| author | paulson | 
| Tue, 01 Feb 2005 18:01:57 +0100 | |
| changeset 15481 | fc075ae929e4 | 
| parent 15423 | 761a4f8e6ad6 | 
| child 15524 | 2ef571f80a55 | 
| permissions | -rw-r--r-- | 
| 923 | 1  | 
(* Title: HOL/HOL.thy  | 
2  | 
ID: $Id$  | 
|
| 11750 | 3  | 
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson  | 
4  | 
*)  | 
|
| 923 | 5  | 
|
| 11750 | 6  | 
header {* The basis of Higher-Order Logic *}
 | 
| 923 | 7  | 
|
| 15131 | 8  | 
theory HOL  | 
| 15140 | 9  | 
imports CPure  | 
| 15411 | 10  | 
files ("cladata.ML") ("blastdata.ML") ("simpdata.ML") ("antisym_setup.ML")
 | 
| 15481 | 11  | 
      ("eqrule_HOL_data.ML")
 | 
12  | 
      ("~~/src/Provers/eqsubst.ML")
 | 
|
| 15131 | 13  | 
begin  | 
| 2260 | 14  | 
|
| 11750 | 15  | 
subsection {* Primitive logic *}
 | 
16  | 
||
17  | 
subsubsection {* Core syntax *}
 | 
|
| 2260 | 18  | 
|
| 14854 | 19  | 
classes type  | 
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
20  | 
defaultsort type  | 
| 3947 | 21  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
22  | 
global  | 
| 923 | 23  | 
|
| 7357 | 24  | 
typedecl bool  | 
| 923 | 25  | 
|
26  | 
arities  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
27  | 
bool :: type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
28  | 
fun :: (type, type) type  | 
| 923 | 29  | 
|
| 11750 | 30  | 
judgment  | 
31  | 
  Trueprop      :: "bool => prop"                   ("(_)" 5)
 | 
|
| 923 | 32  | 
|
| 11750 | 33  | 
consts  | 
| 7357 | 34  | 
  Not           :: "bool => bool"                   ("~ _" [40] 40)
 | 
35  | 
True :: bool  | 
|
36  | 
False :: bool  | 
|
37  | 
  If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
 | 
|
| 3947 | 38  | 
arbitrary :: 'a  | 
| 923 | 39  | 
|
| 
11432
 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 
wenzelm 
parents: 
10489 
diff
changeset
 | 
40  | 
  The           :: "('a => bool) => 'a"
 | 
| 7357 | 41  | 
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
 | 
42  | 
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
 | 
|
43  | 
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
 | 
|
44  | 
Let :: "['a, 'a => 'b] => 'b"  | 
|
| 923 | 45  | 
|
| 7357 | 46  | 
"=" :: "['a, 'a] => bool" (infixl 50)  | 
47  | 
& :: "[bool, bool] => bool" (infixr 35)  | 
|
48  | 
"|" :: "[bool, bool] => bool" (infixr 30)  | 
|
49  | 
--> :: "[bool, bool] => bool" (infixr 25)  | 
|
| 923 | 50  | 
|
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
51  | 
local  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
52  | 
|
| 2260 | 53  | 
|
| 11750 | 54  | 
subsubsection {* Additional concrete syntax *}
 | 
| 2260 | 55  | 
|
| 4868 | 56  | 
nonterminals  | 
| 923 | 57  | 
letbinds letbind  | 
58  | 
case_syn cases_syn  | 
|
59  | 
||
60  | 
syntax  | 
|
| 12650 | 61  | 
"_not_equal" :: "['a, 'a] => bool" (infixl "~=" 50)  | 
| 
11432
 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 
wenzelm 
parents: 
10489 
diff
changeset
 | 
62  | 
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
 | 
| 923 | 63  | 
|
| 7357 | 64  | 
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
 | 
65  | 
  ""            :: "letbind => letbinds"                 ("_")
 | 
|
66  | 
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
 | 
|
67  | 
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
 | 
|
| 923 | 68  | 
|
| 
9060
 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 
wenzelm 
parents: 
8959 
diff
changeset
 | 
69  | 
  "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
 | 
| 
 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 
wenzelm 
parents: 
8959 
diff
changeset
 | 
70  | 
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
 | 
| 7357 | 71  | 
  ""            :: "case_syn => cases_syn"               ("_")
 | 
| 
9060
 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 
wenzelm 
parents: 
8959 
diff
changeset
 | 
72  | 
  "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
 | 
| 923 | 73  | 
|
74  | 
translations  | 
|
| 
7238
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
75  | 
"x ~= y" == "~ (x = y)"  | 
| 13764 | 76  | 
"THE x. P" == "The (%x. P)"  | 
| 923 | 77  | 
"_Let (_binds b bs) e" == "_Let b (_Let bs e)"  | 
| 1114 | 78  | 
"let x = a in e" == "Let a (%x. e)"  | 
| 923 | 79  | 
|
| 
13763
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
80  | 
print_translation {*
 | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
81  | 
(* To avoid eta-contraction of body: *)  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
82  | 
[("The", fn [Abs abs] =>
 | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
83  | 
let val (x,t) = atomic_abs_tr' abs  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
84  | 
in Syntax.const "_The" $ x $ t end)]  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
85  | 
*}  | 
| 
 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 
nipkow 
parents: 
13723 
diff
changeset
 | 
86  | 
|
| 12633 | 87  | 
syntax (output)  | 
| 11687 | 88  | 
"=" :: "['a, 'a] => bool" (infix 50)  | 
| 12650 | 89  | 
"_not_equal" :: "['a, 'a] => bool" (infix "~=" 50)  | 
| 2260 | 90  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
12023 
diff
changeset
 | 
91  | 
syntax (xsymbols)  | 
| 11687 | 92  | 
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
 | 
93  | 
"op &" :: "[bool, bool] => bool" (infixr "\<and>" 35)  | 
|
94  | 
"op |" :: "[bool, bool] => bool" (infixr "\<or>" 30)  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
12023 
diff
changeset
 | 
95  | 
"op -->" :: "[bool, bool] => bool" (infixr "\<longrightarrow>" 25)  | 
| 12650 | 96  | 
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)  | 
| 11687 | 97  | 
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
 | 
98  | 
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
 | 
|
99  | 
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
 | 
|
100  | 
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
 | 
|
| 
14361
 
ad2f5da643b4
* Support for raw latex output in control symbols: \<^raw...>
 
schirmer 
parents: 
14357 
diff
changeset
 | 
101  | 
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \<orelse> _")*)
 | 
| 2372 | 102  | 
|
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
12023 
diff
changeset
 | 
103  | 
syntax (xsymbols output)  | 
| 12650 | 104  | 
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)  | 
| 3820 | 105  | 
|
| 6340 | 106  | 
syntax (HTML output)  | 
| 14565 | 107  | 
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)  | 
| 11687 | 108  | 
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
 | 
| 14565 | 109  | 
"op &" :: "[bool, bool] => bool" (infixr "\<and>" 35)  | 
110  | 
"op |" :: "[bool, bool] => bool" (infixr "\<or>" 30)  | 
|
111  | 
"_not_equal" :: "['a, 'a] => bool" (infix "\<noteq>" 50)  | 
|
112  | 
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
 | 
|
113  | 
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
 | 
|
114  | 
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
 | 
|
| 6340 | 115  | 
|
| 
7238
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
116  | 
syntax (HOL)  | 
| 7357 | 117  | 
  "ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
 | 
118  | 
  "EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
 | 
|
119  | 
  "EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
 | 
|
| 
7238
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
120  | 
|
| 
 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 
wenzelm 
parents: 
7220 
diff
changeset
 | 
121  | 
|
| 11750 | 122  | 
subsubsection {* Axioms and basic definitions *}
 | 
| 2260 | 123  | 
|
| 7357 | 124  | 
axioms  | 
| 15380 | 125  | 
eq_reflection: "(x=y) ==> (x==y)"  | 
| 923 | 126  | 
|
| 15380 | 127  | 
refl: "t = (t::'a)"  | 
| 6289 | 128  | 
|
| 15380 | 129  | 
ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"  | 
130  | 
    -- {*Extensionality is built into the meta-logic, and this rule expresses
 | 
|
131  | 
a related property. It is an eta-expanded version of the traditional  | 
|
132  | 
rule, and similar to the ABS rule of HOL*}  | 
|
| 6289 | 133  | 
|
| 
11432
 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 
wenzelm 
parents: 
10489 
diff
changeset
 | 
134  | 
the_eq_trivial: "(THE x. x = a) = (a::'a)"  | 
| 923 | 135  | 
|
| 15380 | 136  | 
impI: "(P ==> Q) ==> P-->Q"  | 
137  | 
mp: "[| P-->Q; P |] ==> Q"  | 
|
138  | 
||
139  | 
||
140  | 
text{*Thanks to Stephan Merz*}
 | 
|
141  | 
theorem subst:  | 
|
142  | 
assumes eq: "s = t" and p: "P(s)"  | 
|
143  | 
shows "P(t::'a)"  | 
|
144  | 
proof -  | 
|
145  | 
from eq have meta: "s \<equiv> t"  | 
|
146  | 
by (rule eq_reflection)  | 
|
147  | 
from p show ?thesis  | 
|
148  | 
by (unfold meta)  | 
|
149  | 
qed  | 
|
| 923 | 150  | 
|
151  | 
defs  | 
|
| 7357 | 152  | 
True_def: "True == ((%x::bool. x) = (%x. x))"  | 
153  | 
All_def: "All(P) == (P = (%x. True))"  | 
|
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11438 
diff
changeset
 | 
154  | 
Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q"  | 
| 7357 | 155  | 
False_def: "False == (!P. P)"  | 
156  | 
not_def: "~ P == P-->False"  | 
|
157  | 
and_def: "P & Q == !R. (P-->Q-->R) --> R"  | 
|
158  | 
or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R"  | 
|
159  | 
Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)"  | 
|
| 923 | 160  | 
|
| 7357 | 161  | 
axioms  | 
162  | 
iff: "(P-->Q) --> (Q-->P) --> (P=Q)"  | 
|
163  | 
True_or_False: "(P=True) | (P=False)"  | 
|
| 923 | 164  | 
|
165  | 
defs  | 
|
| 7357 | 166  | 
Let_def: "Let s f == f(s)"  | 
| 
11451
 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 
paulson 
parents: 
11438 
diff
changeset
 | 
167  | 
if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"  | 
| 5069 | 168  | 
|
| 
14223
 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 
skalberg 
parents: 
14208 
diff
changeset
 | 
169  | 
finalconsts  | 
| 
 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 
skalberg 
parents: 
14208 
diff
changeset
 | 
170  | 
"op ="  | 
| 
 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 
skalberg 
parents: 
14208 
diff
changeset
 | 
171  | 
"op -->"  | 
| 
 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 
skalberg 
parents: 
14208 
diff
changeset
 | 
172  | 
The  | 
| 
 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 
skalberg 
parents: 
14208 
diff
changeset
 | 
173  | 
arbitrary  | 
| 3320 | 174  | 
|
| 11750 | 175  | 
subsubsection {* Generic algebraic operations *}
 | 
| 4868 | 176  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
177  | 
axclass zero < type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
178  | 
axclass one < type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
179  | 
axclass plus < type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
180  | 
axclass minus < type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
181  | 
axclass times < type  | 
| 
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
182  | 
axclass inverse < type  | 
| 11750 | 183  | 
|
