author | haftmann |
Thu, 29 Apr 2010 15:00:41 +0200 | |
changeset 36532 | fdfc37254090 |
parent 35409 | 5c5bb83f2bae |
child 39159 | 0dec18004e75 |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Type.thy |
0 | 2 |
Author: Martin Coen |
3 |
Copyright 1993 University of Cambridge |
|
4 |
*) |
|
5 |
||
17456 | 6 |
header {* Types in CCL are defined as sets of terms *} |
7 |
||
8 |
theory Type |
|
9 |
imports Term |
|
10 |
begin |
|
0 | 11 |
|
12 |
consts |
|
13 |
||
14 |
Subtype :: "['a set, 'a => o] => 'a set" |
|
15 |
Bool :: "i set" |
|
16 |
Unit :: "i set" |
|
24825 | 17 |
Plus :: "[i set, i set] => i set" (infixr "+" 55) |
0 | 18 |
Pi :: "[i set, i => i set] => i set" |
19 |
Sigma :: "[i set, i => i set] => i set" |
|
20 |
Nat :: "i set" |
|
21 |
List :: "i set => i set" |
|
22 |
Lists :: "i set => i set" |
|
23 |
ILists :: "i set => i set" |
|
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
24 |
TAll :: "(i set => i set) => i set" (binder "TALL " 55) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
25 |
TEx :: "(i set => i set) => i set" (binder "TEX " 55) |
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
26 |
Lift :: "i set => i set" ("(3[_])") |
0 | 27 |
|
28 |
SPLIT :: "[i, [i, i] => i set] => i set" |
|
29 |
||
14765 | 30 |
syntax |
35113 | 31 |
"_Pi" :: "[idt, i set, i set] => i set" ("(3PROD _:_./ _)" |
1474 | 32 |
[0,0,60] 60) |
999
9bf3816298d0
Gave tighter priorities to SUM and PROD to reduce ambiguities.
lcp
parents:
22
diff
changeset
|
33 |
|
35113 | 34 |
"_Sigma" :: "[idt, i set, i set] => i set" ("(3SUM _:_./ _)" |
1474 | 35 |
[0,0,60] 60) |
17456 | 36 |
|
35113 | 37 |
"_arrow" :: "[i set, i set] => i set" ("(_ ->/ _)" [54, 53] 53) |
38 |
"_star" :: "[i set, i set] => i set" ("(_ */ _)" [56, 55] 55) |
|
39 |
"_Subtype" :: "[idt, 'a set, o] => 'a set" ("(1{_: _ ./ _})") |
|
0 | 40 |
|
41 |
translations |
|
35054 | 42 |
"PROD x:A. B" => "CONST Pi(A, %x. B)" |
43 |
"A -> B" => "CONST Pi(A, %_. B)" |
|
44 |
"SUM x:A. B" => "CONST Sigma(A, %x. B)" |
|
45 |
"A * B" => "CONST Sigma(A, %_. B)" |
|
46 |
"{x: A. B}" == "CONST Subtype(A, %x. B)" |
|
0 | 47 |
|
17456 | 48 |
print_translation {* |
35113 | 49 |
[(@{const_syntax Pi}, dependent_tr' (@{syntax_const "_Pi"}, @{syntax_const "_arrow"})), |
50 |
(@{const_syntax Sigma}, dependent_tr' (@{syntax_const "_Sigma"}, @{syntax_const "_star"}))] |
|
51 |
*} |
|
0 | 52 |
|
17456 | 53 |
axioms |
54 |
Subtype_def: "{x:A. P(x)} == {x. x:A & P(x)}" |
|
55 |
Unit_def: "Unit == {x. x=one}" |
|
56 |
Bool_def: "Bool == {x. x=true | x=false}" |
|
57 |
Plus_def: "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}" |
|
58 |
Pi_def: "Pi(A,B) == {x. EX b. x=lam x. b(x) & (ALL x:A. b(x):B(x))}" |
|
59 |
Sigma_def: "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}" |
|
60 |
Nat_def: "Nat == lfp(% X. Unit + X)" |
|
61 |
List_def: "List(A) == lfp(% X. Unit + A*X)" |
|
0 | 62 |
|
17456 | 63 |
Lists_def: "Lists(A) == gfp(% X. Unit + A*X)" |
64 |
ILists_def: "ILists(A) == gfp(% X.{} + A*X)" |
|
0 | 65 |
|
17456 | 66 |
Tall_def: "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})" |
67 |
Tex_def: "TEX X. B(X) == Union({X. EX Y. X=B(Y)})" |
|
68 |
Lift_def: "[A] == A Un {bot}" |
|
0 | 69 |
|
17456 | 70 |
SPLIT_def: "SPLIT(p,B) == Union({A. EX x y. p=<x,y> & A=B(x,y)})" |
71 |
||
20140 | 72 |
|
73 |
lemmas simp_type_defs = |
|
74 |
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def Tall_def Tex_def |
|
75 |
and ind_type_defs = Nat_def List_def |
|
76 |
and simp_data_defs = one_def inl_def inr_def |
|
77 |
and ind_data_defs = zero_def succ_def nil_def cons_def |
