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1696 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1697 |
lemma coprime_crossproduct': |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1698 |
fixes a b c d |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1699 |
assumes "b \<noteq> 0" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1700 |
assumes unit_factors: "unit_factor b = unit_factor d" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1701 |
assumes coprime: "coprime a b" "coprime c d" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1702 |
shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1703 |
proof safe |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1704 |
assume eq: "a * d = b * c" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1705 |
hence "normalize a * normalize d = normalize c * normalize b" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1706 |
by (simp only: normalize_mult [symmetric] mult_ac) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1707 |
with coprime have "normalize b = normalize d" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1708 |
by (subst (asm) coprime_crossproduct) simp_all |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1709 |
from this and unit_factors show "b = d" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1710 |
by (rule normalize_unit_factor_eqI) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1711 |
from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1712 |
with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1713 |
qed (simp_all add: mult_ac) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1714 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1715 |
lemma gcd_exp [simp]: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1716 |
"gcd (a ^ n) (b ^ n) = gcd a b ^ n" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1717 |
using gcd_exp_weak[of a n b] by (simp add: normalize_power) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1718 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1719 |
end |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1720 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1721 |
|
69593 | 1722 |
subsection \<open>GCD and LCM on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> |
59008 | 1723 |
|
31706 | 1724 |
instantiation nat :: gcd |
1725 |
begin |
|
21256 | 1726 |
|
62345 | 1727 |
fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
63489 | 1728 |
where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" |
31706 | 1729 |
|
62345 | 1730 |
definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" |
63489 | 1731 |
where "lcm_nat x y = x * y div (gcd x y)" |
1732 |
||
1733 |
instance .. |
|
31706 | 1734 |
|
1735 |
end |
|
1736 |
||
1737 |
instantiation int :: gcd |
|
1738 |
begin |
|
21256 | 1739 |
|
62345 | 1740 |
definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" |
1741 |
where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1742 |
|
62345 | 1743 |
definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" |
1744 |
where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1745 |
|
61944 | 1746 |
instance .. |
31706 | 1747 |
|
1748 |
end |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1749 |
|
67118 | 1750 |
lemma gcd_int_int_eq [simp]: |
1751 |
"gcd (int m) (int n) = int (gcd m n)" |
|
1752 |
by (simp add: gcd_int_def) |
|
1753 |
||
1754 |
lemma gcd_nat_abs_left_eq [simp]: |
|
1755 |
"gcd (nat \<bar>k\<bar>) n = nat (gcd k (int n))" |
|
1756 |
by (simp add: gcd_int_def) |
|
1757 |
||
1758 |
lemma gcd_nat_abs_right_eq [simp]: |
|
1759 |
"gcd n (nat \<bar>k\<bar>) = nat (gcd (int n) k)" |
|
1760 |
by (simp add: gcd_int_def) |
|
1761 |
||
1762 |
lemma abs_gcd_int [simp]: |
|
1763 |
"\<bar>gcd x y\<bar> = gcd x y" |
|
1764 |
for x y :: int |
|
1765 |
by (simp only: gcd_int_def) |
|
1766 |
||
1767 |
lemma gcd_abs1_int [simp]: |
|
1768 |
"gcd \<bar>x\<bar> y = gcd x y" |
|
1769 |
for x y :: int |
|
1770 |
by (simp only: gcd_int_def) simp |
|
1771 |
||
1772 |
lemma gcd_abs2_int [simp]: |
|
1773 |
"gcd x \<bar>y\<bar> = gcd x y" |
|
1774 |
for x y :: int |
|
1775 |
by (simp only: gcd_int_def) simp |
|
1776 |
||
1777 |
lemma lcm_int_int_eq [simp]: |
|
1778 |
"lcm (int m) (int n) = int (lcm m n)" |
|
1779 |
by (simp add: lcm_int_def) |
|
1780 |
||
1781 |
lemma lcm_nat_abs_left_eq [simp]: |
|
1782 |
"lcm (nat \<bar>k\<bar>) n = nat (lcm k (int n))" |
|
1783 |
by (simp add: lcm_int_def) |
|
1784 |
||
1785 |
lemma lcm_nat_abs_right_eq [simp]: |
|
1786 |
"lcm n (nat \<bar>k\<bar>) = nat (lcm (int n) k)" |
|
1787 |
by (simp add: lcm_int_def) |
|
1788 |
||
1789 |
lemma lcm_abs1_int [simp]: |
|
1790 |
"lcm \<bar>x\<bar> y = lcm x y" |
|
1791 |
for x y :: int |
|
1792 |
by (simp only: lcm_int_def) simp |
|
1793 |
||
1794 |
lemma lcm_abs2_int [simp]: |
|
1795 |
"lcm x \<bar>y\<bar> = lcm x y" |
|
1796 |
for x y :: int |
|
1797 |
by (simp only: lcm_int_def) simp |
|
1798 |
||
1799 |
lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" |
|
1800 |
for i j :: int |
|
1801 |
by (simp only: lcm_int_def) |
|
1802 |
||
68708 | 1803 |
lemma gcd_nat_induct [case_names base step]: |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1804 |
fixes m n :: nat |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1805 |
assumes "\<And>m. P m 0" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1806 |
and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1807 |
shows "P m n" |
68708 | 1808 |
proof (induction m n rule: gcd_nat.induct) |
1809 |
case (1 x y) |
|
1810 |
then show ?case |
|
1811 |
using assms neq0_conv by blast |
|
1812 |
qed |
|
63489 | 1813 |
|
1814 |
lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" |
|
1815 |
for x y :: int |
|
67118 | 1816 |
by (simp only: gcd_int_def) simp |
31706 | 1817 |
|
63489 | 1818 |
lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" |
1819 |
for x y :: int |
|
67118 | 1820 |
by (simp only: gcd_int_def) simp |
31706 | 1821 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1822 |
lemma gcd_cases_int: |
63489 | 1823 |
fixes x y :: int |
1824 |
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" |
|
1825 |
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" |
|
1826 |
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" |
|
1827 |
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" |
|
31706 | 1828 |
shows "P (gcd x y)" |
63489 | 1829 |
using assms by auto arith |
21256 | 1830 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1831 |
lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" |
63489 | 1832 |
for x y :: int |
31706 | 1833 |
by (simp add: gcd_int_def) |
1834 |
||
63489 | 1835 |
lemma lcm_neg1_int: "lcm (- x) y = lcm x y" |
1836 |
for x y :: int |
|
67118 | 1837 |
by (simp only: lcm_int_def) simp |
31706 | 1838 |
|
63489 | 1839 |
lemma lcm_neg2_int: "lcm x (- y) = lcm x y" |
1840 |
for x y :: int |
|
67118 | 1841 |
by (simp only: lcm_int_def) simp |
31814 | 1842 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
1843 |
lemma lcm_cases_int: |
63489 | 1844 |
fixes x y :: int |
1845 |
assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" |
|
1846 |
and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" |
|
1847 |
and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" |
|
1848 |
and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" |
|
31706 | 1849 |
shows "P (lcm x y)" |
68708 | 1850 |
using assms by (auto simp: lcm_neg1_int lcm_neg2_int) arith |
31706 | 1851 |
|
63489 | 1852 |
lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" |
1853 |
for x y :: int |
|
67118 | 1854 |
by (simp only: lcm_int_def) |
31706 | 1855 |
|
63489 | 1856 |
lemma gcd_0_nat: "gcd x 0 = x" |
1857 |
for x :: nat |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1858 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1859 |
|
63489 | 1860 |
lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" |
1861 |
for x :: int |
|
1862 |
by (auto simp: gcd_int_def) |
|
1863 |
||
1864 |
lemma gcd_0_left_nat: "gcd 0 x = x" |
|
1865 |
for x :: nat |
|
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1866 |
by simp |
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
1867 |
|
63489 | 1868 |
lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" |
1869 |
for x :: int |
|
67118 | 1870 |
by (auto simp: gcd_int_def) |
63489 | 1871 |
|
1872 |
lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" |
|
1873 |
for x y :: nat |
|
1874 |
by (cases "y = 0") auto |
|
1875 |
||
1876 |
||
1877 |
text \<open>Weaker, but useful for the simplifier.\<close> |
|
1878 |
||
1879 |
lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" |
|
1880 |
for x y :: nat |
|
21263 | 1881 |
by simp |
21256 | 1882 |
|
63489 | 1883 |
lemma gcd_1_nat [simp]: "gcd m 1 = 1" |
1884 |
for m :: nat |
|
60690 | 1885 |
by simp |
31706 | 1886 |
|
63489 | 1887 |
lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" |
1888 |
for m :: nat |
|
1889 |
by simp |
|
1890 |
||
1891 |
lemma gcd_1_int [simp]: "gcd m 1 = 1" |
|
1892 |
for m :: int |
|
31706 | 1893 |
by (simp add: gcd_int_def) |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
1894 |
|
63489 | 1895 |
lemma gcd_idem_nat: "gcd x x = x" |
1896 |
for x :: nat |
|
1897 |
by simp |
|
1898 |
||
1899 |
lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" |
|
1900 |
for x :: int |
|
68708 | 1901 |
by (auto simp: gcd_int_def) |
31706 | 1902 |
|
1903 |
declare gcd_nat.simps [simp del] |
|
21256 | 1904 |
|
60758 | 1905 |
text \<open> |
69593 | 1906 |
\<^medskip> \<^term>\<open>gcd m n\<close> divides \<open>m\<close> and \<open>n\<close>. |
63489 | 1907 |
The conjunctions don't seem provable separately. |
60758 | 1908 |
\<close> |
21256 | 1909 |
|
59008 | 1910 |
instance nat :: semiring_gcd |
1911 |
proof |
|
1912 |
fix m n :: nat |
|
1913 |
show "gcd m n dvd m" and "gcd m n dvd n" |
|
1914 |
proof (induct m n rule: gcd_nat_induct) |
|
68708 | 1915 |
case (step m n) |
59008 | 1916 |
then have "gcd n (m mod n) dvd m" |
68708 | 1917 |
by (metis dvd_mod_imp_dvd) |
1918 |
with step show "gcd m n dvd m" |
|
59008 | 1919 |
by (simp add: gcd_non_0_nat) |
1920 |
qed (simp_all add: gcd_0_nat gcd_non_0_nat) |
|
1921 |
next |
|
1922 |
fix m n k :: nat |
|
1923 |
assume "k dvd m" and "k dvd n" |
|
1924 |
then show "k dvd gcd m n" |
|
1925 |
by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) |
|
60686 | 1926 |
qed (simp_all add: lcm_nat_def) |
59667
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents:
59545
diff
changeset
|
1927 |
|
59008 | 1928 |
instance int :: ring_gcd |
67118 | 1929 |
proof |
1930 |
fix k l r :: int |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1931 |
show [simp]: "gcd k l dvd k" "gcd k l dvd l" |
67118 | 1932 |
using gcd_dvd1 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
1933 |
gcd_dvd2 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1934 |
by simp_all |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1935 |
show "lcm k l = normalize (k * l div gcd k l)" |
67118 | 1936 |
using lcm_gcd [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1937 |
by (simp add: nat_eq_iff of_nat_div abs_mult abs_div) |
67118 | 1938 |
assume "r dvd k" "r dvd l" |
1939 |
then show "r dvd gcd k l" |
|
1940 |
using gcd_greatest [of "nat \<bar>r\<bar>" "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] |
|
1941 |
by simp |
|
1942 |
qed simp |
|
63489 | 1943 |
|
1944 |
lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" |
|
1945 |
for a b :: nat |
|
1946 |
by (rule dvd_imp_le) auto |
|
1947 |
||
1948 |
lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" |
|
1949 |
for a b :: nat |
|
1950 |
by (rule dvd_imp_le) auto |
|
1951 |
||
1952 |
lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" |
|
1953 |
for a b :: int |
|
1954 |
by (rule zdvd_imp_le) auto |
|
1955 |
||
1956 |
lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" |
|
1957 |
for a b :: int |
|
1958 |
by (rule zdvd_imp_le) auto |
|
1959 |
||
1960 |
lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" |
|
1961 |
for m n :: nat |
|
1962 |
using gcd_eq_0_iff [of m n] by arith |
|
1963 |
||
1964 |
lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" |
|
1965 |
for m n :: int |
|
1966 |
using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith |
|
1967 |
||
1968 |
lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
1969 |
for d a :: nat |
|
68708 | 1970 |
using gcd_unique by fastforce |
63489 | 1971 |
|
1972 |
lemma gcd_unique_int: |
|
1973 |
"d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
|
1974 |
for d a :: int |
|
68708 | 1975 |
using zdvd_antisym_nonneg by auto |
30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
30042
diff
changeset
|
1976 |
|
61913 | 1977 |
interpretation gcd_nat: |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
1978 |
semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" |
68708 | 1979 |
by standard (auto simp: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) |
31798 | 1980 |
|
63489 | 1981 |
lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" |
1982 |
for x y :: int |
|
67118 | 1983 |
by (metis abs_dvd_iff gcd_0_left_int gcd_unique_int) |
31798 | 1984 |
|
63489 | 1985 |
lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" |
1986 |
for x y :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
1987 |
by (metis gcd_proj1_if_dvd_int gcd.commute) |
31798 | 1988 |
|
63489 | 1989 |
|
1990 |
text \<open>\<^medskip> Multiplication laws.\<close> |
|
1991 |
||
1992 |
lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" |
|
1993 |
for k m n :: nat |
|
1994 |
\<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close> |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1995 |
by (simp add: gcd_mult_left) |
63489 | 1996 |
|
1997 |
lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" |
|
1998 |
for k m n :: int |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
1999 |
by (simp add: gcd_mult_left abs_mult) |
21256 | 2000 |
|
63489 | 2001 |
text \<open>\medskip Addition laws.\<close> |
2002 |
||
2003 |
(* TODO: add the other variations? *) |
|
2004 |
||
2005 |
lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" |
|
2006 |
for m n :: nat |
|
62429
25271ff79171
Tuned Euclidean Rings/GCD rings
Manuel Eberl <eberlm@in.tum.de>
parents:
62353
diff
changeset
|
2007 |
by (subst gcd_add1 [symmetric]) auto |
31706 | 2008 |
|
63489 | 2009 |
lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" |
2010 |
for m n :: nat |
|
68708 | 2011 |
by (metis gcd.commute gcd_add2 gcd_diff1_nat le_add_diff_inverse2) |
2012 |
||
2013 |
lemma gcd_non_0_int: |
|
2014 |
fixes x y :: int |
|
2015 |
assumes "y > 0" shows "gcd x y = gcd y (x mod y)" |
|
2016 |
proof (cases "x mod y = 0") |
|
2017 |
case False |
|
2018 |
then have neg: "x mod y = y - (- x) mod y" |
|
2019 |
by (simp add: zmod_zminus1_eq_if) |
|
2020 |
have xy: "0 \<le> x mod y" |
|
2021 |
by (simp add: assms) |
|
2022 |
show ?thesis |
|
2023 |
proof (cases "x < 0") |
|
2024 |
case True |
|
2025 |
have "nat (- x mod y) \<le> nat y" |
|
2026 |
by (simp add: assms dual_order.order_iff_strict) |
|
2027 |
moreover have "gcd (nat (- x)) (nat y) = gcd (nat (- x mod y)) (nat y)" |
|
2028 |
using True assms gcd_non_0_nat nat_mod_distrib by auto |
|
2029 |
ultimately have "gcd (nat (- x)) (nat y) = gcd (nat y) (nat (x mod y))" |
|
2030 |
using assms |
|
2031 |
by (simp add: neg nat_diff_distrib') (metis gcd.commute gcd_diff2_nat) |
|
2032 |
with assms \<open>0 \<le> x mod y\<close> show ?thesis |
|
2033 |
by (simp add: True dual_order.order_iff_strict gcd_int_def) |
|
2034 |
next |
|
2035 |
case False |
|
2036 |
with assms xy have "gcd (nat x) (nat y) = gcd (nat y) (nat x mod nat y)" |
|
2037 |
using gcd_red_nat by blast |
|
2038 |
with False assms show ?thesis |
|
2039 |
by (simp add: gcd_int_def nat_mod_distrib) |
|
2040 |
qed |
|
2041 |
qed (use assms in auto) |
|
21256 | 2042 |
|
63489 | 2043 |
lemma gcd_red_int: "gcd x y = gcd y (x mod y)" |
2044 |
for x y :: int |
|
68708 | 2045 |
proof (cases y "0::int" rule: linorder_cases) |
2046 |
case less |
|
2047 |
with gcd_non_0_int [of "- y" "- x"] show ?thesis |
|
2048 |
by auto |
|
2049 |
next |
|
2050 |
case greater |
|
2051 |
with gcd_non_0_int [of y x] show ?thesis |
|
2052 |
by auto |
|
2053 |
qed auto |
|
63489 | 2054 |
|
2055 |
(* TODO: differences, and all variations of addition rules |
|
31706 | 2056 |
as simplification rules for nat and int *) |
2057 |
||
63489 | 2058 |
(* TODO: add the three variations of these, and for ints? *) |
2059 |
||
2060 |
lemma finite_divisors_nat [simp]: (* FIXME move *) |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2061 |
fixes m :: nat |
63489 | 2062 |
assumes "m > 0" |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2063 |
shows "finite {d. d dvd m}" |
31734 | 2064 |
proof- |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2065 |
from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2066 |
by (auto dest: dvd_imp_le) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2067 |
then show ?thesis |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2068 |
using finite_Collect_le_nat by (rule finite_subset) |
31734 | 2069 |
qed |
2070 |
||
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2071 |
lemma finite_divisors_int [simp]: |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2072 |
fixes i :: int |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2073 |
assumes "i \<noteq> 0" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2074 |
shows "finite {d. d dvd i}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2075 |
proof - |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2076 |
have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2077 |
by (auto simp: abs_if) |
63489 | 2078 |
then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}" |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2079 |
by simp |
63489 | 2080 |
from finite_subset [OF _ this] show ?thesis |
2081 |
using assms by (simp add: dvd_imp_le_int subset_iff) |
|
31734 | 2082 |
qed |
2083 |
||
63489 | 2084 |
lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n" |
68708 | 2085 |
by (fastforce intro: antisym Max_le_iff[THEN iffD2] simp: dvd_imp_le) |
2086 |
||
2087 |
lemma Max_divisors_self_int [simp]: |
|
2088 |
assumes "n \<noteq> 0" shows "Max {d::int. d dvd n} = \<bar>n\<bar>" |
|
2089 |
proof (rule antisym) |
|
2090 |
show "Max {d. d dvd n} \<le> \<bar>n\<bar>" |
|
2091 |
using assms by (auto intro: abs_le_D1 dvd_imp_le_int intro!: Max_le_iff [THEN iffD2]) |
|
2092 |
qed (simp add: assms) |
|
2093 |
||
2094 |
lemma gcd_is_Max_divisors_nat: |
|
2095 |
fixes m n :: nat |
|
2096 |
assumes "n > 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}" |
|
2097 |
proof (rule Max_eqI[THEN sym], simp_all) |
|
2098 |
show "finite {d. d dvd m \<and> d dvd n}" |
|
2099 |
by (simp add: \<open>n > 0\<close>) |
|
2100 |
show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" |
|
2101 |
by (simp add: \<open>n > 0\<close> dvd_imp_le) |
|
2102 |
qed |
|
2103 |
||
2104 |
lemma gcd_is_Max_divisors_int: |
|
2105 |
fixes m n :: int |
|
2106 |
assumes "n \<noteq> 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}" |
|
2107 |
proof (rule Max_eqI[THEN sym], simp_all) |
|
2108 |
show "finite {d. d dvd m \<and> d dvd n}" |
|
2109 |
by (simp add: \<open>n \<noteq> 0\<close>) |
|
2110 |
show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" |
|
2111 |
by (simp add: \<open>n \<noteq> 0\<close> zdvd_imp_le) |
|
2112 |
qed |
|
63489 | 2113 |