184  | 
global  | 
|
185  | 
||
186  | 
consts  | 
|
187  | 
  "0"           :: "'a::zero"                       ("0")
 | 
|
188  | 
  "1"           :: "'a::one"                        ("1")
 | 
|
189  | 
"+" :: "['a::plus, 'a] => 'a" (infixl 65)  | 
|
190  | 
- :: "['a::minus, 'a] => 'a" (infixl 65)  | 
|
191  | 
  uminus        :: "['a::minus] => 'a"              ("- _" [81] 80)
 | 
|
192  | 
* :: "['a::times, 'a] => 'a" (infixl 70)  | 
|
193  | 
||
| 
13456
 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 
wenzelm 
parents: 
13438 
diff
changeset
 | 
194  | 
syntax  | 
| 
 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 
wenzelm 
parents: 
13438 
diff
changeset
 | 
195  | 
  "_index1"  :: index    ("\<^sub>1")
 | 
| 
 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 
wenzelm 
parents: 
13438 
diff
changeset
 | 
196  | 
translations  | 
| 14690 | 197  | 
(index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"  | 
| 
13456
 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 
wenzelm 
parents: 
13438 
diff
changeset
 | 
198  | 
|
| 11750 | 199  | 
local  | 
200  | 
||
201  | 
typed_print_translation {*
 | 
|
202  | 
let  | 
|
203  | 
fun tr' c = (c, fn show_sorts => fn T => fn ts =>  | 
|
204  | 
if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match  | 
|
205  | 
else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);  | 
|
206  | 
in [tr' "0", tr' "1"] end;  | 
|
207  | 
*} -- {* show types that are presumably too general *}
 | 
|
208  | 
||
209  | 
||
210  | 
consts  | 
|
211  | 
abs :: "'a::minus => 'a"  | 
|
212  | 
inverse :: "'a::inverse => 'a"  | 
|
213  | 
divide :: "['a::inverse, 'a] => 'a" (infixl "'/" 70)  | 
|
214  | 
||
215  | 
syntax (xsymbols)  | 
|
216  | 
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
 | 
|
217  | 
syntax (HTML output)  | 
|
218  | 
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
 | 
|
219  | 
||
220  | 
||
| 15411 | 221  | 
subsection {*Equality*}
 | 
222  | 
||
223  | 
lemma sym: "s=t ==> t=s"  | 
|
224  | 
apply (erule subst)  | 
|
225  | 
apply (rule refl)  | 
|
226  | 
done  | 
|
227  | 
||
228  | 
(*calling "standard" reduces maxidx to 0*)  | 
|
229  | 
lemmas ssubst = sym [THEN subst, standard]  | 
|
230  | 
||
231  | 
lemma trans: "[| r=s; s=t |] ==> r=t"  | 
|
232  | 
apply (erule subst , assumption)  | 
|
233  | 
done  | 
|
234  | 
||
235  | 
lemma def_imp_eq: assumes meq: "A == B" shows "A = B"  | 
|
236  | 
apply (unfold meq)  | 
|
237  | 
apply (rule refl)  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
(*Useful with eresolve_tac for proving equalties from known equalities.  | 
|
241  | 
a = b  | 
|
242  | 
| |  | 
|
243  | 
c = d *)  | 
|
244  | 
lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d"  | 
|
245  | 
apply (rule trans)  | 
|
246  | 
apply (rule trans)  | 
|
247  | 
apply (rule sym)  | 
|
248  | 
apply assumption+  | 
|
249  | 
done  | 
|
250  | 
||
251  | 
||
252  | 
subsection {*Congruence rules for application*}
 | 
|
253  | 
||
254  | 
(*similar to AP_THM in Gordon's HOL*)  | 
|
255  | 
lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)"  | 
|
256  | 
apply (erule subst)  | 
|
257  | 
apply (rule refl)  | 
|
258  | 
done  | 
|
259  | 
||
260  | 
(*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)  | 
|
261  | 
lemma arg_cong: "x=y ==> f(x)=f(y)"  | 
|
262  | 
apply (erule subst)  | 
|
263  | 
apply (rule refl)  | 
|
264  | 
done  | 
|
265  | 
||
266  | 
lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)"  | 
|
267  | 
apply (erule subst)+  | 
|
268  | 
apply (rule refl)  | 
|
269  | 
done  | 
|
270  | 
||
271  | 
||
272  | 
subsection {*Equality of booleans -- iff*}
 | 
|
273  | 
||
274  | 
lemma iffI: assumes prems: "P ==> Q" "Q ==> P" shows "P=Q"  | 
|
275  | 
apply (rules intro: iff [THEN mp, THEN mp] impI prems)  | 
|
276  | 
done  | 
|
277  | 
||
278  | 
lemma iffD2: "[| P=Q; Q |] ==> P"  | 
|
279  | 
apply (erule ssubst)  | 
|
280  | 
apply assumption  | 
|
281  | 
done  | 
|
282  | 
||
283  | 
lemma rev_iffD2: "[| Q; P=Q |] ==> P"  | 
|
284  | 
apply (erule iffD2)  | 
|
285  | 
apply assumption  | 
|
286  | 
done  | 
|
287  | 
||
288  | 
lemmas iffD1 = sym [THEN iffD2, standard]  | 
|
289  | 
lemmas rev_iffD1 = sym [THEN [2] rev_iffD2, standard]  | 
|
290  | 
||
291  | 
lemma iffE:  | 
|
292  | 
assumes major: "P=Q"  | 
|
293  | 
and minor: "[| P --> Q; Q --> P |] ==> R"  | 
|
294  | 
shows "R"  | 
|
295  | 
by (rules intro: minor impI major [THEN iffD2] major [THEN iffD1])  | 
|
296  | 
||
297  | 
||
298  | 
subsection {*True*}
 | 
|
299  | 
||
300  | 
lemma TrueI: "True"  | 
|
301  | 
apply (unfold True_def)  | 
|
302  | 
apply (rule refl)  | 
|
303  | 
done  | 
|
304  | 
||
305  | 
lemma eqTrueI: "P ==> P=True"  | 
|
306  | 
by (rules intro: iffI TrueI)  | 
|
307  | 
||
308  | 
lemma eqTrueE: "P=True ==> P"  | 
|
309  | 
apply (erule iffD2)  | 
|
310  | 
apply (rule TrueI)  | 
|
311  | 
done  | 
|
312  | 
||
313  | 
||
314  | 
subsection {*Universal quantifier*}
 | 
|
315  | 
||
316  | 
lemma allI: assumes p: "!!x::'a. P(x)" shows "ALL x. P(x)"  | 
|
317  | 
apply (unfold All_def)  | 
|
318  | 
apply (rules intro: ext eqTrueI p)  | 
|
319  | 
done  | 
|
320  | 
||
321  | 
lemma spec: "ALL x::'a. P(x) ==> P(x)"  | 
|
322  | 
apply (unfold All_def)  | 
|
323  | 
apply (rule eqTrueE)  | 
|
324  | 
apply (erule fun_cong)  | 
|
325  | 
done  | 
|
326  | 
||
327  | 
lemma allE:  | 
|
328  | 
assumes major: "ALL x. P(x)"  | 
|
329  | 
and minor: "P(x) ==> R"  | 
|
330  | 
shows "R"  | 
|
331  | 
by (rules intro: minor major [THEN spec])  | 
|
332  | 
||
333  | 
lemma all_dupE:  | 
|
334  | 
assumes major: "ALL x. P(x)"  | 
|
335  | 
and minor: "[| P(x); ALL x. P(x) |] ==> R"  | 
|
336  | 
shows "R"  | 
|
337  | 
by (rules intro: minor major major [THEN spec])  | 
|
338  | 
||
339  | 
||
340  | 
subsection {*False*}
 | 
|
341  | 
(*Depends upon spec; it is impossible to do propositional logic before quantifiers!*)  | 
|
342  | 
||
343  | 
lemma FalseE: "False ==> P"  | 
|
344  | 
apply (unfold False_def)  | 
|
345  | 
apply (erule spec)  | 
|
346  | 
done  | 
|
347  | 
||
348  | 
lemma False_neq_True: "False=True ==> P"  | 
|
349  | 
by (erule eqTrueE [THEN FalseE])  | 
|
350  | 
||
351  | 
||
352  | 
subsection {*Negation*}
 | 
|
353  | 
||
354  | 
lemma notI:  | 
|
355  | 
assumes p: "P ==> False"  | 
|
356  | 
shows "~P"  | 
|
357  | 
apply (unfold not_def)  | 
|
358  | 
apply (rules intro: impI p)  | 
|
359  | 
done  | 
|
360  | 
||
361  | 
lemma False_not_True: "False ~= True"  | 
|
362  | 
apply (rule notI)  | 
|
363  | 
apply (erule False_neq_True)  | 
|
364  | 
done  | 
|
365  | 
||
366  | 
lemma True_not_False: "True ~= False"  | 
|
367  | 
apply (rule notI)  | 
|
368  | 
apply (drule sym)  | 
|
369  | 
apply (erule False_neq_True)  | 
|
370  | 
done  | 
|
371  | 
||
372  | 
lemma notE: "[| ~P; P |] ==> R"  | 
|
373  | 
apply (unfold not_def)  | 
|
374  | 
apply (erule mp [THEN FalseE])  | 
|
375  | 
apply assumption  | 
|
376  | 
done  | 
|
377  | 
||
378  | 
(* Alternative ~ introduction rule: [| P ==> ~ Pa; P ==> Pa |] ==> ~ P *)  | 
|
379  | 
lemmas notI2 = notE [THEN notI, standard]  | 
|
380  | 
||
381  | 
||
382  | 
subsection {*Implication*}
 | 
|
383  | 
||
384  | 
lemma impE:  | 
|
385  | 
assumes "P-->Q" "P" "Q ==> R"  | 
|
386  | 
shows "R"  | 
|
387  | 
by (rules intro: prems mp)  | 
|
388  | 
||
389  | 
(* Reduces Q to P-->Q, allowing substitution in P. *)  | 
|
390  | 
lemma rev_mp: "[| P; P --> Q |] ==> Q"  | 
|
391  | 
by (rules intro: mp)  | 
|
392  | 
||
393  | 
lemma contrapos_nn:  | 
|
394  | 
assumes major: "~Q"  | 
|
395  | 
and minor: "P==>Q"  | 
|
396  | 
shows "~P"  | 
|
397  | 
by (rules intro: notI minor major [THEN notE])  | 
|
398  | 
||
399  | 
(*not used at all, but we already have the other 3 combinations *)  | 
|
400  | 
lemma contrapos_pn:  | 
|
401  | 
assumes major: "Q"  | 
|
402  | 
and minor: "P ==> ~Q"  | 
|
403  | 
shows "~P"  | 
|
404  | 
by (rules intro: notI minor major notE)  | 
|
405  | 
||
406  | 
lemma not_sym: "t ~= s ==> s ~= t"  | 
|
407  | 
apply (erule contrapos_nn)  | 
|
408  | 
apply (erule sym)  | 
|
409  | 
done  | 
|
410  | 
||
411  | 
(*still used in HOLCF*)  | 
|
412  | 
lemma rev_contrapos:  | 
|
413  | 
assumes pq: "P ==> Q"  | 
|
414  | 
and nq: "~Q"  | 
|
415  | 
shows "~P"  | 
|
416  | 
apply (rule nq [THEN contrapos_nn])  | 
|
417  | 
apply (erule pq)  | 
|
418  | 
done  | 
|
419  | 
||
420  | 
subsection {*Existential quantifier*}
 | 
|
421  | 
||
422  | 
lemma exI: "P x ==> EX x::'a. P x"  | 
|
423  | 
apply (unfold Ex_def)  | 
|
424  | 
apply (rules intro: allI allE impI mp)  | 
|
425  | 
done  | 
|
426  | 
||
427  | 
lemma exE:  | 
|
428  | 
assumes major: "EX x::'a. P(x)"  | 
|
429  | 
and minor: "!!x. P(x) ==> Q"  | 
|
430  | 
shows "Q"  | 
|
431  | 
apply (rule major [unfolded Ex_def, THEN spec, THEN mp])  | 
|
432  | 
apply (rules intro: impI [THEN allI] minor)  | 
|
433  | 
done  | 
|
434  | 
||
435  | 
||
436  | 
subsection {*Conjunction*}
 | 
|
437  | 
||
438  | 
lemma conjI: "[| P; Q |] ==> P&Q"  | 
|
439  | 
apply (unfold and_def)  | 
|
440  | 
apply (rules intro: impI [THEN allI] mp)  | 
|
441  | 
done  | 
|
442  | 
||
443  | 
lemma conjunct1: "[| P & Q |] ==> P"  | 
|
444  | 
apply (unfold and_def)  | 
|
445  | 
apply (rules intro: impI dest: spec mp)  | 
|
446  | 
done  | 
|
447  | 
||
448  | 
lemma conjunct2: "[| P & Q |] ==> Q"  | 
|
449  | 
apply (unfold and_def)  | 
|
450  | 
apply (rules intro: impI dest: spec mp)  | 
|
451  | 
done  | 
|
452  | 
||
453  | 
lemma conjE:  | 
|
454  | 
assumes major: "P&Q"  | 
|
455  | 
and minor: "[| P; Q |] ==> R"  | 
|
456  | 
shows "R"  | 
|
457  | 
apply (rule minor)  | 
|
458  | 
apply (rule major [THEN conjunct1])  | 
|
459  | 
apply (rule major [THEN conjunct2])  | 
|
460  | 
done  | 
|
461  | 
||
462  | 
lemma context_conjI:  | 
|
463  | 
assumes prems: "P" "P ==> Q" shows "P & Q"  | 
|
464  | 
by (rules intro: conjI prems)  | 
|
465  | 
||
466  | 
||
467  | 
subsection {*Disjunction*}
 | 
|
468  | 
||
469  | 
lemma disjI1: "P ==> P|Q"  | 
|
470  | 
apply (unfold or_def)  | 
|
471  | 
apply (rules intro: allI impI mp)  | 
|
472  | 
done  | 
|
473  | 
||
474  | 
lemma disjI2: "Q ==> P|Q"  | 
|
475  | 
apply (unfold or_def)  | 
|
476  | 
apply (rules intro: allI impI mp)  | 
|
477  | 
done  | 
|
478  | 
||
479  | 
lemma disjE:  | 
|
480  | 
assumes major: "P|Q"  | 
|
481  | 
and minorP: "P ==> R"  | 
|
482  | 
and minorQ: "Q ==> R"  | 
|
483  | 
shows "R"  | 
|
484  | 
by (rules intro: minorP minorQ impI  | 
|
485  | 
major [unfolded or_def, THEN spec, THEN mp, THEN mp])  | 
|
486  | 
||
487  | 
||
488  | 
subsection {*Classical logic*}
 | 
|
489  | 
||
490  | 
||
491  | 
lemma classical:  | 
|
492  | 
assumes prem: "~P ==> P"  | 
|
493  | 
shows "P"  | 
|
494  | 
apply (rule True_or_False [THEN disjE, THEN eqTrueE])  | 
|
495  | 
apply assumption  | 
|
496  | 
apply (rule notI [THEN prem, THEN eqTrueI])  | 
|
497  | 
apply (erule subst)  | 
|
498  | 
