| 
5078
 | 
     1  | 
<!-- $Id$ -->
  | 
| 
 | 
     2  | 
<HTML><HEAD><TITLE>HOL/Real/README</TITLE></HEAD><BODY>
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
<H2>Real--Dedekind Cut Construction of the Real Line</H2>
  | 
| 
 | 
     5  | 
  | 
| 
12254
 | 
     6  | 
<ul>
  | 
| 
5947
 | 
     7  | 
<LI><A HREF="PNat.html">PNat</A>  The positive integers (very much the same as <A HREF="../Nat.html">Nat.thy</A>!) 
  | 
| 
 | 
     8  | 
<LI><A HREF="PRat.html">PRat</A>  The positive rationals
  | 
| 
 | 
     9  | 
<LI><A HREF="PReal.html">PReal</A> The positive reals constructed using Dedekind cuts
  | 
| 
10156
 | 
    10  | 
<LI><A HREF="RealDef.html">RealDef</A>  The real numbers
  | 
| 
 | 
    11  | 
<LI><A HREF="RealOrd.html">RealOrd</A>  More real numbers theorems- ordering
  | 
| 
 | 
    12  | 
properties
  | 
| 
 | 
    13  | 
<LI><A HREF="RealInt.html">RealInt</A>  Embedding of the integers in the reals
  | 
| 
 | 
    14  | 
<LI><A HREF="RealBin.html">RealBin</A> Binary arithmetic for the reals 
  | 
| 
 | 
    15  | 
  | 
| 
5947
 | 
    16  | 
<LI><A HREF="Lubs.html">Lubs</A>  Definition of upper bounds, lubs and so on. 
  | 
| 
5078
 | 
    17  | 
     (Useful e.g. in Fleuriot's NSA theory)
  | 
| 
5947
 | 
    18  | 
<LI><A HREF="RComplete.html">RComplete</A> Proof of completeness of reals in form of the supremum 
  | 
| 
5078
 | 
    19  | 
            property. Also proofs that the reals have the Archimedean
  | 
| 
 | 
    20  | 
            property.
  | 
| 
5947
 | 
    21  | 
<LI><A HREF="RealAbs.html">RealAbs</A> The absolute value function defined for the reals
  | 
| 
10156
 | 
    22  | 
</ul>
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
<H2>Hyperreal--Ultrapower Construction of the Non-Standard Reals</H2>
  | 
| 
12254
 | 
    25  | 
  | 
| 
 | 
    26  | 
<p>
  | 
| 
 | 
    27  | 
See J. D. Fleuriot and L. C. Paulson. Mechanizing Nonstandard Real
  | 
| 
 | 
    28  | 
Analysis. LMS J. Computation and Mathematics 3 (2000), 140-190.
  | 
| 
 | 
    29  | 
</p>
  | 
| 
10156
 | 
    30  | 
  | 
| 
 | 
    31  | 
<UL>
  | 
| 
 | 
    32  | 
<LI><A HREF="Zorn.html">Zorn</A>
  | 
| 
 | 
    33  | 
Zorn's Lemma: proof based on the <A HREF="../../../ZF/Zorn.html">ZF version</A>
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
<LI><A HREF="Filter.html">Filter</A>
  | 
| 
 | 
    36  | 
Theory of Filters and Ultrafilters.
  | 
| 
 | 
    37  | 
Main result is a version of the Ultrafilter Theorem proved using
  | 
| 
 | 
    38  | 
Zorn's Lemma. 
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
<LI><A HREF="HyperDef.html">HyperDef</A>
  | 
| 
 | 
    41  | 
Ultrapower construction of the hyperreals
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
<LI><A HREF="HyperOrd.html">HyperOrd</A>
  | 
| 
 | 
    44  | 
More hyperreal numbers theorems- ordering properties
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
<LI><A HREF="HRealAbs.html">HRealAbs</A> The absolute value function
  | 
| 
 | 
    47  | 
defined for the hyperreals 
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
<LI><A HREF="NSA.html">NSA</A>
  | 
| 
 | 
    51  | 
Theory defining sets of infinite numbers, infinitesimals, 
  | 
| 
 | 
    52  | 
the infinitely close relation, and their various algebraic properties.
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
<LI><A HREF="HyperNat.html">HyperNat</A>
  | 
| 
 | 
    55  | 
Ultrapower construction of the hypernaturals
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
<LI><A HREF="HyperPow.html">HyperPow</A>
  | 
| 
 | 
    58  | 
Powers theory for the hyperreals
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
<LI><A HREF="Star.html">Star</A>
  | 
| 
 | 
    61  | 
Nonstandard extensions of real sets and real functions
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
<LI><A HREF="NatStar.html">NatStar</A>
  | 
| 
 | 
    64  | 
Nonstandard extensions of sets of naturals and functions on the natural
  | 
| 
 | 
    65  | 
numbers
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
<LI><A HREF="SEQ.html">SEQ</A>
  | 
| 
 | 
    68  | 
Theory of sequences developed using standard and nonstandard analysis
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
<LI><A HREF="Lim.html">Lim</A>
  | 
| 
 | 
    71  | 
Theory of limits, continuous functions, and derivatives
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
<LI><A HREF="Series.html">Series</A>
  | 
| 
 | 
    74  | 
Standard theory of finite summation and infinite series
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
  | 
| 
5078
 | 
    78  | 
</UL>
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
<P>Last modified on $Date$
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
<HR>
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
<ADDRESS>
  | 
| 
 | 
    85  | 
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
  | 
| 
 | 
    86  | 
</ADDRESS>
  | 
| 
 | 
    87  | 
</BODY></HTML>
  |