|
2114 |
lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
|
2115 |
for k l :: int |
|
67118 | 2116 |
using gcd_red_int [of "\<bar>k\<bar>" "\<bar>l\<bar>"] by simp |
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
2117 |
|
67051 | 2118 |
lemma coprime_Suc_left_nat [simp]: |
2119 |
"coprime (Suc n) n" |
|
2120 |
using coprime_add_one_left [of n] by simp |
|
2121 |
||
2122 |
lemma coprime_Suc_right_nat [simp]: |
|
2123 |
"coprime n (Suc n)" |
|
2124 |
using coprime_Suc_left_nat [of n] by (simp add: ac_simps) |
|
2125 |
||
2126 |
lemma coprime_diff_one_left_nat [simp]: |
|
2127 |
"coprime (n - 1) n" if "n > 0" for n :: nat |
|
2128 |
using that coprime_Suc_right_nat [of "n - 1"] by simp |
|
2129 |
||
2130 |
lemma coprime_diff_one_right_nat [simp]: |
|
2131 |
"coprime n (n - 1)" if "n > 0" for n :: nat |
|
2132 |
using that coprime_diff_one_left_nat [of n] by (simp add: ac_simps) |
|
2133 |
||
2134 |
lemma coprime_crossproduct_nat: |
|
2135 |
fixes a b c d :: nat |
|
2136 |
assumes "coprime a d" and "coprime b c" |
|
2137 |
shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" |
|
2138 |
using assms coprime_crossproduct [of a d b c] by simp |
|
2139 |
||
2140 |
lemma coprime_crossproduct_int: |
|
2141 |
fixes a b c d :: int |
|
2142 |
assumes "coprime a d" and "coprime b c" |
|
2143 |
shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" |
|
2144 |
using assms coprime_crossproduct [of a d b c] by simp |
|
31706 | 2145 |
|
2146 |
||
60758 | 2147 |
subsection \<open>Bezout's theorem\<close> |
31706 | 2148 |
|
63489 | 2149 |
text \<open> |
2150 |
Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- |
|
2151 |
see the theorems that follow the definition. |
|
2152 |
\<close> |
|
2153 |
||
2154 |
fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" |
|
2155 |
where "bezw x y = |
|
2156 |
(if y = 0 then (1, 0) |
|
2157 |
else |
|
31706 | 2158 |
(snd (bezw y (x mod y)), |
2159 |
fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" |
|
2160 |
||
63489 | 2161 |
lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" |
2162 |
by simp |
|
2163 |
||
2164 |
lemma bezw_non_0: |
|
2165 |
"y > 0 \<Longrightarrow> bezw x y = |
|
2166 |
(snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" |
|
31706 | 2167 |
by simp |
2168 |
||
2169 |
declare bezw.simps [simp del] |
|
2170 |
||
68708 | 2171 |
|
2172 |
lemma bezw_aux: "int (gcd x y) = fst (bezw x y) * int x + snd (bezw x y) * int y" |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2173 |
proof (induct x y rule: gcd_nat_induct) |
68708 | 2174 |
case (step m n) |
2175 |
then have "fst (bezw m n) * int m + snd (bezw m n) * int n - int (gcd m n) |
|
2176 |
= int m * snd (bezw n (m mod n)) - |
|
2177 |
(int (m mod n) * snd (bezw n (m mod n)) + int n * (int (m div n) * snd (bezw n (m mod n))))" |
|
2178 |
by (simp add: bezw_non_0 gcd_non_0_nat field_simps) |
|
2179 |
also have "\<dots> = int m * snd (bezw n (m mod n)) - (int (m mod n) + int (n * (m div n))) * snd (bezw n (m mod n))" |
|
2180 |
by (simp add: distrib_right) |
|
2181 |
also have "\<dots> = 0" |
|
2182 |
by (metis cancel_comm_monoid_add_class.diff_cancel mod_mult_div_eq of_nat_add) |
|
2183 |
finally show ?case |
|
2184 |
by simp |
|
2185 |
qed auto |
|
2186 |
||
31706 | 2187 |
|
63489 | 2188 |
lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" |
2189 |
for x y :: int |
|
31706 | 2190 |
proof - |
63489 | 2191 |
have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int |
31706 | 2192 |
apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) |
2193 |
apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) |
|
68708 | 2194 |
by (simp add: bezw_aux gcd_int_def) |
63489 | 2195 |
consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" |
68708 | 2196 |
using linear by blast |
63489 | 2197 |
then show ?thesis |
2198 |
proof cases |
|
2199 |
case 1 |
|
2200 |
then show ?thesis by (rule aux) |
|
2201 |
next |
|
2202 |
case 2 |
|
2203 |
then show ?thesis |
|
68708 | 2204 |
using aux [of x "-y"] |
2205 |
by (metis gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) |
|
63489 | 2206 |
next |
2207 |
case 3 |
|
2208 |
then show ?thesis |
|
68708 | 2209 |
using aux [of "-x" y] |
2210 |
by (metis gcd.commute gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) |
|
63489 | 2211 |
next |
2212 |
case 4 |
|
2213 |
then show ?thesis |
|
68708 | 2214 |
using aux [of "-x" "-y"] |
2215 |
by (metis diff_0 diff_ge_0_iff_ge gcd_neg1_int gcd_neg2_int mult.commute mult_minus_right) |
|
63489 | 2216 |
qed |
31706 | 2217 |
qed |
2218 |
||
63489 | 2219 |
|
2220 |
text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> |
|
31706 | 2221 |
|
68708 | 2222 |
lemma Euclid_induct [case_names swap zero add]: |
63489 | 2223 |
fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" |
68708 | 2224 |
assumes c: "\<And>a b. P a b \<longleftrightarrow> P b a" |
2225 |
and z: "\<And>a. P a 0" |
|
2226 |
and add: "\<And>a b. P a b \<longrightarrow> P a (a + b)" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2227 |
shows "P a b" |
63489 | 2228 |
proof (induct "a + b" arbitrary: a b rule: less_induct) |
34915 | 2229 |
case less |
63489 | 2230 |
consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" |
2231 |
by arith |
|
2232 |
show ?case |
|
2233 |
proof (cases a b rule: linorder_cases) |
|
2234 |
case equal |
|
2235 |
with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp |
|
2236 |
next |
|
2237 |
case lt: less |
|
2238 |
then consider "a = 0" | "a + b - a < a + b" by arith |
|
2239 |
then show ?thesis |
|
2240 |
proof cases |
|
2241 |
case 1 |
|
2242 |
with z c show ?thesis by blast |
|
2243 |
next |
|
2244 |
case 2 |
|
2245 |
also have *: "a + b - a = a + (b - a)" using lt by arith |
|
34915 | 2246 |
finally have "a + (b - a) < a + b" . |
63489 | 2247 |
then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) |
2248 |
then show ?thesis by (simp add: *[symmetric]) |
|
2249 |
qed |
|
2250 |
next |
|
2251 |
case gt: greater |
|
2252 |
then consider "b = 0" | "b + a - b < a + b" by arith |
|
2253 |
then show ?thesis |
|
2254 |
proof cases |
|
2255 |
case 1 |
|
2256 |
with z c show ?thesis by blast |
|
2257 |
next |
|
2258 |
case 2 |
|
2259 |
also have *: "b + a - b = b + (a - b)" using gt by arith |
|
34915 | 2260 |
finally have "b + (a - b) < a + b" . |
63489 | 2261 |
then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) |
2262 |
then have "P b a" by (simp add: *[symmetric]) |
|
2263 |
with c show ?thesis by blast |
|
2264 |
qed |
|
2265 |