apply assumption  | 
|
499  | 
done  | 
|
500  | 
||
501  | 
lemmas ccontr = FalseE [THEN classical, standard]  | 
|
502  | 
||
503  | 
(*notE with premises exchanged; it discharges ~R so that it can be used to  | 
|
504  | 
make elimination rules*)  | 
|
505  | 
lemma rev_notE:  | 
|
506  | 
assumes premp: "P"  | 
|
507  | 
and premnot: "~R ==> ~P"  | 
|
508  | 
shows "R"  | 
|
509  | 
apply (rule ccontr)  | 
|
510  | 
apply (erule notE [OF premnot premp])  | 
|
511  | 
done  | 
|
512  | 
||
513  | 
(*Double negation law*)  | 
|
514  | 
lemma notnotD: "~~P ==> P"  | 
|
515  | 
apply (rule classical)  | 
|
516  | 
apply (erule notE)  | 
|
517  | 
apply assumption  | 
|
518  | 
done  | 
|
519  | 
||
520  | 
lemma contrapos_pp:  | 
|
521  | 
assumes p1: "Q"  | 
|
522  | 
and p2: "~P ==> ~Q"  | 
|
523  | 
shows "P"  | 
|
524  | 
by (rules intro: classical p1 p2 notE)  | 
|
525  | 
||
526  | 
||
527  | 
subsection {*Unique existence*}
 | 
|
528  | 
||
529  | 
lemma ex1I:  | 
|
530  | 
assumes prems: "P a" "!!x. P(x) ==> x=a"  | 
|
531  | 
shows "EX! x. P(x)"  | 
|
532  | 
by (unfold Ex1_def, rules intro: prems exI conjI allI impI)  | 
|
533  | 
||
534  | 
text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
 | 
|
535  | 
lemma ex_ex1I:  | 
|
536  | 
assumes ex_prem: "EX x. P(x)"  | 
|
537  | 
and eq: "!!x y. [| P(x); P(y) |] ==> x=y"  | 
|
538  | 
shows "EX! x. P(x)"  | 
|
539  | 
by (rules intro: ex_prem [THEN exE] ex1I eq)  | 
|
540  | 
||
541  | 
lemma ex1E:  | 
|
542  | 
assumes major: "EX! x. P(x)"  | 
|
543  | 
and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R"  | 
|
544  | 
shows "R"  | 
|
545  | 
apply (rule major [unfolded Ex1_def, THEN exE])  | 
|
546  | 
apply (erule conjE)  | 
|
547  | 
apply (rules intro: minor)  | 
|
548  | 
done  | 
|
549  | 
||
550  | 
lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x"  | 
|
551  | 
apply (erule ex1E)  | 
|
552  | 
apply (rule exI)  | 
|
553  | 
apply assumption  | 
|
554  | 
done  | 
|
555  | 
||
556  | 
||
557  | 
subsection {*THE: definite description operator*}
 | 
|
558  | 
||
559  | 
lemma the_equality:  | 
|
560  | 
assumes prema: "P a"  | 
|
561  | 
and premx: "!!x. P x ==> x=a"  | 
|
562  | 
shows "(THE x. P x) = a"  | 
|
563  | 
apply (rule trans [OF _ the_eq_trivial])  | 
|
564  | 
apply (rule_tac f = "The" in arg_cong)  | 
|
565  | 
apply (rule ext)  | 
|
566  | 
apply (rule iffI)  | 
|
567  | 
apply (erule premx)  | 
|
568  | 
apply (erule ssubst, rule prema)  | 
|
569  | 
done  | 
|
570  | 
||
571  | 
lemma theI:  | 
|
572  | 
assumes "P a" and "!!x. P x ==> x=a"  | 
|
573  | 
shows "P (THE x. P x)"  | 
|
574  | 
by (rules intro: prems the_equality [THEN ssubst])  | 
|
575  | 
||
576  | 
lemma theI': "EX! x. P x ==> P (THE x. P x)"  | 
|
577  | 
apply (erule ex1E)  | 
|
578  | 
apply (erule theI)  | 
|
579  | 
apply (erule allE)  | 
|
580  | 
apply (erule mp)  | 
|
581  | 
apply assumption  | 
|
582  | 
done  | 
|
583  | 
||
584  | 
(*Easier to apply than theI: only one occurrence of P*)  | 
|
585  | 
lemma theI2:  | 
|
586  | 
assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x"  | 
|
587  | 
shows "Q (THE x. P x)"  | 
|
588  | 
by (rules intro: prems theI)  | 
|
589  | 
||
590  | 
lemma the1_equality: "[| EX!x. P x; P a |] ==> (THE x. P x) = a"  | 
|
591  | 
apply (rule the_equality)  | 
|
592  | 
apply assumption  | 
|
593  | 
apply (erule ex1E)  | 
|
594  | 
apply (erule all_dupE)  | 
|
595  | 
apply (drule mp)  | 
|
596  | 
apply assumption  | 
|
597  | 
apply (erule ssubst)  | 
|
598  | 
apply (erule allE)  | 
|
599  | 
apply (erule mp)  | 
|
600  | 
apply assumption  | 
|
601  | 
done  | 
|
602  | 
||
603  | 
lemma the_sym_eq_trivial: "(THE y. x=y) = x"  | 
|
604  | 
apply (rule the_equality)  | 
|
605  | 
apply (rule refl)  | 
|
606  | 
apply (erule sym)  | 
|
607  | 
done  | 
|
608  | 
||
609  | 
||
610  | 
subsection {*Classical intro rules for disjunction and existential quantifiers*}
 | 
|
611  | 
||
612  | 
lemma disjCI:  | 
|
613  | 
assumes "~Q ==> P" shows "P|Q"  | 
|
614  | 
apply (rule classical)  | 
|
615  | 
apply (rules intro: prems disjI1 disjI2 notI elim: notE)  | 
|
616  | 
done  | 
|
617  | 
||
618  | 
lemma excluded_middle: "~P | P"  | 
|
619  | 
by (rules intro: disjCI)  | 
|
620  | 
||
621  | 
text{*case distinction as a natural deduction rule. Note that @{term "~P"}
 | 
|
622  | 
is the second case, not the first.*}  | 
|
623  | 
lemma case_split_thm:  | 
|
624  | 
assumes prem1: "P ==> Q"  | 
|
625  | 
and prem2: "~P ==> Q"  | 
|
626  | 
shows "Q"  | 
|
627  | 
apply (rule excluded_middle [THEN disjE])  | 
|
628  | 
apply (erule prem2)  | 
|
629  | 
apply (erule prem1)  | 
|
630  | 
done  | 
|
631  | 
||
632  | 
(*Classical implies (-->) elimination. *)  | 
|
633  | 
lemma impCE:  | 
|
634  | 
assumes major: "P-->Q"  | 
|
635  | 
and minor: "~P ==> R" "Q ==> R"  | 
|
636  | 
shows "R"  | 
|
637  | 
apply (rule excluded_middle [of P, THEN disjE])  | 
|
638  | 
apply (rules intro: minor major [THEN mp])+  | 
|
639  | 
done  | 
|
640  | 
||
641  | 
(*This version of --> elimination works on Q before P. It works best for  | 
|
642  | 
those cases in which P holds "almost everywhere". Can't install as  | 
|
643  | 
default: would break old proofs.*)  | 
|
644  | 
lemma impCE':  | 
|
645  | 
assumes major: "P-->Q"  | 
|
646  | 
and minor: "Q ==> R" "~P ==> R"  | 
|
647  | 
shows "R"  | 
|
648  | 
apply (rule excluded_middle [of P, THEN disjE])  | 
|
649  | 
apply (rules intro: minor major [THEN mp])+  | 
|
650  | 
done  | 
|
651  | 
||
652  | 
(*Classical <-> elimination. *)  | 
|
653  | 
lemma iffCE:  | 
|
654  | 
assumes major: "P=Q"  | 
|
655  | 
and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R"  | 
|
656  | 
shows "R"  | 
|
657  | 
apply (rule major [THEN iffE])  | 
|
658  | 
apply (rules intro: minor elim: impCE notE)  | 
|
659  | 
done  | 
|
660  | 
||
661  | 
lemma exCI:  | 
|
662  | 
assumes "ALL x. ~P(x) ==> P(a)"  | 
|
663  | 
shows "EX x. P(x)"  | 
|
664  | 
apply (rule ccontr)  | 
|
665  | 
apply (rules intro: prems exI allI notI notE [of "\<exists>x. P x"])  | 
|
666  | 
done  | 
|
667  | 
||
668  | 
||
669  | 
||
| 11750 | 670  | 
subsection {* Theory and package setup *}
 | 
671  | 
||
| 15411 | 672  | 
ML  | 
673  | 
{*
 | 
|
674  | 
val plusI = thm "plusI"  | 
|
675  | 
val minusI = thm "minusI"  | 
|
676  | 
val timesI = thm "timesI"  | 
|
677  | 
val eq_reflection = thm "eq_reflection"  | 
|
678  | 
val refl = thm "refl"  | 
|
679  | 
val subst = thm "subst"  | 
|
680  | 
val ext = thm "ext"  | 
|
681  | 
val impI = thm "impI"  | 
|
682  | 
val mp = thm "mp"  | 
|
683  | 
val True_def = thm "True_def"  | 
|
684  | 
val All_def = thm "All_def"  | 
|
685  | 
val Ex_def = thm "Ex_def"  | 
|
686  | 
val False_def = thm "False_def"  | 
|
687  | 
val not_def = thm "not_def"  | 
|
688  | 
val and_def = thm "and_def"  | 
|
689  | 
val or_def = thm "or_def"  | 
|
690  | 
val Ex1_def = thm "Ex1_def"  | 
|
691  | 
val iff = thm "iff"  | 
|
692  | 
val True_or_False = thm "True_or_False"  | 
|
693  | 
val Let_def = thm "Let_def"  | 
|
694  | 
val if_def = thm "if_def"  | 
|
695  | 
val sym = thm "sym"  | 
|
696  | 
val ssubst = thm "ssubst"  | 
|
697  | 
val trans = thm "trans"  | 
|
698  | 
val def_imp_eq = thm "def_imp_eq"  | 
|
699  | 
val box_equals = thm "box_equals"  | 
|
700  | 
val fun_cong = thm "fun_cong"  | 
|
701  | 
val arg_cong = thm "arg_cong"  | 
|
702  | 
val cong = thm "cong"  | 
|
703  | 
val iffI = thm "iffI"  | 
|
704  | 
val iffD2 = thm "iffD2"  | 
|
705  | 
val rev_iffD2 = thm "rev_iffD2"  | 
|
706  | 
val iffD1 = thm "iffD1"  | 
|
707  | 
val rev_iffD1 = thm "rev_iffD1"  | 
|
708  | 
val iffE = thm "iffE"  | 
|
709  | 
val TrueI = thm "TrueI"  | 
|
710  | 
val eqTrueI = thm "eqTrueI"  | 
|
711  | 
val eqTrueE = thm "eqTrueE"  | 
|
712  | 
val allI = thm "allI"  | 
|
713  | 
val spec = thm "spec"  | 
|
714  | 
val allE = thm "allE"  | 
|
715  | 
val all_dupE = thm "all_dupE"  | 
|
716  | 
val FalseE = thm "FalseE"  | 
|
717  | 
val False_neq_True = thm "False_neq_True"  | 
|
718  | 
val notI = thm "notI"  | 
|
719  | 
val False_not_True = thm "False_not_True"  | 
|
720  | 
val True_not_False = thm "True_not_False"  | 
|
721  | 
val notE = thm "notE"  | 
|
722  | 
val notI2 = thm "notI2"  | 
|
723  | 
val impE = thm "impE"  | 
|
724  | 
val rev_mp = thm "rev_mp"  | 
|
725  | 
val contrapos_nn = thm "contrapos_nn"  | 
|
726  | 
val contrapos_pn = thm "contrapos_pn"  | 
|
727  | 
val not_sym = thm "not_sym"  | 
|
728  | 
val rev_contrapos = thm "rev_contrapos"  | 
|
729  | 
val exI = thm "exI"  | 
|
730  | 
val exE = thm "exE"  | 
|
731  | 
val conjI = thm "conjI"  | 
|
732  | 
val conjunct1 = thm "conjunct1"  | 
|
733  | 
val conjunct2 = thm "conjunct2"  | 
|
734  | 
val conjE = thm "conjE"  | 
|
735  | 
val context_conjI = thm "context_conjI"  | 
|
736  | 
val disjI1 = thm "disjI1"  | 
|
737  | 
val disjI2 = thm "disjI2"  | 
|
738  | 
val disjE = thm "disjE"  | 
|
739  | 
val classical = thm "classical"  | 
|
740  | 
val ccontr = thm "ccontr"  | 
|
741  | 
val rev_notE = thm "rev_notE"  | 
|
742  | 
val notnotD = thm "notnotD"  | 
|
743  | 
val contrapos_pp = thm "contrapos_pp"  | 
|
744  | 
val ex1I = thm "ex1I"  | 
|
745  | 
val ex_ex1I = thm "ex_ex1I"  | 
|
746  | 
val ex1E = thm "ex1E"  | 
|
747  | 
val ex1_implies_ex = thm "ex1_implies_ex"  | 
|
748  | 
val the_equality = thm "the_equality"  | 
|
749  | 
val theI = thm "theI"  | 
|
750  | 
val theI' = thm "theI'"  | 
|
751  | 
val theI2 = thm "theI2"  | 
|
752  | 
val the1_equality = thm "the1_equality"  | 
|
753  | 
val the_sym_eq_trivial = thm "the_sym_eq_trivial"  | 
|
754  | 
val disjCI = thm "disjCI"  | 
|
755  | 
val excluded_middle = thm "excluded_middle"  | 
|
756  | 
val case_split_thm = thm "case_split_thm"  | 
|
757  | 
val impCE = thm "impCE"  | 
|
758  | 
val impCE = thm "impCE"  | 
|
759  | 
val iffCE = thm "iffCE"  | 
|
760  | 
val exCI = thm "exCI"  | 
|
| 4868 | 761  | 
|
| 15411 | 762  | 
(* combination of (spec RS spec RS ...(j times) ... spec RS mp) *)  | 
763  | 
local  | 
|
764  | 
  fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
 | 
|
765  | 
| wrong_prem (Bound _) = true  | 
|
766  | 
| wrong_prem _ = false  | 
|
767  | 
val filter_right = filter (fn t => not (wrong_prem (HOLogic.dest_Trueprop (hd (Thm.prems_of t)))))  | 
|
768  | 
in  | 
|
769  | 
fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp])  | 
|
770  | 
fun smp_tac j = EVERY'[dresolve_tac (smp j), atac]  | 
|
771  | 
end  | 
|
772  | 
||
773  | 
||
774  | 
fun strip_tac i = REPEAT(resolve_tac [impI,allI] i)  | 
|
775  | 
||
776  | 
(*Obsolete form of disjunctive case analysis*)  | 
|
777  | 
fun excluded_middle_tac sP =  | 
|
778  | 
    res_inst_tac [("Q",sP)] (excluded_middle RS disjE)
 | 
|
779  | 
||
780  | 
fun case_tac a = res_inst_tac [("P",a)] case_split_thm
 | 
|
781  | 
*}  | 
|
782  | 
||
| 11687 | 783  | 
theorems case_split = case_split_thm [case_names True False]  | 
| 9869 | 784  | 
|
| 12386 | 785  | 
|
