author | blanchet |
Sun, 06 Nov 2011 13:37:49 +0100 | |
changeset 45368 | ff2edf24e83a |
parent 41959 | b460124855b8 |
child 45607 | 16b4f5774621 |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Parity.thy |
2 |
Author: Jeremy Avigad |
|
3 |
Author: Jacques D. Fleuriot |
|
21256 | 4 |
*) |
5 |
||
6 |
header {* Even and Odd for int and nat *} |
|
7 |
||
8 |
theory Parity |
|
30738 | 9 |
imports Main |
21256 | 10 |
begin |
11 |
||
29608 | 12 |
class even_odd = |
22390 | 13 |
fixes even :: "'a \<Rightarrow> bool" |
21256 | 14 |
|
15 |
abbreviation |
|
22390 | 16 |
odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where |
17 |
"odd x \<equiv> \<not> even x" |
|
18 |
||
26259 | 19 |
instantiation nat and int :: even_odd |
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
20 |
begin |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
21 |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
22 |
definition |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
23 |
even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0" |
22390 | 24 |
|
25571
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
25 |
definition |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
26 |
even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)" |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
27 |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
28 |
instance .. |
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
29 |
|
c9e39eafc7a0
instantiation target rather than legacy instance
haftmann
parents:
25502
diff
changeset
|
30 |
end |
21256 | 31 |
|
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
32 |
lemma transfer_int_nat_relations: |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
33 |
"even (int x) \<longleftrightarrow> even x" |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
34 |
by (simp add: even_nat_def) |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
35 |
|
35644 | 36 |
declare transfer_morphism_int_nat[transfer add return: |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
37 |
transfer_int_nat_relations |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
38 |
] |
21256 | 39 |
|
31148 | 40 |
lemma even_zero_int[simp]: "even (0::int)" by presburger |
41 |
||
42 |
lemma odd_one_int[simp]: "odd (1::int)" by presburger |
|
43 |
||
44 |
lemma even_zero_nat[simp]: "even (0::nat)" by presburger |
|
45 |
||
31718 | 46 |
lemma odd_1_nat [simp]: "odd (1::nat)" by presburger |
31148 | 47 |
|
48 |
declare even_def[of "number_of v", standard, simp] |
|
49 |
||
50 |
declare even_nat_def[of "number_of v", standard, simp] |
|
51 |
||
21256 | 52 |
subsection {* Even and odd are mutually exclusive *} |
53 |
||
21263 | 54 |
lemma int_pos_lt_two_imp_zero_or_one: |
21256 | 55 |
"0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1" |
23522 | 56 |
by presburger |
21256 | 57 |
|
23522 | 58 |
lemma neq_one_mod_two [simp, presburger]: |
59 |
"((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger |
|
21256 | 60 |
|
25600 | 61 |
|
21256 | 62 |
subsection {* Behavior under integer arithmetic operations *} |
27668 | 63 |
declare dvd_def[algebra] |
64 |
lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x" |
|
36840 | 65 |
by presburger |
27668 | 66 |
lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x" |
67 |
by presburger |
|
21256 | 68 |
|
69 |
lemma even_times_anything: "even (x::int) ==> even (x * y)" |
|
27668 | 70 |
by algebra |
21256 | 71 |
|
27668 | 72 |
lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra |
21256 | 73 |
|
27668 | 74 |
lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" |
21256 | 75 |
by (simp add: even_def zmod_zmult1_eq) |
76 |
||
31148 | 77 |
lemma even_product[simp,presburger]: "even((x::int) * y) = (even x | even y)" |
21263 | 78 |
apply (auto simp add: even_times_anything anything_times_even) |
21256 | 79 |
apply (rule ccontr) |
80 |
apply (auto simp add: odd_times_odd) |
|
81 |
done |
|
82 |
||
83 |
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" |
|
31148 | 84 |
by presburger |
21256 | 85 |
|
86 |
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" |
|
31148 | 87 |
by presburger |
21256 | 88 |
|
89 |
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" |
|
31148 | 90 |
by presburger |
21256 | 91 |
|
23522 | 92 |
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger |
21256 | 93 |
|
31148 | 94 |
lemma even_sum[simp,presburger]: |
95 |
"even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" |
|
96 |
by presburger |
|
21256 | 97 |
|
31148 | 98 |
lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" |
99 |
by presburger |
|
21256 | 100 |
|
31148 | 101 |
lemma even_difference[simp]: |
23522 | 102 |
"even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger |
21256 | 103 |
|
31148 | 104 |
lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)" |
105 |
by (induct n) auto |
|
21256 | 106 |
|
31148 | 107 |
lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp |
21256 | 108 |
|
109 |
||
110 |
subsection {* Equivalent definitions *} |
|
111 |
||
23522 | 112 |
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" |
31148 | 113 |
by presburger |
21256 | 114 |
|