|
78 |
||
79 |
lemma subsetXH: "A <= B <-> (ALL x. x:A --> x:B)" |
|
80 |
by blast |
|
81 |
||
82 |
||
83 |
subsection {* Exhaustion Rules *} |
|
84 |
||
85 |
lemma EmptyXH: "!!a. a : {} <-> False" |
|
86 |
and SubtypeXH: "!!a A P. a : {x:A. P(x)} <-> (a:A & P(a))" |
|
87 |
and UnitXH: "!!a. a : Unit <-> a=one" |
|
88 |
and BoolXH: "!!a. a : Bool <-> a=true | a=false" |
|
89 |
and PlusXH: "!!a A B. a : A+B <-> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))" |
|
90 |
and PiXH: "!!a A B. a : PROD x:A. B(x) <-> (EX b. a=lam x. b(x) & (ALL x:A. b(x):B(x)))" |
|
91 |
and SgXH: "!!a A B. a : SUM x:A. B(x) <-> (EX x:A. EX y:B(x).a=<x,y>)" |
|
92 |
unfolding simp_type_defs by blast+ |
|
93 |
||
94 |
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH |
|
95 |
||
96 |
lemma LiftXH: "a : [A] <-> (a=bot | a:A)" |
|
97 |
and TallXH: "a : TALL X. B(X) <-> (ALL X. a:B(X))" |
|
98 |
and TexXH: "a : TEX X. B(X) <-> (EX X. a:B(X))" |
|
99 |
unfolding simp_type_defs by blast+ |
|
100 |
||
101 |
ML {* |
|
102 |
bind_thms ("case_rls", XH_to_Es (thms "XHs")); |
|
103 |
*} |
|
104 |
||
105 |
||
106 |
subsection {* Canonical Type Rules *} |
|
107 |
||
108 |
lemma oneT: "one : Unit" |
|
109 |
and trueT: "true : Bool" |
|
110 |
and falseT: "false : Bool" |
|
111 |
and lamT: "!!b B. [| !!x. x:A ==> b(x):B(x) |] ==> lam x. b(x) : Pi(A,B)" |
|
112 |
and pairT: "!!b B. [| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)" |
|
113 |
and inlT: "a:A ==> inl(a) : A+B" |
|
114 |
and inrT: "b:B ==> inr(b) : A+B" |
|
115 |
by (blast intro: XHs [THEN iffD2])+ |
|
116 |
||
117 |
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT |
|
118 |
||
119 |
||
120 |
subsection {* Non-Canonical Type Rules *} |
|
121 |
||
122 |
lemma lem: "[| a:B(u); u=v |] ==> a : B(v)" |
|
123 |
by blast |
|
124 |
||
125 |
||
126 |
ML {* |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
127 |
fun mk_ncanT_tac top_crls crls = |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
128 |
SUBPROOF (fn {context = ctxt, prems = major :: prems, ...} => |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
129 |
resolve_tac ([major] RL top_crls) 1 THEN |
35409 | 130 |
REPEAT_SOME (eresolve_tac (crls @ [@{thm exE}, @{thm bexE}, @{thm conjE}, @{thm disjE}])) THEN |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
131 |
ALLGOALS (asm_simp_tac (simpset_of ctxt)) THEN |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
132 |
ALLGOALS (ares_tac (prems RL [@{thm lem}]) ORELSE' etac @{thm bspec}) THEN |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
133 |
safe_tac (claset_of ctxt addSIs prems)) |
28272
ed959a0f650b
proper thm antiquotations within ML solve obscure context problems (due to update of ML environment);
wenzelm
parents:
26342
diff
changeset
|
134 |
*} |
20140 | 135 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
136 |
method_setup ncanT = {* |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
137 |
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms case_rls} @{thms case_rls}) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
138 |
*} "" |
20140 | 139 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
140 |
lemma ifT: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
141 |
"[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
142 |
if b then t else u : A(b)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
143 |
by ncanT |
20140 | 144 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
145 |
lemma applyT: "[| f : Pi(A,B); a:A |] ==> f ` a : B(a)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
146 |