786  | 
subsubsection {* Intuitionistic Reasoning *}
 | 
|
787  | 
||
788  | 
lemma impE':  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
789  | 
assumes 1: "P --> Q"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
790  | 
and 2: "Q ==> R"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
791  | 
and 3: "P --> Q ==> P"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
792  | 
shows R  | 
| 12386 | 793  | 
proof -  | 
794  | 
from 3 and 1 have P .  | 
|
795  | 
with 1 have Q by (rule impE)  | 
|
796  | 
with 2 show R .  | 
|
797  | 
qed  | 
|
798  | 
||
799  | 
lemma allE':  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
800  | 
assumes 1: "ALL x. P x"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
801  | 
and 2: "P x ==> ALL x. P x ==> Q"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
802  | 
shows Q  | 
| 12386 | 803  | 
proof -  | 
804  | 
from 1 have "P x" by (rule spec)  | 
|
805  | 
from this and 1 show Q by (rule 2)  | 
|
806  | 
qed  | 
|
807  | 
||
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
808  | 
lemma notE':  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
809  | 
assumes 1: "~ P"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
810  | 
and 2: "~ P ==> P"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
811  | 
shows R  | 
| 12386 | 812  | 
proof -  | 
813  | 
from 2 and 1 have P .  | 
|
814  | 
with 1 show R by (rule notE)  | 
|
815  | 
qed  | 
|
816  | 
||
817  | 
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE  | 
|
818  | 
and [CPure.intro!] = iffI conjI impI TrueI notI allI refl  | 
|
819  | 
and [CPure.elim 2] = allE notE' impE'  | 
|
820  | 
and [CPure.intro] = exI disjI2 disjI1  | 
|
821  | 
||
822  | 
lemmas [trans] = trans  | 
|
823  | 
and [sym] = sym not_sym  | 
|
824  | 
and [CPure.elim?] = iffD1 iffD2 impE  | 
|
| 11750 | 825  | 
|
| 
11438
 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 
wenzelm 
parents: 
11432 
diff
changeset
 | 
826  | 
|
| 11750 | 827  | 
subsubsection {* Atomizing meta-level connectives *}
 | 
828  | 
||
829  | 
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"  | 
|
| 12003 | 830  | 
proof  | 
| 9488 | 831  | 
assume "!!x. P x"  | 
| 10383 | 832  | 
show "ALL x. P x" by (rule allI)  | 
| 9488 | 833  | 
next  | 
834  | 
assume "ALL x. P x"  | 
|
| 10383 | 835  | 
thus "!!x. P x" by (rule allE)  | 
| 9488 | 836  | 
qed  | 
837  | 
||
| 11750 | 838  | 
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"  | 
| 12003 | 839  | 
proof  | 
| 9488 | 840  | 
assume r: "A ==> B"  | 
| 10383 | 841  | 
show "A --> B" by (rule impI) (rule r)  | 
| 9488 | 842  | 
next  | 
843  | 
assume "A --> B" and A  | 
|
| 10383 | 844  | 
thus B by (rule mp)  | 
| 9488 | 845  | 
qed  | 
846  | 
||
| 14749 | 847  | 
lemma atomize_not: "(A ==> False) == Trueprop (~A)"  | 
848  | 
proof  | 
|
849  | 
assume r: "A ==> False"  | 
|
850  | 
show "~A" by (rule notI) (rule r)  | 
|
851  | 
next  | 
|
852  | 
assume "~A" and A  | 
|
853  | 
thus False by (rule notE)  | 
|
854  | 
qed  | 
|
855  | 
||
| 11750 | 856  | 
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"  | 
| 12003 | 857  | 
proof  | 
| 
10432
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
858  | 
assume "x == y"  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
859  | 
show "x = y" by (unfold prems) (rule refl)  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
860  | 
next  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
861  | 
assume "x = y"  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
862  | 
thus "x == y" by (rule eq_reflection)  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
863  | 
qed  | 
| 
 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 
wenzelm 
parents: 
10383 
diff
changeset
 | 
864  | 
|
| 12023 | 865  | 
lemma atomize_conj [atomize]:  | 
866  | 
"(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"  | 
|
| 12003 | 867  | 
proof  | 
| 11953 | 868  | 
assume "!!C. (A ==> B ==> PROP C) ==> PROP C"  | 
869  | 
show "A & B" by (rule conjI)  | 
|
870  | 
next  | 
|
871  | 
fix C  | 
|
872  | 
assume "A & B"  | 
|
873  | 
assume "A ==> B ==> PROP C"  | 
|
874  | 
thus "PROP C"  | 
|
875  | 
proof this  | 
|
876  | 
show A by (rule conjunct1)  | 
|
877  | 
show B by (rule conjunct2)  | 
|
878  | 
qed  | 
|
879  | 
qed  | 
|
880  | 
||
| 12386 | 881  | 
lemmas [symmetric, rulify] = atomize_all atomize_imp  | 
882  | 
||
| 11750 | 883  | 
|
884  | 
subsubsection {* Classical Reasoner setup *}
 | 
|
| 9529 | 885  | 
|
| 10383 | 886  | 
use "cladata.ML"  | 
887  | 
setup hypsubst_setup  | 
|
| 11977 | 888  | 
|
| 12386 | 889  | 
ML_setup {*
 | 
890  | 
Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));  | 
|
891  | 
*}  | 
|
| 11977 | 892  | 
|
| 10383 | 893  | 
setup Classical.setup  | 
894  | 
setup clasetup  | 
|
895  | 
||
| 12386 | 896  | 
lemmas [intro?] = ext  | 
897  | 
and [elim?] = ex1_implies_ex  | 
|
| 11977 | 898  | 
|
| 9869 | 899  | 
use "blastdata.ML"  | 
900  | 
setup Blast.setup  | 
|
| 4868 | 901  | 
|
| 11750 | 902  | 
|
| 15481 | 903  | 
subsection {* Simplifier setup *}
 | 
| 11750 | 904  | 
|
| 12281 | 905  | 
lemma meta_eq_to_obj_eq: "x == y ==> x = y"  | 
906  | 
proof -  | 
|
907  | 
assume r: "x == y"  | 
|
908  | 
show "x = y" by (unfold r) (rule refl)  | 
|
909  | 
qed  | 
|
910  | 
||
911  | 
lemma eta_contract_eq: "(%s. f s) = f" ..  | 
|
912  | 
||
913  | 
lemma simp_thms:  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
914  | 
shows not_not: "(~ ~ P) = P"  | 
| 15354 | 915  | 
and Not_eq_iff: "((~P) = (~Q)) = (P = Q)"  | 
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
916  | 
and  | 
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
917  | 
"(P ~= Q) = (P = (~Q))"  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
918  | 
"(P | ~P) = True" "(~P | P) = True"  | 
| 12281 | 919  | 
"(x = x) = True"  | 
920  | 
"(~True) = False" "(~False) = True"  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
921  | 
"(~P) ~= P" "P ~= (~P)"  | 
| 12281 | 922  | 
"(True=P) = P" "(P=True) = P" "(False=P) = (~P)" "(P=False) = (~P)"  | 
923  | 
"(True --> P) = P" "(False --> P) = True"  | 
|
924  | 
"(P --> True) = True" "(P --> P) = True"  | 
|
925  | 
"(P --> False) = (~P)" "(P --> ~P) = (~P)"  | 
|
926  | 
"(P & True) = P" "(True & P) = P"  | 
|
927  | 
"(P & False) = False" "(False & P) = False"  | 
|
928  | 
"(P & P) = P" "(P & (P & Q)) = (P & Q)"  | 
|
929  | 
"(P & ~P) = False" "(~P & P) = False"  | 
|
930  | 
"(P | True) = True" "(True | P) = True"  | 
|
931  | 
"(P | False) = P" "(False | P) = P"  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
932  | 
"(P | P) = P" "(P | (P | Q)) = (P | Q)" and  | 
| 12281 | 933  | 
"(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x"  | 
934  | 
    -- {* needed for the one-point-rule quantifier simplification procs *}
 | 
|
935  | 
    -- {* essential for termination!! *} and
 | 
|
936  | 
"!!P. (EX x. x=t & P(x)) = P(t)"  | 
|
937  | 
"!!P. (EX x. t=x & P(x)) = P(t)"  | 
|
938  | 
"!!P. (ALL x. x=t --> P(x)) = P(t)"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
939  | 
"!!P. (ALL x. t=x --> P(x)) = P(t)"  | 
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
940  | 
by (blast, blast, blast, blast, blast, rules+)  | 
| 13421 | 941  | 
|
| 12281 | 942  | 
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"  | 
| 12354 | 943  | 
by rules  | 
| 12281 | 944  | 
|
945  | 
lemma ex_simps:  | 
|
946  | 
"!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)"  | 
|
947  | 
"!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))"  | 
|
948  | 
"!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)"  | 
|
949  | 
"!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))"  | 
|
950  | 
"!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"  | 
|
951  | 
"!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"  | 
|
952  | 
  -- {* Miniscoping: pushing in existential quantifiers. *}
 | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
953  | 
by (rules | blast)+  | 
| 12281 | 954  | 
|
955  | 
lemma all_simps:  | 
|
956  | 
"!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)"  | 
|
957  | 
"!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))"  | 
|
958  | 
"!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)"  | 
|
959  | 
"!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))"  | 
|
960  | 
"!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"  | 
|
961  | 
"!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"  | 
|
962  | 
  -- {* Miniscoping: pushing in universal quantifiers. *}
 | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
963  | 
by (rules | blast)+  | 
| 12281 | 964  | 
|
| 14201 | 965  | 
lemma disj_absorb: "(A | A) = A"  | 
966  | 
by blast  | 
|
967  | 
||
968  | 
lemma disj_left_absorb: "(A | (A | B)) = (A | B)"  | 
|
969  | 
by blast  | 
|
970  | 
||
971  | 
lemma conj_absorb: "(A & A) = A"  | 
|
972  | 
by blast  | 
|
973  | 
||
974  | 
lemma conj_left_absorb: "(A & (A & B)) = (A & B)"  | 
|
975  | 
by blast  | 
|
976  | 
||
| 12281 | 977  | 
lemma eq_ac:  | 
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
978  | 
shows eq_commute: "(a=b) = (b=a)"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
979  | 
and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
980  | 
and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (rules, blast+)  | 
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
981  | 
lemma neq_commute: "(a~=b) = (b~=a)" by rules  | 
| 12281 | 982  | 
|
983  | 
lemma conj_comms:  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
984  | 
shows conj_commute: "(P&Q) = (Q&P)"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
985  | 
and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by rules+  | 
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
986  | 
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules  | 
| 12281 | 987  | 
|
988  | 
lemma disj_comms:  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
989  | 
shows disj_commute: "(P|Q) = (Q|P)"  | 
| 
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12892 
diff
changeset
 | 
990  | 
and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by rules+  | 
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
991  | 
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules  | 
| 12281 | 992  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
993  | 
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
994  | 
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules  | 
| 12281 | 995  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
996  | 
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
997  | 
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules  | 
| 12281 | 998  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
999  | 
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1000  | 
lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1001  | 
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules  | 
| 12281 | 1002  | 