31148 | 115 |
lemma two_times_odd_div_two_plus_one: |
116 |
"odd (x::int) ==> 2 * (x div 2) + 1 = x" |
|
117 |
by presburger |
|
21256 | 118 |
|
23522 | 119 |
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger |
21256 | 120 |
|
23522 | 121 |
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger |
21256 | 122 |
|
123 |
subsection {* even and odd for nats *} |
|
124 |
||
125 |
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" |
|
31148 | 126 |
by (simp add: even_nat_def) |
21256 | 127 |
|
31148 | 128 |
lemma even_product_nat[simp,presburger,algebra]: |
129 |
"even((x::nat) * y) = (even x | even y)" |
|
130 |
by (simp add: even_nat_def int_mult) |
|
21256 | 131 |
|
31148 | 132 |
lemma even_sum_nat[simp,presburger,algebra]: |
133 |
"even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" |
|
23522 | 134 |
by presburger |
21256 | 135 |
|
31148 | 136 |
lemma even_difference_nat[simp,presburger,algebra]: |
137 |
"even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" |
|
138 |
by presburger |
|
21256 | 139 |
|
31148 | 140 |
lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" |
141 |
by presburger |
|
21256 | 142 |
|
31148 | 143 |
lemma even_power_nat[simp,presburger,algebra]: |
144 |
"even ((x::nat)^y) = (even x & 0 < y)" |
|
145 |
by (simp add: even_nat_def int_power) |
|
21256 | 146 |
|
147 |
||
148 |
subsection {* Equivalent definitions *} |
|
149 |
||
31148 | 150 |
lemma nat_lt_two_imp_zero_or_one: |
151 |
"(x::nat) < Suc (Suc 0) ==> x = 0 | x = Suc 0" |
|
152 |
by presburger |
|
21256 | 153 |
|
154 |
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" |
|
31148 | 155 |
by presburger |
21256 | 156 |
|
157 |
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" |
|
23522 | 158 |
by presburger |
21256 | 159 |
|
21263 | 160 |
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" |
31148 | 161 |
by presburger |
21256 | 162 |
|
163 |
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" |
|
31148 | 164 |
by presburger |
21256 | 165 |
|
21263 | 166 |
lemma even_nat_div_two_times_two: "even (x::nat) ==> |
23522 | 167 |
Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger |
21256 | 168 |
|
21263 | 169 |
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> |
23522 | 170 |
Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger |
21256 | 171 |
|
172 |
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" |
|
31148 | 173 |
by presburger |
21256 | 174 |
|
175 |
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" |
|
31148 | 176 |
by presburger |
21256 | 177 |
|
25600 | 178 |
|
21256 | 179 |
subsection {* Parity and powers *} |
180 |
||
21263 | 181 |
lemma minus_one_even_odd_power: |
31017 | 182 |
"(even x --> (- 1::'a::{comm_ring_1})^x = 1) & |
21256 | 183 |
(odd x --> (- 1::'a)^x = - 1)" |
184 |
apply (induct x) |
|
185 |
apply (rule conjI) |
|
186 |
apply simp |
|
31148 | 187 |
apply (insert even_zero_nat, blast) |
35216 | 188 |
apply simp |
21263 | 189 |
done |
21256 | 190 |
|
191 |
lemma minus_one_even_power [simp]: |
|
31017 | 192 |
"even x ==> (- 1::'a::{comm_ring_1})^x = 1" |
21263 | 193 |
using minus_one_even_odd_power by blast |
21256 | 194 |
|
195 |
lemma minus_one_odd_power [simp]: |
|
31017 | 196 |
"odd x ==> (- 1::'a::{comm_ring_1})^x = - 1" |
21263 | 197 |
using minus_one_even_odd_power by blast |
21256 | 198 |
|
199 |
lemma neg_one_even_odd_power: |
|
31017 | 200 |
"(even x --> (-1::'a::{number_ring})^x = 1) & |
21256 | 201 |
(odd x --> (-1::'a)^x = -1)" |
202 |
apply (induct x) |
|
35216 | 203 |
apply (simp, simp) |
21256 | 204 |
done |
205 |
||
206 |
lemma neg_one_even_power [simp]: |
|
31017 | 207 |
"even x ==> (-1::'a::{number_ring})^x = 1" |
21263 | 208 |
using neg_one_even_odd_power by blast |
21256 | 209 |
|
210 |
lemma neg_one_odd_power [simp]: |
|
31017 | 211 |
"odd x ==> (-1::'a::{number_ring})^x = -1" |
21263 | 212 |
using neg_one_even_odd_power by blast |
21256 | 213 |
|
214 |
lemma neg_power_if: |
|
31017 | 215 |
"(-x::'a::{comm_ring_1}) ^ n = |
21256 | 216 |
(if even n then (x ^ n) else -(x ^ n))" |
21263 | 217 |
apply (induct n) |
35216 | 218 |
apply simp_all |
21263 | 219 |
done |
21256 | 220 |
|
21263 | 221 |
lemma zero_le_even_power: "even n ==> |
35631
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35216
diff
changeset
|
222 |
0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n" |
21256 | 223 |
apply (simp add: even_nat_equiv_def2) |
224 |
apply (erule exE) |
|
225 |
apply (erule ssubst) |
|
226 |
apply (subst power_add) |
|
227 |
apply (rule zero_le_square) |
|
228 |
done |
|
229 |
||
21263 | 230 |
lemma zero_le_odd_power: "odd n ==> |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
231 |
(0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)" |
35216 | 232 |
apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff) |
36722 | 233 |
apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square) |
30056 | 234 |
done |
21256 | 235 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
236 |
lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) = |
21256 | 237 |
(even n | (odd n & 0 <= x))" |
238 |
apply auto |
|
21263 | 239 |
apply (subst zero_le_odd_power [symmetric]) |
21256 | 240 |