by ncanT |
20140 | 147 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
148 |
lemma splitT: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
149 |
"[| p:Sigma(A,B); !!x y. [| x:A; y:B(x); p=<x,y> |] ==> c(x,y):C(<x,y>) |] |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
150 |
==> split(p,c):C(p)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
151 |
by ncanT |
20140 | 152 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
153 |
lemma whenT: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
154 |
"[| p:A+B; !!x.[| x:A; p=inl(x) |] ==> a(x):C(inl(x)); !!y.[| y:B; p=inr(y) |] |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
155 |
==> b(y):C(inr(y)) |] ==> when(p,a,b) : C(p)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
156 |
by ncanT |
20140 | 157 |
|
158 |
lemmas ncanTs = ifT applyT splitT whenT |
|
159 |
||
160 |
||
161 |
subsection {* Subtypes *} |
|
162 |
||
163 |
lemma SubtypeD1: "a : Subtype(A, P) ==> a : A" |
|
164 |
and SubtypeD2: "a : Subtype(A, P) ==> P(a)" |
|
165 |
by (simp_all add: SubtypeXH) |
|
166 |
||
167 |
lemma SubtypeI: "[| a:A; P(a) |] ==> a : {x:A. P(x)}" |
|
168 |
by (simp add: SubtypeXH) |
|
169 |
||
170 |
lemma SubtypeE: "[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> Q |] ==> Q" |
|
171 |
by (simp add: SubtypeXH) |
|
172 |
||
173 |
||
174 |
subsection {* Monotonicity *} |
|
175 |
||
176 |
lemma idM: "mono (%X. X)" |
|
177 |
apply (rule monoI) |
|
178 |
apply assumption |
|
179 |
done |
|
180 |
||
181 |
lemma constM: "mono(%X. A)" |
|
182 |
apply (rule monoI) |
|
183 |
apply (rule subset_refl) |
|
184 |
done |
|
185 |
||
186 |
lemma "mono(%X. A(X)) ==> mono(%X.[A(X)])" |
|
187 |
apply (rule subsetI [THEN monoI]) |
|
188 |
apply (drule LiftXH [THEN iffD1]) |
|
189 |
apply (erule disjE) |
|
190 |
apply (erule disjI1 [THEN LiftXH [THEN iffD2]]) |
|
191 |
apply (rule disjI2 [THEN LiftXH [THEN iffD2]]) |
|
192 |
apply (drule (1) monoD) |
|
193 |
apply blast |
|
194 |
done |
|
195 |
||
196 |
lemma SgM: |
|
197 |
"[| mono(%X. A(X)); !!x X. x:A(X) ==> mono(%X. B(X,x)) |] ==> |
|
198 |
mono(%X. Sigma(A(X),B(X)))" |
|
199 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
200 |
dest!: monoD [THEN subsetD]) |
|
201 |
||
202 |
lemma PiM: |
|
203 |
"[| !!x. x:A ==> mono(%X. B(X,x)) |] ==> mono(%X. Pi(A,B(X)))" |
|
204 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
205 |
dest!: monoD [THEN subsetD]) |
|
206 |
||
207 |
lemma PlusM: |
|
208 |
"[| mono(%X. A(X)); mono(%X. B(X)) |] ==> mono(%X. A(X)+B(X))" |
|
209 |
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls |
|
210 |
dest!: monoD [THEN subsetD]) |
|
211 |
||
212 |
||
213 |
subsection {* Recursive types *} |
|
214 |
||
215 |
subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *} |
|
216 |
||
217 |
lemma NatM: "mono(%X. Unit+X)"; |
|
218 |
apply (rule PlusM constM idM)+ |
|
219 |
done |
|
220 |
||
221 |
lemma def_NatB: "Nat = Unit + Nat" |
|
222 |
apply (rule def_lfp_Tarski [OF Nat_def]) |
|
223 |
apply (rule NatM) |
|
224 |
done |
|
225 |
||
226 |
lemma ListM: "mono(%X.(Unit+Sigma(A,%y. X)))" |
|
227 |
apply (rule PlusM SgM constM idM)+ |
|
228 |
done |
|
229 |
||
230 |
lemma def_ListB: "List(A) = Unit + A * List(A)" |
|
231 |
apply (rule def_lfp_Tarski [OF List_def]) |
|
232 |
apply (rule ListM) |
|
233 |
done |
|
234 |
||
235 |
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)" |
|
236 |
apply (rule def_gfp_Tarski [OF Lists_def]) |
|
237 |
apply (rule ListM) |
|
238 |
done |
|
239 |
||
240 |
lemma IListsM: "mono(%X.({} + Sigma(A,%y. X)))" |
|
241 |
apply (rule PlusM SgM constM idM)+ |