|
1003  | 
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
 | 
|
1004  | 
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast  | 
|
1005  | 
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast  | 
|
1006  | 
||
1007  | 
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast  | 
|
1008  | 
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast  | 
|
1009  | 
||
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1010  | 
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules  | 
| 12281 | 1011  | 
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast  | 
1012  | 
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast  | 
|
1013  | 
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast  | 
|
1014  | 
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast  | 
|
1015  | 
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
 | 
|
1016  | 
by blast  | 
|
1017  | 
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast  | 
|
1018  | 
||
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1019  | 
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules  | 
| 12281 | 1020  | 
|
1021  | 
||
1022  | 
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"  | 
|
1023  | 
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
 | 
|
1024  | 
  -- {* cases boil down to the same thing. *}
 | 
|
1025  | 
by blast  | 
|
1026  | 
||
1027  | 
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast  | 
|
1028  | 
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1029  | 
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1030  | 
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules  | 
| 12281 | 1031  | 
|
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1032  | 
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1033  | 
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules  | 
| 12281 | 1034  | 
|
1035  | 
text {*
 | 
|
1036  | 
  \medskip The @{text "&"} congruence rule: not included by default!
 | 
|
1037  | 
May slow rewrite proofs down by as much as 50\% *}  | 
|
1038  | 
||
1039  | 
lemma conj_cong:  | 
|
1040  | 
"(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"  | 
|
| 12354 | 1041  | 
by rules  | 
| 12281 | 1042  | 
|
1043  | 
lemma rev_conj_cong:  | 
|
1044  | 
"(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"  | 
|
| 12354 | 1045  | 
by rules  | 
| 12281 | 1046  | 
|
1047  | 
text {* The @{text "|"} congruence rule: not included by default! *}
 | 
|
1048  | 
||
1049  | 
lemma disj_cong:  | 
|
1050  | 
"(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"  | 
|
1051  | 
by blast  | 
|
1052  | 
||
1053  | 
lemma eq_sym_conv: "(x = y) = (y = x)"  | 
|
| 12354 | 1054  | 
by rules  | 
| 12281 | 1055  | 
|
1056  | 
||
1057  | 
text {* \medskip if-then-else rules *}
 | 
|
1058  | 
||
1059  | 
lemma if_True: "(if True then x else y) = x"  | 
|
1060  | 
by (unfold if_def) blast  | 
|
1061  | 
||
1062  | 
lemma if_False: "(if False then x else y) = y"  | 
|
1063  | 
by (unfold if_def) blast  | 
|
1064  | 
||
1065  | 
lemma if_P: "P ==> (if P then x else y) = x"  | 
|
1066  | 
by (unfold if_def) blast  | 
|
1067  | 
||
1068  | 
lemma if_not_P: "~P ==> (if P then x else y) = y"  | 
|
1069  | 
by (unfold if_def) blast  | 
|
1070  | 
||
1071  | 
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"  | 
|
1072  | 
apply (rule case_split [of Q])  | 
|
| 15481 | 1073  | 
apply (simplesubst if_P)  | 
1074  | 
prefer 3 apply (simplesubst if_not_P, blast+)  | 
|
| 12281 | 1075  | 
done  | 
1076  | 
||
1077  | 
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"  | 
|
| 15481 | 1078  | 
by (simplesubst split_if, blast)  | 
| 12281 | 1079  | 
|
1080  | 
lemmas if_splits = split_if split_if_asm  | 
|
1081  | 
||
1082  | 
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"  | 
|
1083  | 
by (rule split_if)  | 
|
1084  | 
||
1085  | 
lemma if_cancel: "(if c then x else x) = x"  | 
|
| 15481 | 1086  | 
by (simplesubst split_if, blast)  | 
| 12281 | 1087  | 
|
1088  | 
lemma if_eq_cancel: "(if x = y then y else x) = x"  | 
|
| 15481 | 1089  | 
by (simplesubst split_if, blast)  | 
| 12281 | 1090  | 
|
1091  | 
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"  | 
|
1092  | 
  -- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
 | 
|
1093  | 
by (rule split_if)  | 
|
1094  | 
||
1095  | 
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"  | 
|
1096  | 
  -- {* And this form is useful for expanding @{text if}s on the LEFT. *}
 | 
|
| 15481 | 1097  | 
apply (simplesubst split_if, blast)  | 
| 12281 | 1098  | 
done  | 
1099  | 
||
| 
12436
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1100  | 
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules  | 
| 
 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 
berghofe 
parents: 
12386 
diff
changeset
 | 
1101  | 
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules  | 
| 12281 | 1102  | 
|
| 15423 | 1103  | 
text {* \medskip let rules for simproc *}
 | 
1104  | 
||
1105  | 
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g"  | 
|
1106  | 
by (unfold Let_def)  | 
|
1107  | 
||
1108  | 
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g"  | 
|
1109  | 
by (unfold Let_def)  | 
|
1110  | 
||
| 14201 | 1111  | 
subsubsection {* Actual Installation of the Simplifier *}
 | 
1112  | 
||
| 9869 | 1113  | 
use "simpdata.ML"  | 
1114  | 
setup Simplifier.setup  | 
|
1115  | 
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup  | 
|
1116  | 
setup Splitter.setup setup Clasimp.setup  | 
|
1117  | 
||
| 15481 | 1118  | 
|
1119  | 
subsubsection {* Lucas Dixon's eqstep tactic *}
 | 
|
1120  | 
||
1121  | 
use "~~/src/Provers/eqsubst.ML";  | 
|
1122  | 
use "eqrule_HOL_data.ML";  | 
|
1123  | 
||
1124  | 
setup EQSubstTac.setup  | 
|
1125  | 
||
1126  | 
||
1127  | 
subsection {* Other simple lemmas *}
 | 
|
1128  | 
||
| 15411 | 1129  | 
declare disj_absorb [simp] conj_absorb [simp]  | 
| 14201 | 1130  | 
|
| 13723 | 1131  | 
lemma ex1_eq[iff]: "EX! x. x = t" "EX! x. t = x"  | 
1132  | 
by blast+  | 
|
1133  | 
||
| 15481 | 1134  | 
|
| 13638 | 1135  | 
theorem choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"  | 
1136  | 
apply (rule iffI)  | 
|
1137  | 
apply (rule_tac a = "%x. THE y. P x y" in ex1I)  | 
|
1138  | 
apply (fast dest!: theI')  | 
|
1139  | 
apply (fast intro: ext the1_equality [symmetric])  | 
|
1140  | 
apply (erule ex1E)  | 
|
1141  | 
apply (rule allI)  | 
|
1142  | 
apply (rule ex1I)  | 
|
1143  | 
apply (erule spec)  | 
|
1144  | 
apply (erule_tac x = "%z. if z = x then y else f z" in allE)  | 
|
1145  | 
apply (erule impE)  | 
|
1146  | 
apply (rule allI)  | 
|
1147  | 
apply (rule_tac P = "xa = x" in case_split_thm)  | 
|
| 14208 | 1148  | 
apply (drule_tac [3] x = x in fun_cong, simp_all)  | 
| 13638 | 1149  | 
done  | 
1150  | 
||
| 
13438
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1151  | 
text{*Needs only HOL-lemmas:*}
 | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1152  | 
lemma mk_left_commute:  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1153  | 
assumes a: "\<And>x y z. f (f x y) z = f x (f y z)" and  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1154  | 
c: "\<And>x y. f x y = f y x"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1155  | 
shows "f x (f y z) = f y (f x z)"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1156  | 
by(rule trans[OF trans[OF c a] arg_cong[OF c, of "f y"]])  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1157  | 
|
| 11750 | 1158  | 
|
| 15481 | 1159  | 
subsection {* Generic cases and induction *}
 | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1160  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1161  | 
constdefs  | 
| 11989 | 1162  | 
  induct_forall :: "('a => bool) => bool"
 | 
1163  | 
"induct_forall P == \<forall>x. P x"  | 
|
1164  | 
induct_implies :: "bool => bool => bool"  | 
|
1165  | 
"induct_implies A B == A --> B"  | 
|
1166  | 
induct_equal :: "'a => 'a => bool"  | 
|
1167  | 
"induct_equal x y == x = y"  | 
|
1168  | 
induct_conj :: "bool => bool => bool"  | 
|
1169  | 
"induct_conj A B == A & B"  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1170  | 
|
| 11989 | 1171  | 
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"  | 
1172  | 
by (simp only: atomize_all induct_forall_def)  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1173  | 
|
| 11989 | 1174  | 
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"  | 
1175  | 
by (simp only: atomize_imp induct_implies_def)  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1176  | 
|
| 11989 | 1177  | 
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"  | 
1178  | 
by (simp only: atomize_eq induct_equal_def)  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1179  | 
|
| 11989 | 1180  | 
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =  | 
1181  | 
induct_conj (induct_forall A) (induct_forall B)"  | 
|
| 12354 | 1182  | 
by (unfold induct_forall_def induct_conj_def) rules  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1183  | 
|
| 11989 | 1184  | 
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =  | 
1185  | 
induct_conj (induct_implies C A) (induct_implies C B)"  | 
|
| 12354 | 1186  | 
by (unfold induct_implies_def induct_conj_def) rules  | 
| 11989 | 1187  | 
|
| 
13598
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1188  | 
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1189  | 
proof  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1190  | 
assume r: "induct_conj A B ==> PROP C" and A B  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1191  | 
show "PROP C" by (rule r) (simp! add: induct_conj_def)  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1192  | 
next  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1193  | 
assume r: "A ==> B ==> PROP C" and "induct_conj A B"  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1194  | 
show "PROP C" by (rule r) (simp! add: induct_conj_def)+  | 
| 
 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 
berghofe 
parents: 
13596 
diff
changeset
 | 
1195  | 
qed  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1196  | 
|
| 11989 | 1197  | 
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"  | 
1198  | 
by (simp add: induct_implies_def)  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1199  | 
|
| 12161 | 1200  | 
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq  | 
1201  | 
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq  | 
|
1202  | 
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def  | 
|
| 11989 | 1203  | 
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1204  | 
|
| 11989 | 1205  | 
hide const induct_forall induct_implies induct_equal induct_conj  | 
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1206  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1207  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1208  | 
text {* Method setup. *}
 | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1209  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1210  | 