qed |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2266 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2267 |
|
31952
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents:
31814
diff
changeset
|
2268 |
lemma bezout_lemma_nat: |
68708 | 2269 |
fixes d::nat |
2270 |
shows "\<lbrakk>d dvd a; d dvd b; a * x = b * y + d \<or> b * x = a * y + d\<rbrakk> |
|
2271 |
\<Longrightarrow> \<exists>x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" |
|
31706 | 2272 |
apply auto |
68708 | 2273 |
apply (metis add_mult_distrib2 left_add_mult_distrib) |
2274 |
apply (rule_tac x=x in exI) |
|
2275 |
by (metis add_mult_distrib2 mult.commute add.assoc) |
|
2276 |
||
2277 |
lemma bezout_add_nat: |
|
2278 |
"\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)" |
|
2279 |
proof (induct a b rule: Euclid_induct) |
|
2280 |
case (swap a b) |
|
2281 |
then show ?case |
|
2282 |
by blast |
|
2283 |
next |
|
2284 |
case (zero a) |
|
2285 |
then show ?case |
|
2286 |
by fastforce |
|
2287 |
next |
|
2288 |
case (add a b) |
|
2289 |
then show ?case |
|
2290 |
by (meson bezout_lemma_nat) |
|
2291 |
qed |
|
2292 |
||
2293 |
lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)" |
|
2294 |
using bezout_add_nat[of a b] by (metis add_diff_cancel_left') |
|
63489 | 2295 |
|
2296 |
lemma bezout_add_strong_nat: |
|
2297 |
fixes a b :: nat |
|
2298 |
assumes a: "a \<noteq> 0" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2299 |
shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" |
63489 | 2300 |
proof - |
2301 |
consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" |
|
68708 | 2302 |
| d x y where "d dvd a" "d dvd b" "b * x = a * y + d" |
63489 | 2303 |
using bezout_add_nat [of a b] by blast |
2304 |
then show ?thesis |
|
2305 |
proof cases |
|
2306 |
case 1 |
|
2307 |
then show ?thesis by blast |
|
2308 |
next |
|
2309 |
case H: 2 |
|
2310 |
show ?thesis |
|
2311 |
proof (cases "b = 0") |
|
2312 |
case True |
|
2313 |
with H show ?thesis by simp |
|
2314 |
next |
|
2315 |
case False |
|
2316 |
then have bp: "b > 0" by simp |
|
2317 |
with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" |
|
2318 |
by atomize_elim auto |
|
2319 |
then show ?thesis |
|
2320 |
proof cases |
|
2321 |
case 1 |
|
2322 |
with a H show ?thesis |
|
68708 | 2323 |
by (metis Suc_pred add.commute mult.commute mult_Suc_right neq0_conv) |
63489 | 2324 |
next |
2325 |
case 2 |
|
2326 |
show ?thesis |
|
2327 |
proof (cases "x = 0") |
|
2328 |
case True |
|
2329 |
with a H show ?thesis by simp |
|
2330 |
next |
|
2331 |
case x0: False |
|
2332 |
then have xp: "x > 0" by simp |
|
2333 |
from \<open>d < b\<close> have "d \<le> b - 1" by simp |
|
2334 |
then have "d * b \<le> b * (b - 1)" by simp |
|
2335 |
with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] |
|
2336 |
have dble: "d * b \<le> x * b * (b - 1)" using bp by simp |
|
2337 |
from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" |
|
31706 | 2338 |
by simp |
63489 | 2339 |
then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56218
diff
changeset
|
2340 |
by (simp only: mult.assoc distrib_left) |
63489 | 2341 |
then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" |
31706 | 2342 |
by algebra |
63489 | 2343 |
then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" |
2344 |
using bp by simp |
|
2345 |
then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32879
diff
changeset
|
2346 |
by (simp only: diff_add_assoc[OF dble, of d, symmetric]) |
63489 | 2347 |
then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" |
59008 | 2348 |
by (simp only: diff_mult_distrib2 ac_simps) |
63489 | 2349 |
with H(1,2) show ?thesis |
68708 | 2350 |
by blast |
63489 | 2351 |
qed |
2352 |
qed |
|
2353 |
qed |
|
2354 |
qed |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2355 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2356 |
|
63489 | 2357 |
lemma bezout_nat: |
2358 |
fixes a :: nat |
|
2359 |
assumes a: "a \<noteq> 0" |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2360 |
shows "\<exists>x y. a * x = b * y + gcd a b" |
63489 | 2361 |
proof - |
2362 |
obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" |
|
2363 |
using bezout_add_strong_nat [OF a, of b] by blast |
|
2364 |
from d have "d dvd gcd a b" |
|
2365 |
by simp |
|
2366 |
then obtain k where k: "gcd a b = d * k" |
|
2367 |
unfolding dvd_def by blast |
|
2368 |
from eq have "a * x * k = (b * y + d) * k" |
|
2369 |
by auto |
|
2370 |
then have "a * (x * k) = b * (y * k) + gcd a b" |
|
2371 |
by (algebra add: k) |
|
2372 |
then show ?thesis |
|
2373 |
by blast |
|
27669
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2374 |
qed |
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
chaieb
parents:
27651
diff
changeset
|
2375 |
|
31706 | 2376 |
|
69593 | 2377 |
subsection \<open>LCM properties on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> |
63489 | 2378 |
|
2379 |
lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" |
|
2380 |
for a b :: int |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2381 |
by (simp add: abs_mult lcm_gcd abs_div) |
67118 | 2382 |
|
63489 | 2383 |
lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" |
2384 |
for m n :: nat |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2385 |
by (simp add: lcm_gcd) |
31706 | 2386 |
|
63489 | 2387 |
lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" |
2388 |
for m n :: int |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2389 |
by (simp add: lcm_gcd abs_div abs_mult) |
63489 | 2390 |
|
2391 |
lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" |
|
2392 |
for m n :: nat |
|
67118 | 2393 |
using lcm_eq_0_iff [of m n] by auto |
63489 | 2394 |
|
2395 |
lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" |
|
2396 |
for m n :: int |
|
67118 | 2397 |
by (simp add: less_le lcm_eq_0_iff) |
23687
06884f7ffb18
extended - convers now basic lcm properties also
haftmann
parents:
23431
diff
changeset
|
2398 |
|
63489 | 2399 |
lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) |
2400 |
for m n :: nat |
|
68708 | 2401 |
by auto |
63489 | 2402 |
|
2403 |
lemma lcm_unique_nat: |
|
2404 |
"a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
|
2405 |
for a b d :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2406 |
by (auto intro: dvd_antisym lcm_least) |
27568
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
chaieb
parents:
27556
diff
changeset
|
2407 |
|
63489 | 2408 |
lemma lcm_unique_int: |
2409 |
"d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