|
242 |
done |
|
243 |
||
244 |
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)" |
|
245 |
apply (rule def_gfp_Tarski [OF ILists_def]) |
|
246 |
apply (rule IListsM) |
|
247 |
done |
|
248 |
||
249 |
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB |
|
250 |
||
251 |
||
252 |
subsection {* Exhaustion Rules *} |
|
253 |
||
254 |
lemma NatXH: "a : Nat <-> (a=zero | (EX x:Nat. a=succ(x)))" |
|
255 |
and ListXH: "a : List(A) <-> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))" |
|
256 |
and ListsXH: "a : Lists(A) <-> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))" |
|
257 |
and IListsXH: "a : ILists(A) <-> (EX x:A. EX xs:ILists(A).a=x$xs)" |
|
258 |
unfolding ind_data_defs |
|
259 |
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+ |
|
260 |
||
261 |
lemmas iXHs = NatXH ListXH |
|
262 |
||
263 |
ML {* bind_thms ("icase_rls", XH_to_Es (thms "iXHs")) *} |
|
264 |
||
265 |
||
266 |
subsection {* Type Rules *} |
|
267 |
||
268 |
lemma zeroT: "zero : Nat" |
|
269 |
and succT: "n:Nat ==> succ(n) : Nat" |
|
270 |
and nilT: "[] : List(A)" |
|
271 |
and consT: "[| h:A; t:List(A) |] ==> h$t : List(A)" |
|
272 |
by (blast intro: iXHs [THEN iffD2])+ |
|
273 |
||
274 |
lemmas icanTs = zeroT succT nilT consT |
|
275 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
276 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
277 |
method_setup incanT = {* |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
278 |
Scan.succeed (SIMPLE_METHOD' o mk_ncanT_tac @{thms icase_rls} @{thms case_rls}) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
279 |
*} "" |
20140 | 280 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
281 |
lemma ncaseT: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
282 |
"[| n:Nat; n=zero ==> b:C(zero); !!x.[| x:Nat; n=succ(x) |] ==> c(x):C(succ(x)) |] |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
283 |
==> ncase(n,b,c) : C(n)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
284 |
by incanT |
20140 | 285 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
286 |
lemma lcaseT: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
287 |
"[| l:List(A); l=[] ==> b:C([]); !!h t.[| h:A; t:List(A); l=h$t |] ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
288 |
c(h,t):C(h$t) |] ==> lcase(l,b,c) : C(l)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
289 |
by incanT |
20140 | 290 |
|
291 |
lemmas incanTs = ncaseT lcaseT |
|
292 |
||
293 |
||
294 |
subsection {* Induction Rules *} |
|
295 |
||
296 |
lemmas ind_Ms = NatM ListM |
|
297 |
||
298 |
lemma Nat_ind: "[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==> P(n)" |
|
299 |
apply (unfold ind_data_defs) |
|
300 |
apply (erule def_induct [OF Nat_def _ NatM]) |
|
301 |
apply (blast intro: canTs elim!: case_rls) |
|
302 |
done |
|
303 |
||
304 |
lemma List_ind: |
|
305 |
"[| l:List(A); P([]); !!x xs.[| x:A; xs:List(A); P(xs) |] ==> P(x$xs) |] ==> P(l)" |
|
306 |
apply (unfold ind_data_defs) |
|
307 |
apply (erule def_induct [OF List_def _ ListM]) |
|
308 |
apply (blast intro: canTs elim!: case_rls) |
|
309 |
done |
|
310 |
||
311 |
lemmas inds = Nat_ind List_ind |
|
312 |
||
313 |
||
314 |
subsection {* Primitive Recursive Rules *} |
|
315 |
||
316 |
lemma nrecT: |
|
317 |
"[| n:Nat; b:C(zero); |
|
318 |
!!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==> |
|
319 |
nrec(n,b,c) : C(n)" |
|
320 |
by (erule Nat_ind) auto |
|
321 |
||
322 |
lemma lrecT: |
|
323 |
"[| l:List(A); b:C([]); |
|
324 |
!!x xs g.[| x:A; xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x$xs) |] ==> |
|
325 |
lrec(l,b,c) : C(l)" |