ML {*
 | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1211  | 
structure InductMethod = InductMethodFun  | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1212  | 
(struct  | 
| 15411 | 1213  | 
val dest_concls = HOLogic.dest_concls  | 
1214  | 
val cases_default = thm "case_split"  | 
|
1215  | 
val local_impI = thm "induct_impliesI"  | 
|
1216  | 
val conjI = thm "conjI"  | 
|
1217  | 
val atomize = thms "induct_atomize"  | 
|
1218  | 
val rulify1 = thms "induct_rulify1"  | 
|
1219  | 
val rulify2 = thms "induct_rulify2"  | 
|
1220  | 
val localize = [Thm.symmetric (thm "induct_implies_def")]  | 
|
| 
11824
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1221  | 
end);  | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1222  | 
*}  | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1223  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1224  | 
setup InductMethod.setup  | 
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1225  | 
|
| 
 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 
wenzelm 
parents: 
11770 
diff
changeset
 | 
1226  | 
|
| 11750 | 1227  | 
subsection {* Order signatures and orders *}
 | 
1228  | 
||
1229  | 
axclass  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
12281 
diff
changeset
 | 
1230  | 
ord < type  | 
| 11750 | 1231  | 
|
1232  | 
syntax  | 
|
1233  | 
  "op <"        :: "['a::ord, 'a] => bool"             ("op <")
 | 
|
1234  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("op <=")
 | 
|
1235  | 
||
1236  | 
global  | 
|
1237  | 
||
1238  | 
consts  | 
|
1239  | 
  "op <"        :: "['a::ord, 'a] => bool"             ("(_/ < _)"  [50, 51] 50)
 | 
|
1240  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ <= _)" [50, 51] 50)
 | 
|
1241  | 
||
1242  | 
local  | 
|
1243  | 
||
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
12023 
diff
changeset
 | 
1244  | 
syntax (xsymbols)  | 
| 11750 | 1245  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
 | 
1246  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
 | 
|
1247  | 
||
| 14565 | 1248  | 
syntax (HTML output)  | 
1249  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
 | 
|
1250  | 
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
 | 
|
1251  | 
||
| 15354 | 1252  | 
text{* Syntactic sugar: *}
 | 
| 11750 | 1253  | 
|
| 15354 | 1254  | 
consts  | 
1255  | 
"_gt" :: "'a::ord => 'a => bool" (infixl ">" 50)  | 
|
1256  | 
"_ge" :: "'a::ord => 'a => bool" (infixl ">=" 50)  | 
|
1257  | 
translations  | 
|
1258  | 
"x > y" => "y < x"  | 
|
1259  | 
"x >= y" => "y <= x"  | 
|
1260  | 
||
1261  | 
syntax (xsymbols)  | 
|
1262  | 
"_ge" :: "'a::ord => 'a => bool" (infixl "\<ge>" 50)  | 
|
1263  | 
||
1264  | 
syntax (HTML output)  | 
|
1265  | 
"_ge" :: "['a::ord, 'a] => bool" (infixl "\<ge>" 50)  | 
|
1266  | 
||
| 14295 | 1267  | 
|
| 11750 | 1268  | 
subsubsection {* Monotonicity *}
 | 
1269  | 
||
| 13412 | 1270  | 
locale mono =  | 
1271  | 
fixes f  | 
|
1272  | 
assumes mono: "A <= B ==> f A <= f B"  | 
|
| 11750 | 1273  | 
|
| 13421 | 1274  | 
lemmas monoI [intro?] = mono.intro  | 
| 13412 | 1275  | 
and monoD [dest?] = mono.mono  | 
| 11750 | 1276  | 
|
1277  | 
constdefs  | 
|
1278  | 
min :: "['a::ord, 'a] => 'a"  | 
|
1279  | 
"min a b == (if a <= b then a else b)"  | 
|
1280  | 
max :: "['a::ord, 'a] => 'a"  | 
|
1281  | 
"max a b == (if a <= b then b else a)"  | 
|
1282  | 
||
1283  | 
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"  | 
|
1284  | 
by (simp add: min_def)  | 
|
1285  | 
||
1286  | 
lemma min_of_mono:  | 
|
1287  | 
"ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"  | 
|
1288  | 
by (simp add: min_def)  | 
|
1289  | 
||
1290  | 
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"  | 
|
1291  | 
by (simp add: max_def)  | 
|
1292  | 
||
1293  | 
lemma max_of_mono:  | 
|
1294  | 
"ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"  | 
|
1295  | 
by (simp add: max_def)  | 
|
1296  | 
||
1297  | 
||
1298  | 
subsubsection "Orders"  | 
|
1299  | 
||
1300  | 
axclass order < ord  | 
|
1301  | 
order_refl [iff]: "x <= x"  | 
|
1302  | 
order_trans: "x <= y ==> y <= z ==> x <= z"  | 
|
1303  | 
order_antisym: "x <= y ==> y <= x ==> x = y"  | 
|
1304  | 
order_less_le: "(x < y) = (x <= y & x ~= y)"  | 
|
1305  | 
||
1306  | 
||
1307  | 
text {* Reflexivity. *}
 | 
|
1308  | 
||
1309  | 
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"  | 
|
1310  | 
    -- {* This form is useful with the classical reasoner. *}
 | 
|
1311  | 
apply (erule ssubst)  | 
|
1312  | 
apply (rule order_refl)  | 
|
1313  | 
done  | 
|
1314  | 
||
| 13553 | 1315  | 
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"  | 
| 11750 | 1316  | 
by (simp add: order_less_le)  | 
1317  | 
||
1318  | 
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"  | 
|
1319  | 
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
|
| 14208 | 1320  | 
apply (simp add: order_less_le, blast)  | 
| 11750 | 1321  | 
done  | 
1322  | 
||
1323  | 
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]  | 
|
1324  | 
||
1325  | 
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"  | 
|
1326  | 
by (simp add: order_less_le)  | 
|
1327  | 
||
1328  | 
||
1329  | 
text {* Asymmetry. *}
 | 
|
1330  | 
||
1331  | 
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"  | 
|
1332  | 
by (simp add: order_less_le order_antisym)  | 
|
1333  | 
||
1334  | 
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"  | 
|
1335  | 
apply (drule order_less_not_sym)  | 
|
| 14208 | 1336  | 
apply (erule contrapos_np, simp)  | 
| 11750 | 1337  | 
done  | 
1338  | 
||
| 15411 | 1339  | 
lemma order_eq_iff: "!!x::'a::order. (x = y) = (x \<le> y & y \<le> x)"  | 
| 14295 | 1340  | 
by (blast intro: order_antisym)  | 
1341  | 
||
| 15197 | 1342  | 
lemma order_antisym_conv: "(y::'a::order) <= x ==> (x <= y) = (x = y)"  | 
1343  | 
by(blast intro:order_antisym)  | 
|
| 11750 | 1344  | 
|
1345  | 
text {* Transitivity. *}
 | 
|
1346  | 
||
1347  | 
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"  | 
|
1348  | 
apply (simp add: order_less_le)  | 
|
1349  | 
apply (blast intro: order_trans order_antisym)  | 
|
1350  | 
done  | 
|
1351  | 
||
1352  | 
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"  | 
|
1353  | 
apply (simp add: order_less_le)  | 
|
1354  | 
apply (blast intro: order_trans order_antisym)  | 
|
1355  | 
done  | 
|
1356  | 
||
1357  | 
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"  | 
|
1358  | 
apply (simp add: order_less_le)  | 
|
1359  | 
apply (blast intro: order_trans order_antisym)  | 
|
1360  | 
done  | 
|
1361  | 
||
1362  | 
||
1363  | 
text {* Useful for simplification, but too risky to include by default. *}
 | 
|
1364  | 
||
1365  | 
lemma order_less_imp_not_less: "(x::'a::order) < y ==> (~ y < x) = True"  | 
|
1366  | 
by (blast elim: order_less_asym)  | 
|
1367  | 
||
1368  | 
lemma order_less_imp_triv: "(x::'a::order) < y ==> (y < x --> P) = True"  | 
|
1369  | 
by (blast elim: order_less_asym)  | 
|
1370  | 
||
1371  | 
lemma order_less_imp_not_eq: "(x::'a::order) < y ==> (x = y) = False"  | 
|
1372  | 
by auto  | 
|
1373  | 
||
1374  | 
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==> (y = x) = False"  | 
|
1375  | 
by auto  | 
|
1376  | 
||
1377  | 
||
1378  | 
text {* Other operators. *}
 | 
|
1379  | 
||
1380  | 
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"  | 
|
1381  | 
apply (simp add: min_def)  | 
|
1382  | 
apply (blast intro: order_antisym)  | 
|
1383  | 
done  | 
|
1384  | 
||
1385  | 
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"  | 
|
1386  | 
apply (simp add: max_def)  | 
|
1387  | 
apply (blast intro: order_antisym)  | 
|
1388  | 
done  | 
|
1389  | 
||
1390  | 
||
1391  | 
subsubsection {* Least value operator *}
 | 
|
1392  | 
||
1393  | 
constdefs  | 
|
1394  | 
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
 | 
|
1395  | 
"Least P == THE x. P x & (ALL y. P y --> x <= y)"  | 
|
1396  | 
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
 | 
|
1397  | 
||
1398  | 
lemma LeastI2:  | 
|
1399  | 
"[| P (x::'a::order);  | 
|
1400  | 
!!y. P y ==> x <= y;  | 
|
1401  | 
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]  | 
|
| 12281 | 1402  | 
==> Q (Least P)"  | 
| 11750 | 1403  | 
apply (unfold Least_def)  | 
1404  | 
apply (rule theI2)  | 
|
1405  | 
apply (blast intro: order_antisym)+  | 
|
1406  | 
done  | 
|
1407  | 
||
1408  | 
lemma Least_equality:  | 
|
| 12281 | 1409  | 
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"  | 
| 11750 | 1410  | 
apply (simp add: Least_def)  | 
1411  | 
apply (rule the_equality)  | 
|
1412  | 
apply (auto intro!: order_antisym)  | 
|
1413  | 
done  | 
|
1414  | 
||
1415  | 
||
1416  | 
subsubsection "Linear / total orders"  | 
|
1417  | 
||
1418  | 
axclass linorder < order  | 
|
1419  | 
linorder_linear: "x <= y | y <= x"  | 
|
1420  | 
||
1421  | 
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"  | 
|
1422  | 
apply (simp add: order_less_le)  | 
|
| 14208 | 1423  | 
apply (insert linorder_linear, blast)  | 
| 11750 | 1424  | 
done  | 
1425  | 
||
| 
15079
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14981 
diff
changeset
 | 
1426  | 
lemma linorder_le_less_linear: "!!x::'a::linorder. x\<le>y | y<x"  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14981 
diff
changeset
 | 
1427  | 
by (simp add: order_le_less linorder_less_linear)  | 
| 
 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 
paulson 
parents: 
14981 
diff
changeset
 | 
1428  | 
|
| 
14365
 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 
paulson 
parents: 
14361 
diff
changeset
 | 
1429  | 
lemma linorder_le_cases [case_names le ge]:  | 
| 
 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 
paulson 
parents: 
14361 
diff
changeset
 | 
1430  | 
"((x::'a::linorder) \<le> y ==> P) ==> (y \<le> x ==> P) ==> P"  | 
| 
 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 
paulson 
parents: 
14361 
diff
changeset
 | 
1431  | 
by (insert linorder_linear, blast)  | 
| 
 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 
paulson 
parents: 
14361 
diff
changeset
 | 
1432  | 
|
| 11750 | 1433  | 
lemma linorder_cases [case_names less equal greater]:  | 
1434  | 
"((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"  | 
|
| 
14365
 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 
paulson 
parents: 
14361 
diff
changeset
 | 
1435  | 
by (insert linorder_less_linear, blast)  | 
| 11750 | 1436  | 
|
1437  | 
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"  | 
|
1438  | 
apply (simp add: order_less_le)  | 
|
1439  | 
apply (insert linorder_linear)  | 
|
1440  | 
apply (blast intro: order_antisym)  | 
|
1441  | 
done  | 
|
1442  | 
||
1443  | 
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"  | 
|
1444  | 
apply (simp add: order_less_le)  | 
|
1445  | 
apply (insert linorder_linear)  | 
|
1446  | 
apply (blast intro: order_antisym)  | 
|
1447  | 
done  | 
|
1448  | 
||
1449  | 
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"  | 