|
2410 |
for a b d :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2411 |
using lcm_least zdvd_antisym_nonneg by auto |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34915
diff
changeset
|
2412 |
|
63489 | 2413 |
lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" |
2414 |
for x y :: nat |
|
68708 | 2415 |
by (simp add: lcm_proj2_if_dvd) |
63489 | 2416 |
|
2417 |
lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" |
|
2418 |
for x y :: int |
|
68708 | 2419 |
by (simp add: lcm_proj2_if_dvd) |
63489 | 2420 |
|
2421 |
lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" |
|
2422 |
for x y :: nat |
|
2423 |
by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) |
|
2424 |
||
2425 |
lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" |
|
2426 |
for x y :: int |
|
2427 |
by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) |
|
2428 |
||
2429 |
lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" |
|
2430 |
for m n :: nat |
|
2431 |
by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) |
|
2432 |
||
2433 |
lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" |
|
2434 |
for m n :: nat |
|
2435 |
by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) |
|
2436 |
||
2437 |
lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" |
|
2438 |
for m n :: int |
|
2439 |
by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) |
|
2440 |
||
2441 |
lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" |
|
2442 |
for m n :: int |
|
2443 |
by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) |
|
2444 |
||
2445 |
lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" |
|
2446 |
for m n :: nat |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2447 |
using lcm_eq_1_iff [of m n] by simp |
63489 | 2448 |
|
2449 |
lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" |
|
2450 |
for m n :: int |
|
61913 | 2451 |
by auto |
31995 | 2452 |
|
34030
829eb528b226
resorted code equations from "old" number theory version
haftmann
parents:
33946
diff
changeset
|
2453 |
|
69593 | 2454 |
subsection \<open>The complete divisibility lattice on \<^typ>\<open>nat\<close> and \<^typ>\<open>int\<close>\<close> |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2455 |
|
63489 | 2456 |
text \<open> |
2457 |
Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). |
|
2458 |
\<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. |
|
60758 | 2459 |
\<close> |
45264 | 2460 |
|
62345 | 2461 |
instantiation nat :: semiring_Gcd |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2462 |
begin |
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2463 |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2464 |
interpretation semilattice_neutr_set lcm "1::nat" |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2465 |
by standard simp_all |
54867
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
haftmann
parents:
54489
diff
changeset
|
2466 |
|
63489 | 2467 |
definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" |
2468 |
||
2469 |
lemma Lcm_nat_empty: "Lcm {} = (1::nat)" |
|
60690 | 2470 |
by (simp add: Lcm_nat_def del: One_nat_def) |
51489 | 2471 |
|
63489 | 2472 |
lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat |
68708 | 2473 |
by (cases "finite M") (auto simp: Lcm_nat_def simp del: One_nat_def) |
61929 | 2474 |
|
63489 | 2475 |
lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" |
61929 | 2476 |
by (simp add: Lcm_nat_def) |
2477 |
||
2478 |
lemma dvd_Lcm_nat [simp]: |
|
2479 |
fixes M :: "nat set" |
|
2480 |
assumes "m \<in> M" |
|
2481 |
shows "m dvd Lcm M" |
|
2482 |
proof - |
|
63489 | 2483 |
from assms have "insert m M = M" |
2484 |
by auto |
|
61929 | 2485 |
moreover have "m dvd Lcm (insert m M)" |
2486 |
by (simp add: Lcm_nat_insert) |
|
63489 | 2487 |
ultimately show ?thesis |
2488 |
by simp |
|
61929 | 2489 |
qed |
2490 |
||
2491 |
lemma Lcm_dvd_nat [simp]: |
|
2492 |
fixes M :: "nat set" |
|
2493 |
assumes "\<forall>m\<in>M. m dvd n" |
|
2494 |
shows "Lcm M dvd n" |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2495 |
proof (cases "n > 0") |
63489 | 2496 |
case False |
2497 |
then show ?thesis by simp |
|
61929 | 2498 |
next |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2499 |
case True |
63489 | 2500 |
then have "finite {d. d dvd n}" |
2501 |
by (rule finite_divisors_nat) |
|
2502 |
moreover have "M \<subseteq> {d. d dvd n}" |
|
2503 |
using assms by fast |
|
2504 |
ultimately have "finite M" |
|
2505 |
by (rule rev_finite_subset) |
|
2506 |
then show ?thesis |
|
2507 |
using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) |
|
61929 | 2508 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2509 |
|
63489 | 2510 |
definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set" |
2511 |
||
2512 |
instance |
|
2513 |
proof |
|
2514 |
fix N :: "nat set" |
|
2515 |
fix n :: nat |
|
2516 |
show "Gcd N dvd n" if "n \<in> N" |
|
68708 | 2517 |
using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) |
63489 | 2518 |
show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" |
68708 | 2519 |
using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) |
63489 | 2520 |
show "n dvd Lcm N" if "n \<in> N" |
2521 |
using that by (induct N rule: infinite_finite_induct) auto |
|
2522 |
show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" |
|
2523 |
using that by (induct N rule: infinite_finite_induct) auto |
|
2524 |
show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" |
|
2525 |
by simp_all |
|
2526 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2527 |
|
62345 | 2528 |
end |
61913 | 2529 |
|
63489 | 2530 |
lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" |
2531 |
for N :: "nat set" |
|
62346 | 2532 |
by (rule Gcd_eq_1_I) auto |
2533 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2534 |
instance nat :: semiring_gcd_mult_normalize |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2535 |
by intro_classes (auto simp: unit_factor_nat_def) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2536 |
|
63489 | 2537 |
|
2538 |
text \<open>Alternative characterizations of Gcd:\<close> |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2539 |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2540 |
lemma Gcd_eq_Max: |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2541 |
fixes M :: "nat set" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2542 |
assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2543 |
shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2544 |