|
326 |
by (erule List_ind) auto |
|
327 |
||
328 |
lemmas precTs = nrecT lrecT |
|
329 |
||
330 |
||
331 |
subsection {* Theorem proving *} |
|
332 |
||
333 |
lemma SgE2: |
|
334 |
"[| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P" |
|
335 |
unfolding SgXH by blast |
|
336 |
||
337 |
(* General theorem proving ignores non-canonical term-formers, *) |
|
338 |
(* - intro rules are type rules for canonical terms *) |
|
339 |
(* - elim rules are case rules (no non-canonical terms appear) *) |
|
340 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
341 |
ML {* bind_thms ("XHEs", XH_to_Es @{thms XHs}) *} |
20140 | 342 |
|
343 |
lemmas [intro!] = SubtypeI canTs icanTs |
|
344 |
and [elim!] = SubtypeE XHEs |
|
345 |
||
346 |
||
347 |
subsection {* Infinite Data Types *} |
|
348 |
||
349 |
lemma lfp_subset_gfp: "mono(f) ==> lfp(f) <= gfp(f)" |
|
350 |
apply (rule lfp_lowerbound [THEN subset_trans]) |
|
351 |
apply (erule gfp_lemma3) |
|
352 |
apply (rule subset_refl) |
|
353 |
done |
|
354 |
||
355 |
lemma gfpI: |
|
356 |
assumes "a:A" |
|
357 |
and "!!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X)" |
|
358 |
shows "t(a) : gfp(B)" |
|
359 |
apply (rule coinduct) |
|
360 |
apply (rule_tac P = "%x. EX y:A. x=t (y)" in CollectI) |
|
361 |
apply (blast intro!: prems)+ |
|
362 |
done |
|
363 |
||
364 |
lemma def_gfpI: |
|
365 |
"[| C==gfp(B); a:A; !!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X) |] ==> |
|
366 |
t(a) : C" |
|
367 |
apply unfold |
|
368 |
apply (erule gfpI) |
|
369 |
apply blast |
|
370 |
done |
|
371 |
||
372 |
(* EG *) |
|
373 |
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)" |
|
374 |
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]]) |
|
375 |
apply (subst letrecB) |
|
376 |
apply (unfold cons_def) |
|
377 |
apply blast |
|
378 |
done |
|
379 |
||
380 |
||
381 |
subsection {* Lemmas and tactics for using the rule @{text |
|
382 |
"coinduct3"} on @{text "[="} and @{text "="} *} |
|
383 |
||
384 |
lemma lfpI: "[| mono(f); a : f(lfp(f)) |] ==> a : lfp(f)" |
|
385 |
apply (erule lfp_Tarski [THEN ssubst]) |
|
386 |
apply assumption |
|
387 |
done |
|
388 |
||
389 |
lemma ssubst_single: "[| a=a'; a' : A |] ==> a : A" |
|
390 |
by simp |
|
391 |
||
392 |
lemma ssubst_pair: "[| a=a'; b=b'; <a',b'> : A |] ==> <a,b> : A" |
|
393 |
by simp |
|
394 |
||
395 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
396 |
ML {* |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
397 |
val coinduct3_tac = SUBPROOF (fn {context = ctxt, prems = mono :: prems, ...} => |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
398 |
(fast_tac (claset_of ctxt addIs |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
399 |
(mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}) :: prems) 1)); |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
400 |
*} |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
401 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
402 |
method_setup coinduct3 = {* |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
403 |
Scan.succeed (SIMPLE_METHOD' o coinduct3_tac) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
404 |
*} "" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
405 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
406 |
lemma ci3_RI: "[| mono(Agen); a : R |] ==> a : lfp(%x. Agen(x) Un R Un A)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
407 |
by coinduct3 |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
408 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
409 |