|
| 14208 | 1450  | 
by (cut_tac x = x and y = y in linorder_less_linear, auto)  | 
| 11750 | 1451  | 
|
1452  | 
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"  | 
|
| 14208 | 1453  | 
by (simp add: linorder_neq_iff, blast)  | 
| 11750 | 1454  | 
|
| 15197 | 1455  | 
lemma linorder_antisym_conv1: "~ (x::'a::linorder) < y ==> (x <= y) = (x = y)"  | 
1456  | 
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])  | 
|
1457  | 
||
1458  | 
lemma linorder_antisym_conv2: "(x::'a::linorder) <= y ==> (~ x < y) = (x = y)"  | 
|
1459  | 
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])  | 
|
1460  | 
||
1461  | 
lemma linorder_antisym_conv3: "~ (y::'a::linorder) < x ==> (~ x < y) = (x = y)"  | 
|
1462  | 
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])  | 
|
1463  | 
||
1464  | 
use "antisym_setup.ML";  | 
|
1465  | 
setup antisym_setup  | 
|
| 11750 | 1466  | 
|
1467  | 
subsubsection "Min and max on (linear) orders"  | 
|
1468  | 
||
1469  | 
lemma min_same [simp]: "min (x::'a::order) x = x"  | 
|
1470  | 
by (simp add: min_def)  | 
|
1471  | 
||
1472  | 
lemma max_same [simp]: "max (x::'a::order) x = x"  | 
|
1473  | 
by (simp add: max_def)  | 
|
1474  | 
||
1475  | 
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"  | 
|
1476  | 
apply (simp add: max_def)  | 
|
1477  | 
apply (insert linorder_linear)  | 
|
1478  | 
apply (blast intro: order_trans)  | 
|
1479  | 
done  | 
|
1480  | 
||
1481  | 
lemma le_maxI1: "(x::'a::linorder) <= max x y"  | 
|
1482  | 
by (simp add: le_max_iff_disj)  | 
|
1483  | 
||
1484  | 
lemma le_maxI2: "(y::'a::linorder) <= max x y"  | 
|
1485  | 
    -- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
 | 
|
1486  | 
by (simp add: le_max_iff_disj)  | 
|
1487  | 
||
1488  | 
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"  | 
|
1489  | 
apply (simp add: max_def order_le_less)  | 
|
1490  | 
apply (insert linorder_less_linear)  | 
|
1491  | 
apply (blast intro: order_less_trans)  | 
|
1492  | 
done  | 
|
1493  | 
||
1494  | 
lemma max_le_iff_conj [simp]:  | 
|
1495  | 
"!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"  | 
|
1496  | 
apply (simp add: max_def)  | 
|
1497  | 
apply (insert linorder_linear)  | 
|
1498  | 
apply (blast intro: order_trans)  | 
|
1499  | 
done  | 
|
1500  | 
||
1501  | 
lemma max_less_iff_conj [simp]:  | 
|
1502  | 
"!!z::'a::linorder. (max x y < z) = (x < z & y < z)"  | 
|
1503  | 
apply (simp add: order_le_less max_def)  | 
|
1504  | 
apply (insert linorder_less_linear)  | 
|
1505  | 
apply (blast intro: order_less_trans)  | 
|
1506  | 
done  | 
|
1507  | 
||
1508  | 
lemma le_min_iff_conj [simp]:  | 
|
1509  | 
"!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"  | 
|
| 12892 | 1510  | 
    -- {* @{text "[iff]"} screws up a @{text blast} in MiniML *}
 | 
| 11750 | 1511  | 
apply (simp add: min_def)  | 
1512  | 
apply (insert linorder_linear)  | 
|
1513  | 
apply (blast intro: order_trans)  | 
|
1514  | 
done  | 
|
1515  | 
||
1516  | 
lemma min_less_iff_conj [simp]:  | 
|
1517  | 
"!!z::'a::linorder. (z < min x y) = (z < x & z < y)"  | 
|
1518  | 
apply (simp add: order_le_less min_def)  | 
|
1519  | 
apply (insert linorder_less_linear)  | 
|
1520  | 
apply (blast intro: order_less_trans)  | 
|
1521  | 
done  | 
|
1522  | 
||
1523  | 
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"  | 
|
1524  | 
apply (simp add: min_def)  | 
|
1525  | 
apply (insert linorder_linear)  | 
|
1526  | 
apply (blast intro: order_trans)  | 
|
1527  | 
done  | 
|
1528  | 
||
1529  | 
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"  | 
|
1530  | 
apply (simp add: min_def order_le_less)  | 
|
1531  | 
apply (insert linorder_less_linear)  | 
|
1532  | 
apply (blast intro: order_less_trans)  | 
|
1533  | 
done  | 
|
1534  | 
||
| 
13438
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1535  | 
lemma max_assoc: "!!x::'a::linorder. max (max x y) z = max x (max y z)"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1536  | 
apply(simp add:max_def)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1537  | 
apply(rule conjI)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1538  | 
apply(blast intro:order_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1539  | 
apply(simp add:linorder_not_le)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1540  | 
apply(blast dest: order_less_trans order_le_less_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1541  | 
done  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1542  | 
|
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1543  | 
lemma max_commute: "!!x::'a::linorder. max x y = max y x"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1544  | 
apply(simp add:max_def)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1545  | 
apply(simp add:linorder_not_le)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1546  | 
apply(blast dest: order_less_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1547  | 
done  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1548  | 
|
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1549  | 
lemmas max_ac = max_assoc max_commute  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1550  | 
mk_left_commute[of max,OF max_assoc max_commute]  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1551  | 
|
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1552  | 
lemma min_assoc: "!!x::'a::linorder. min (min x y) z = min x (min y z)"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1553  | 
apply(simp add:min_def)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1554  | 
apply(rule conjI)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1555  | 
apply(blast intro:order_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1556  | 
apply(simp add:linorder_not_le)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1557  | 
apply(blast dest: order_less_trans order_le_less_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1558  | 
done  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1559  | 
|
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1560  | 
lemma min_commute: "!!x::'a::linorder. min x y = min y x"  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1561  | 
apply(simp add:min_def)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1562  | 
apply(simp add:linorder_not_le)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1563  | 
apply(blast dest: order_less_trans)  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1564  | 
done  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1565  | 
|
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1566  | 
lemmas min_ac = min_assoc min_commute  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1567  | 
mk_left_commute[of min,OF min_assoc min_commute]  | 
| 
 
527811f00c56
added mk_left_commute to HOL.thy and used it "everywhere"
 
nipkow 
parents: 
13421 
diff
changeset
 | 
1568  | 
|
| 11750 | 1569  | 
lemma split_min:  | 
1570  | 
"P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"  | 
|
1571  | 
by (simp add: min_def)  | 
|
1572  | 
||
1573  | 
lemma split_max:  | 
|
1574  | 
"P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"  | 
|
1575  | 
by (simp add: max_def)  | 
|
1576  | 
||
1577  | 
||
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1578  | 
subsubsection {* Transitivity rules for calculational reasoning *}
 | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1579  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1580  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1581  | 
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1582  | 
by (simp add: order_less_le)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1583  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1584  | 
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1585  | 
by (simp add: order_less_le)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1586  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1587  | 
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1588  | 
by (rule order_less_asym)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1589  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1590  | 
|
| 
14444
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1591  | 
subsubsection {* Setup of transitivity reasoner as Solver *}
 | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1592  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1593  | 
lemma less_imp_neq: "[| (x::'a::order) < y |] ==> x ~= y"  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1594  | 
by (erule contrapos_pn, erule subst, rule order_less_irrefl)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1595  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1596  | 
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1597  | 
by (erule subst, erule ssubst, assumption)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1598  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1599  | 
ML_setup {*
 | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1600  | 
|
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1601  | 
(* The setting up of Quasi_Tac serves as a demo. Since there is no  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1602  | 
class for quasi orders, the tactics Quasi_Tac.trans_tac and  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1603  | 
Quasi_Tac.quasi_tac are not of much use. *)  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1604  | 
|
| 15288 | 1605  | 
fun decomp_gen sort sign (Trueprop $ t) =  | 
1606  | 
let fun of_sort t = Sign.of_sort sign (type_of t, sort)  | 
|
1607  | 
  fun dec (Const ("Not", _) $ t) = (
 | 
|
1608  | 
case dec t of  | 
|
1609  | 
None => None  | 
|
1610  | 
| Some (t1, rel, t2) => Some (t1, "~" ^ rel, t2))  | 
|
| 15411 | 1611  | 
	| dec (Const ("op =",  _) $ t1 $ t2) =
 | 
| 15288 | 1612  | 
if of_sort t1  | 
1613  | 
then Some (t1, "=", t2)  | 
|
1614  | 
else None  | 
|
| 15411 | 1615  | 
	| dec (Const ("op <=",  _) $ t1 $ t2) =
 | 
| 15288 | 1616  | 
if of_sort t1  | 
1617  | 
then Some (t1, "<=", t2)  | 
|
1618  | 
else None  | 
|
| 15411 | 1619  | 
	| dec (Const ("op <",  _) $ t1 $ t2) =
 | 
| 15288 | 1620  | 
if of_sort t1  | 
1621  | 
then Some (t1, "<", t2)  | 
|
1622  | 
else None  | 
|
1623  | 
| dec _ = None  | 
|
1624  | 
in dec t end;  | 
|
1625  | 
||
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1626  | 
structure Quasi_Tac = Quasi_Tac_Fun (  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1627  | 
struct  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1628  | 
val le_trans = thm "order_trans";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1629  | 
val le_refl = thm "order_refl";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1630  | 
val eqD1 = thm "order_eq_refl";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1631  | 
val eqD2 = thm "sym" RS thm "order_eq_refl";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1632  | 