proof (rule antisym) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2545 |
from assms obtain m where "m \<in> M" and "m > 0" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2546 |
by auto |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2547 |
from \<open>m > 0\<close> have "finite {d. d dvd m}" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2548 |
by (blast intro: finite_divisors_nat) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2549 |
with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2550 |
by blast |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2551 |
from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})" |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2552 |
by (auto intro: Max_ge Gcd_dvd) |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2553 |
from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M" |
68708 | 2554 |
proof (rule Max.boundedI, simp_all) |
2555 |
show "(\<Inter>m\<in>M. {d. d dvd m}) \<noteq> {}" |
|
2556 |
by auto |
|
2557 |
show "\<And>a. \<forall>x\<in>M. a dvd x \<Longrightarrow> a \<le> Gcd M" |
|
2558 |
by (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) |
|
2559 |
qed |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2560 |
qed |
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2561 |
|
63489 | 2562 |
lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})" |
2563 |
for M :: "nat set" |
|
68708 | 2564 |
proof (induct pred: finite) |
2565 |
case (insert x M) |
|
2566 |
then show ?case |
|
2567 |
by (simp add: insert_Diff_if) |
|
2568 |
qed auto |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2569 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2570 |
lemma Lcm_in_lcm_closed_set_nat: |
68708 | 2571 |
fixes M :: "nat set" |
2572 |
assumes "finite M" "M \<noteq> {}" "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M" |
|
2573 |
shows "Lcm M \<in> M" |
|
2574 |
using assms |
|
2575 |
proof (induction M rule: finite_linorder_min_induct) |
|
2576 |
case (insert x M) |
|
2577 |
then have "\<And>m n. m \<in> M \<Longrightarrow> n \<in> M \<Longrightarrow> lcm m n \<in> M" |
|
2578 |
by (metis dvd_lcm1 gr0I insert_iff lcm_pos_nat nat_dvd_not_less) |
|
2579 |
with insert show ?case |
|
2580 |
by simp (metis Lcm_nat_empty One_nat_def dvd_1_left dvd_lcm2) |
|
2581 |
qed auto |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2582 |
|
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2583 |
lemma Lcm_eq_Max_nat: |
68708 | 2584 |
fixes M :: "nat set" |
2585 |
assumes M: "finite M" "M \<noteq> {}" "0 \<notin> M" and lcm: "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M" |
|
2586 |
shows "Lcm M = Max M" |
|
2587 |
proof (rule antisym) |
|
2588 |
show "Lcm M \<le> Max M" |
|
2589 |
by (simp add: Lcm_in_lcm_closed_set_nat \<open>finite M\<close> \<open>M \<noteq> {}\<close> lcm) |
|
2590 |
show "Max M \<le> Lcm M" |
|
2591 |
by (meson Lcm_0_iff Max_in M dvd_Lcm dvd_imp_le le_0_eq not_le) |
|
2592 |
qed |
|
32112
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
nipkow
parents:
32111
diff
changeset
|
2593 |
|
34222 | 2594 |
lemma mult_inj_if_coprime_nat: |
68708 | 2595 |
"inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> (\<And>a b. \<lbrakk>a\<in>A; b\<in>B\<rbrakk> \<Longrightarrow> coprime (f a) (g b)) \<Longrightarrow> |
63489 | 2596 |
inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" |
2597 |
for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" |
|
68708 | 2598 |
by (auto simp: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) |
34222 | 2599 |
|
63489 | 2600 |
|
2601 |
subsubsection \<open>Setwise GCD and LCM for integers\<close> |
|
45264 | 2602 |
|
67118 | 2603 |
instantiation int :: Gcd |
45264 | 2604 |
begin |
2605 |
||
67118 | 2606 |
definition Gcd_int :: "int set \<Rightarrow> int" |
2607 |
where "Gcd K = int (GCD k\<in>K. (nat \<circ> abs) k)" |
|
2608 |
||
2609 |
definition Lcm_int :: "int set \<Rightarrow> int" |
|
2610 |
where "Lcm K = int (LCM k\<in>K. (nat \<circ> abs) k)" |
|
2611 |
||
2612 |
instance .. |
|
62345 | 2613 |
|
2614 |
end |
|
2615 |
||
67118 | 2616 |
lemma Gcd_int_eq [simp]: |
2617 |
"(GCD n\<in>N. int n) = int (Gcd N)" |
|
2618 |
by (simp add: Gcd_int_def image_image) |
|
2619 |
||
2620 |
lemma Gcd_nat_abs_eq [simp]: |
|
2621 |
"(GCD k\<in>K. nat \<bar>k\<bar>) = nat (Gcd K)" |
|
2622 |
by (simp add: Gcd_int_def) |
|
2623 |
||
2624 |
lemma abs_Gcd_eq [simp]: |
|
2625 |
"\<bar>Gcd K\<bar> = Gcd K" for K :: "int set" |
|
2626 |
by (simp only: Gcd_int_def) |
|
2627 |
||
2628 |
lemma Gcd_int_greater_eq_0 [simp]: |
|
2629 |
"Gcd K \<ge> 0" |
|
63489 | 2630 |
for K :: "int set" |
67118 | 2631 |
using abs_ge_zero [of "Gcd K"] by simp |
2632 |
||
2633 |
lemma Gcd_abs_eq [simp]: |
|
2634 |
"(GCD k\<in>K. \<bar>k\<bar>) = Gcd K" |
|
63489 | 2635 |
for K :: "int set" |
67118 | 2636 |
by (simp only: Gcd_int_def image_image) simp |
2637 |
||
2638 |
lemma Lcm_int_eq [simp]: |
|
2639 |
"(LCM n\<in>N. int n) = int (Lcm N)" |
|
2640 |
by (simp add: Lcm_int_def image_image) |
|
2641 |
||
2642 |
lemma Lcm_nat_abs_eq [simp]: |
|
2643 |
"(LCM k\<in>K. nat \<bar>k\<bar>) = nat (Lcm K)" |
|
2644 |
by (simp add: Lcm_int_def) |
|
2645 |
||
2646 |
lemma abs_Lcm_eq [simp]: |
|
2647 |
"\<bar>Lcm K\<bar> = Lcm K" for K :: "int set" |
|
2648 |
by (simp only: Lcm_int_def) |
|
2649 |
||
2650 |
lemma Lcm_int_greater_eq_0 [simp]: |
|
2651 |
"Lcm K \<ge> 0" |
|
2652 |
for K :: "int set" |
|
2653 |
using abs_ge_zero [of "Lcm K"] by simp |
|
2654 |
||
2655 |
lemma Lcm_abs_eq [simp]: |
|
2656 |
"(LCM k\<in>K. \<bar>k\<bar>) = Lcm K" |
|
2657 |
for K :: "int set" |
|
2658 |
by (simp only: Lcm_int_def image_image) simp |
|
2659 |
||
2660 |
instance int :: semiring_Gcd |
|
2661 |
proof |
|
2662 |
fix K :: "int set" and k :: int |
|
2663 |
show "Gcd K dvd k" and "k dvd Lcm K" if "k \<in> K" |
|
2664 |
using that Gcd_dvd [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] |
|
2665 |
dvd_Lcm [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] |
|
2666 |
by (simp_all add: comp_def) |
|
2667 |
show "k dvd Gcd K" if "\<And>l. l \<in> K \<Longrightarrow> k dvd l" |
|
2668 |
proof - |
|
2669 |
have "nat \<bar>k\<bar> dvd (GCD k\<in>K. nat \<bar>k\<bar>)" |
|
2670 |
by (rule Gcd_greatest) (use that in auto) |
|
2671 |
then show ?thesis by simp |
|
2672 |
qed |
|
2673 |
show "Lcm K dvd k" if "\<And>l. l \<in> K \<Longrightarrow> l dvd k" |
|
2674 |
proof - |
|
2675 |
have "(LCM k\<in>K. nat \<bar>k\<bar>) dvd nat \<bar>k\<bar>" |