lemma ci3_AgenI: "[| mono(Agen); a : Agen(lfp(%x. Agen(x) Un R Un A)) |] ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
410 |
a : lfp(%x. Agen(x) Un R Un A)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
411 |
by coinduct3 |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
412 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
413 |
lemma ci3_AI: "[| mono(Agen); a : A |] ==> a : lfp(%x. Agen(x) Un R Un A)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
414 |
by coinduct3 |
20140 | 415 |
|
416 |
ML {* |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
417 |
fun genIs_tac ctxt genXH gen_mono = |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
418 |
rtac (genXH RS iffD2) THEN' |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
419 |
simp_tac (simpset_of ctxt) THEN' |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
420 |
TRY o fast_tac (claset_of ctxt addIs |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
421 |
[genXH RS iffD2, gen_mono RS @{thm coinduct3_mono_lemma} RS @{thm lfpI}]) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
422 |
*} |
20140 | 423 |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
424 |
method_setup genIs = {* |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
425 |
Attrib.thm -- Attrib.thm >> (fn (genXH, gen_mono) => fn ctxt => |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
426 |
SIMPLE_METHOD' (genIs_tac ctxt genXH gen_mono)) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
427 |
*} "" |
20140 | 428 |
|
429 |
||
430 |
subsection {* POgen *} |
|
431 |
||
432 |
lemma PO_refl: "<a,a> : PO" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
433 |
by (rule po_refl [THEN PO_iff [THEN iffD1]]) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
434 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
435 |
lemma POgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
436 |
"<true,true> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
437 |
"<false,false> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
438 |
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
439 |
"!!b b'. [|!!x. <b(x),b'(x)> : R |] ==><lam x. b(x),lam x. b'(x)> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
440 |
"<one,one> : POgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
441 |
"<a,a'> : lfp(%x. POgen(x) Un R Un PO) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
442 |
<inl(a),inl(a')> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
443 |
"<b,b'> : lfp(%x. POgen(x) Un R Un PO) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
444 |
<inr(b),inr(b')> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
445 |
"<zero,zero> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
446 |
"<n,n'> : lfp(%x. POgen(x) Un R Un PO) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
447 |
<succ(n),succ(n')> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
448 |
"<[],[]> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
449 |
"[| <h,h'> : lfp(%x. POgen(x) Un R Un PO); <t,t'> : lfp(%x. POgen(x) Un R Un PO) |] |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
450 |
==> <h$t,h'$t'> : POgen(lfp(%x. POgen(x) Un R Un PO))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
451 |
unfolding data_defs by (genIs POgenXH POgen_mono)+ |
20140 | 452 |
|
453 |
ML {* |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
454 |
fun POgen_tac ctxt (rla, rlb) i = |
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
32010
diff
changeset
|
455 |
SELECT_GOAL (safe_tac (claset_of ctxt)) i THEN |
32010 | 456 |
rtac (rlb RS (rla RS @{thm ssubst_pair})) i THEN |