val less_reflE = thm "order_less_irrefl" RS thm "notE";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1633  | 
val less_imp_le = thm "order_less_imp_le";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1634  | 
val le_neq_trans = thm "order_le_neq_trans";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1635  | 
val neq_le_trans = thm "order_neq_le_trans";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1636  | 
val less_imp_neq = thm "less_imp_neq";  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1637  | 
val decomp_trans = decomp_gen ["HOL.order"];  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1638  | 
val decomp_quasi = decomp_gen ["HOL.order"];  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1639  | 
|
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1640  | 
end); (* struct *)  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1641  | 
|
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1642  | 
structure Order_Tac = Order_Tac_Fun (  | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1643  | 
struct  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1644  | 
val less_reflE = thm "order_less_irrefl" RS thm "notE";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1645  | 
val le_refl = thm "order_refl";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1646  | 
val less_imp_le = thm "order_less_imp_le";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1647  | 
val not_lessI = thm "linorder_not_less" RS thm "iffD2";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1648  | 
val not_leI = thm "linorder_not_le" RS thm "iffD2";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1649  | 
val not_lessD = thm "linorder_not_less" RS thm "iffD1";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1650  | 
val not_leD = thm "linorder_not_le" RS thm "iffD1";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1651  | 
val eqI = thm "order_antisym";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1652  | 
val eqD1 = thm "order_eq_refl";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1653  | 
val eqD2 = thm "sym" RS thm "order_eq_refl";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1654  | 
val less_trans = thm "order_less_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1655  | 
val less_le_trans = thm "order_less_le_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1656  | 
val le_less_trans = thm "order_le_less_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1657  | 
val le_trans = thm "order_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1658  | 
val le_neq_trans = thm "order_le_neq_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1659  | 
val neq_le_trans = thm "order_neq_le_trans";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1660  | 
val less_imp_neq = thm "less_imp_neq";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1661  | 
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1662  | 
val decomp_part = decomp_gen ["HOL.order"];  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1663  | 
val decomp_lin = decomp_gen ["HOL.linorder"];  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1664  | 
|
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1665  | 
end); (* struct *)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1666  | 
|
| 14590 | 1667  | 
simpset_ref() := simpset ()  | 
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1668  | 
addSolver (mk_solver "Trans_linear" (fn _ => Order_Tac.linear_tac))  | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1669  | 
addSolver (mk_solver "Trans_partial" (fn _ => Order_Tac.partial_tac));  | 
| 
14444
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1670  | 
(* Adding the transitivity reasoners also as safe solvers showed a slight  | 
| 
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1671  | 
speed up, but the reasoning strength appears to be not higher (at least  | 
| 
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1672  | 
no breaking of additional proofs in the entire HOL distribution, as  | 
| 
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1673  | 
of 5 March 2004, was observed). *)  | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1674  | 
*}  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1675  | 
|
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1676  | 
(* Optional setup of methods *)  | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1677  | 
|
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1678  | 
(*  | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1679  | 
method_setup trans_partial =  | 
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1680  | 
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.partial_tac)) *}
 | 
| 15411 | 1681  | 
  {* transitivity reasoner for partial orders *}	
 | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1682  | 
method_setup trans_linear =  | 
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1683  | 
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.linear_tac)) *}
 | 
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1684  | 
  {* transitivity reasoner for linear orders *}
 | 
| 
14398
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1685  | 
*)  | 
| 
 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 
ballarin 
parents: 
14365 
diff
changeset
 | 
1686  | 
|
| 
14444
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1687  | 
(*  | 
| 
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1688  | 
declare order.order_refl [simp del] order_less_irrefl [simp del]  | 
| 
15103
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1689  | 
|
| 
 
79846e8792eb
New transitivity reasoners for transitivity only and quasi orders.
 
ballarin 
parents: 
15079 
diff
changeset
 | 
1690  | 
can currently not be removed, abel_cancel relies on it.  | 
| 
14444
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1691  | 
*)  | 
| 
 
24724afce166
Added documentation for transitivity solver setup.
 
ballarin 
parents: 
14430 
diff
changeset
 | 
1692  | 
|
| 11750 | 1693  | 
subsubsection "Bounded quantifiers"  | 
1694  | 
||
1695  | 
syntax  | 
|
1696  | 
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
|
1697  | 
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
|
1698  | 
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
|
1699  | 
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
|
1700  | 
||
| 15360 | 1701  | 
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
1702  | 
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
|
1703  | 
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
|
1704  | 
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
|
1705  | 
||
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
12023 
diff
changeset
 | 
1706  | 
syntax (xsymbols)  | 
| 11750 | 1707  | 
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
1708  | 
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
|
1709  | 
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
|
1710  | 
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
|
1711  | 
||
| 15360 | 1712  | 
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
1713  | 
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
|
1714  | 
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
|
1715  | 
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
|
1716  | 
||
| 11750 | 1717  | 
syntax (HOL)  | 
1718  | 
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
|
1719  | 
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
|
1720  | 
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
|
1721  | 
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
|
1722  | 
||
| 14565 | 1723  | 
syntax (HTML output)  | 
1724  | 
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
|
1725  | 
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
|
1726  | 
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
|
1727  | 
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
|
1728  | 
||
| 15360 | 1729  | 
  "_gtAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
1730  | 
  "_gtEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
|
1731  | 
  "_geAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
|
1732  | 
  "_geEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
|
1733  | 
||
| 11750 | 1734  | 
translations  | 
1735  | 
"ALL x<y. P" => "ALL x. x < y --> P"  | 
|
1736  | 
"EX x<y. P" => "EX x. x < y & P"  | 
|
1737  | 
"ALL x<=y. P" => "ALL x. x <= y --> P"  | 
|
1738  | 
"EX x<=y. P" => "EX x. x <= y & P"  | 
|
| 15360 | 1739  | 
"ALL x>y. P" => "ALL x. x > y --> P"  | 
1740  | 
"EX x>y. P" => "EX x. x > y & P"  | 
|
1741  | 
"ALL x>=y. P" => "ALL x. x >= y --> P"  | 
|
1742  | 
"EX x>=y. P" => "EX x. x >= y & P"  | 
|
| 11750 | 1743  | 
|
| 14357 | 1744  | 
print_translation {*
 | 
1745  | 
let  | 
|
| 15363 | 1746  | 
fun mk v v' q n P =  | 
1747  | 
if v=v' andalso not(v mem (map fst (Term.add_frees([],n))))  | 
|
1748  | 
then Syntax.const q $ Syntax.mark_bound v' $ n $ P else raise Match;  | 
|
| 15411 | 1749  | 
  fun all_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1750  | 
               Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
 | 
|
| 15363 | 1751  | 
mk v v' "_lessAll" n P  | 
| 14357 | 1752  | 
|
| 15411 | 1753  | 
  | all_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1754  | 
               Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
 | 
|
| 15363 | 1755  | 
mk v v' "_leAll" n P  | 
| 15362 | 1756  | 
|
| 15411 | 1757  | 
  | all_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1758  | 
               Const("op -->",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
 | 
|
| 15363 | 1759  | 
mk v v' "_gtAll" n P  | 
| 15362 | 1760  | 
|
| 15411 | 1761  | 
  | all_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1762  | 
               Const("op -->",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
 | 
|
| 15363 | 1763  | 
mk v v' "_geAll" n P;  | 
| 14357 | 1764  | 
|
| 15411 | 1765  | 
  fun ex_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1766  | 
               Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
 | 
|
| 15363 | 1767  | 
mk v v' "_lessEx" n P  | 
| 14357 | 1768  | 
|
| 15411 | 1769  | 
  | ex_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1770  | 
               Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
 | 
|
| 15363 | 1771  | 
mk v v' "_leEx" n P  | 
| 15362 | 1772  | 
|
| 15411 | 1773  | 
  | ex_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1774  | 
               Const("op &",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
 | 
|
| 15363 | 1775  | 
mk v v' "_gtEx" n P  | 
| 15362 | 1776  | 
|
| 15411 | 1777  | 
  | ex_tr' [Const ("_bound",_) $ Free (v,_),
 | 
1778  | 
               Const("op &",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
 | 
|
| 15363 | 1779  | 
mk v v' "_geEx" n P  | 
| 14357 | 1780  | 
in  | 
1781  | 
[("ALL ", all_tr'), ("EX ", ex_tr')]
 | 
|
| 923 | 1782  | 
end  | 
| 14357 | 1783  | 
*}  | 
1784  | 
||
1785  | 
end  | 
|
| 15411 | 1786  |