|
2676 |
by (rule Lcm_least) (use that in auto) |
|
2677 |
then show ?thesis by simp |
|
2678 |
qed |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2679 |
qed (simp_all add: sgn_mult) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2680 |
|
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2681 |
instance int :: semiring_gcd_mult_normalize |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
69906
diff
changeset
|
2682 |
by intro_classes (auto simp: sgn_mult) |
62346 | 2683 |
|
62345 | 2684 |
|
69593 | 2685 |
subsection \<open>GCD and LCM on \<^typ>\<open>integer\<close>\<close> |
62345 | 2686 |
|
2687 |
instantiation integer :: gcd |
|
2688 |
begin |
|
2689 |
||
2690 |
context |
|
2691 |
includes integer.lifting |
|
2692 |
begin |
|
2693 |
||
63489 | 2694 |
lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . |
2695 |
||
2696 |
lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . |
|
62345 | 2697 |
|
2698 |
end |
|
63489 | 2699 |
|
45264 | 2700 |
instance .. |
60686 | 2701 |
|
21256 | 2702 |
end |
45264 | 2703 |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2704 |
lifting_update integer.lifting |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2705 |
lifting_forget integer.lifting |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2706 |
|
62345 | 2707 |
context |
2708 |
includes integer.lifting |
|
2709 |
begin |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2710 |
|
63489 | 2711 |
lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" |
62345 | 2712 |
by transfer (fact gcd_code_int) |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2713 |
|
63489 | 2714 |
lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" |
2715 |
for a b :: integer |
|
62345 | 2716 |
by transfer (fact lcm_altdef_int) |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2717 |
|
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2718 |
end |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2719 |
|
63489 | 2720 |
code_printing |
2721 |
constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> |
|
69906
55534affe445
migrated from Nums to Zarith as library for OCaml integer arithmetic
haftmann
parents:
69785
diff
changeset
|
2722 |
(OCaml) "!(fun k l -> if Z.equal k Z.zero then/ Z.abs l else if Z.equal/ l Z.zero then Z.abs k else Z.gcd k l)" |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2723 |
and (Haskell) "Prelude.gcd" |
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2724 |
and (Scala) "_.gcd'((_)')" |
61975 | 2725 |
\<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> |
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2726 |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2727 |
text \<open>Some code equations\<close> |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2728 |
|
64850 | 2729 |
lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat] |
2730 |
lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat] |
|
2731 |
lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int] |
|
2732 |
lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int] |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2733 |
|
63489 | 2734 |
text \<open>Fact aliases.\<close> |
2735 |
||
2736 |
lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" |
|
2737 |
for m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2738 |
by (fact lcm_eq_0_iff) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2739 |
|
63489 | 2740 |
lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" |
2741 |
for m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2742 |
by (fact lcm_eq_0_iff) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2743 |
|
63489 | 2744 |
lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" |
2745 |
for k m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2746 |
by (fact dvd_lcmI1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2747 |
|
63489 | 2748 |
lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" |
2749 |
for k m n :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2750 |
by (fact dvd_lcmI2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2751 |
|
63489 | 2752 |
lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" |
2753 |
for i m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2754 |
by (fact dvd_lcmI1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2755 |
|
63489 | 2756 |
lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" |
2757 |
for i m n :: int |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2758 |
by (fact dvd_lcmI2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2759 |
|
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2760 |
lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2761 |
lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] |
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2762 |
lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2763 |
lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2764 |
|
63489 | 2765 |
lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" |
2766 |
for M :: "int set" |
|
2767 |
by (fact dvd_Lcm) |
|
2768 |
||
2769 |
lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2770 |
by (fact gcd_neg1_int) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2771 |
|
63489 | 2772 |
lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" |
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2773 |
by (fact gcd_neg2_int) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2774 |
|
63489 | 2775 |
lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" |
2776 |
for x y :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2777 |
by (fact gcd_nat.absorb1) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2778 |
|
63489 | 2779 |
lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" |
2780 |
for x y :: nat |
|
62344
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2781 |
by (fact gcd_nat.absorb2) |
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
haftmann
parents:
62343
diff
changeset
|
2782 |
|
62353
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2783 |
lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2784 |
lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] |
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
haftmann
parents:
62350
diff
changeset
|
2785 |
lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] |
62345 | 2786 |
|
61856
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
Andreas Lochbihler
parents:
61799
diff
changeset
|
2787 |
end |