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
457 |
(REPEAT (resolve_tac |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
458 |
(@{thms POgenIs} @ [@{thm PO_refl} RS (@{thm POgen_mono} RS @{thm ci3_AI})] @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
459 |
(@{thms POgenIs} RL [@{thm POgen_mono} RS @{thm ci3_AgenI}]) @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
460 |
[@{thm POgen_mono} RS @{thm ci3_RI}]) i)) |
20140 | 461 |
*} |
462 |
||
463 |
||
464 |
subsection {* EQgen *} |
|
465 |
||
466 |
lemma EQ_refl: "<a,a> : EQ" |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
467 |
by (rule refl [THEN EQ_iff [THEN iffD1]]) |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
468 |
|
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
469 |
lemma EQgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
470 |
"<true,true> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
471 |
"<false,false> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
472 |
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
473 |
"!!b b'. [|!!x. <b(x),b'(x)> : R |] ==> <lam x. b(x),lam x. b'(x)> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
474 |
"<one,one> : EQgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
475 |
"<a,a'> : lfp(%x. EQgen(x) Un R Un EQ) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
476 |
<inl(a),inl(a')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
477 |
"<b,b'> : lfp(%x. EQgen(x) Un R Un EQ) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
478 |
<inr(b),inr(b')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
479 |
"<zero,zero> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
480 |
"<n,n'> : lfp(%x. EQgen(x) Un R Un EQ) ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
481 |
<succ(n),succ(n')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
482 |
"<[],[]> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
483 |
"[| <h,h'> : lfp(%x. EQgen(x) Un R Un EQ); <t,t'> : lfp(%x. EQgen(x) Un R Un EQ) |] |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
484 |
==> <h$t,h'$t'> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
485 |
unfolding data_defs by (genIs EQgenXH EQgen_mono)+ |
20140 | 486 |
|
487 |
ML {* |
|
488 |
fun EQgen_raw_tac i = |
|
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
489 |
(REPEAT (resolve_tac (@{thms EQgenIs} @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
490 |
[@{thm EQ_refl} RS (@{thm EQgen_mono} RS @{thm ci3_AI})] @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
491 |
(@{thms EQgenIs} RL [@{thm EQgen_mono} RS @{thm ci3_AgenI}]) @ |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32149
diff
changeset
|
492 |
[@{thm EQgen_mono} RS @{thm ci3_RI}]) i)) |
20140 | 493 |
|
494 |
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *) |
|
495 |
(* then reduce this to a goal <a',b'> : R (hopefully?) *) |
|
496 |
(* rews are rewrite rules that would cause looping in the simpifier *) |
|
497 |
||
23894
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
wenzelm
parents:
20140
diff
changeset
|
498 |
fun EQgen_tac ctxt rews i = |
20140 | 499 |
SELECT_GOAL |
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
32010
diff
changeset
|
500 |
(TRY (safe_tac (claset_of ctxt)) THEN |
35409 | 501 |
resolve_tac ((rews @ [@{thm refl}]) RL ((rews @ [@{thm refl}]) RL [@{thm ssubst_pair}])) i THEN |
32149
ef59550a55d3
renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents:
32010
diff
changeset
|
502 |
ALLGOALS (simp_tac (simpset_of ctxt)) THEN |
20140 | 503 |
ALLGOALS EQgen_raw_tac) i |
504 |
*} |
|
0 | 505 |
|
506 |
end |