apply assumption+ |
241 |
apply (erule zero_le_even_power) |
|
21263 | 242 |
done |
21256 | 243 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
244 |
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) = |
21256 | 245 |
(n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" |
27668 | 246 |
|
247 |
unfolding order_less_le zero_le_power_eq by auto |
|
21256 | 248 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
249 |
lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) = |
27668 | 250 |
(odd n & x < 0)" |
21263 | 251 |
apply (subst linorder_not_le [symmetric])+ |
21256 | 252 |
apply (subst zero_le_power_eq) |
253 |
apply auto |
|
21263 | 254 |
done |
21256 | 255 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
256 |
lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) = |
21256 | 257 |
(n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" |
21263 | 258 |
apply (subst linorder_not_less [symmetric])+ |
21256 | 259 |
apply (subst zero_less_power_eq) |
260 |
apply auto |
|
21263 | 261 |
done |
21256 | 262 |
|
21263 | 263 |
lemma power_even_abs: "even n ==> |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
264 |
(abs (x::'a::{linordered_idom}))^n = x^n" |
21263 | 265 |
apply (subst power_abs [symmetric]) |
21256 | 266 |
apply (simp add: zero_le_even_power) |
21263 | 267 |
done |
21256 | 268 |
|
23522 | 269 |
lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)" |
21263 | 270 |
by (induct n) auto |
21256 | 271 |
|
21263 | 272 |
lemma power_minus_even [simp]: "even n ==> |
31017 | 273 |
(- x)^n = (x^n::'a::{comm_ring_1})" |
21256 | 274 |
apply (subst power_minus) |
275 |
apply simp |
|
21263 | 276 |
done |
21256 | 277 |
|
21263 | 278 |
lemma power_minus_odd [simp]: "odd n ==> |
31017 | 279 |
(- x)^n = - (x^n::'a::{comm_ring_1})" |
21256 | 280 |
apply (subst power_minus) |
281 |
apply simp |
|
21263 | 282 |
done |
21256 | 283 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
284 |
lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}" |
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
285 |
assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
286 |
shows "x^n \<le> y^n" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
287 |
proof - |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
288 |
have "0 \<le> \<bar>x\<bar>" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
289 |
with `\<bar>x\<bar> \<le> \<bar>y\<bar>` |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
290 |
have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
291 |
thus ?thesis unfolding power_even_abs[OF `even n`] . |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
292 |
qed |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
293 |
|
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
294 |
lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
295 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
296 |
lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}" |
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
297 |
assumes "odd n" and "x \<le> y" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
298 |
shows "x^n \<le> y^n" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
299 |
proof (cases "y < 0") |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
300 |
case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
301 |
hence "(-y)^n \<le> (-x)^n" by (rule power_mono) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
302 |
thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
303 |
next |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
304 |
case False |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
305 |
show ?thesis |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
306 |
proof (cases "x < 0") |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
307 |
case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
308 |
hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
309 |
moreover |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
310 |
from `\<not> y < 0` have "0 \<le> y" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
311 |
hence "0 \<le> y^n" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
312 |
ultimately show ?thesis by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
313 |
next |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
314 |
case False hence "0 \<le> x" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
315 |
with `x \<le> y` show ?thesis using power_mono by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
316 |
qed |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
317 |
qed |
21263 | 318 |
|
25600 | 319 |
|
320 |
subsection {* More Even/Odd Results *} |
|
321 |
||
27668 | 322 |
lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger |
323 |
lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger |
|
324 |
lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger |
|
25600 | 325 |
|
27668 | 326 |
lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger |
25600 | 327 |
|
328 |
lemma div_Suc: "Suc a div c = a div c + Suc 0 div c + |
|
329 |
(a mod c + Suc 0 mod c) div c" |
|
330 |
apply (subgoal_tac "Suc a = a + Suc 0") |
|
331 |
apply (erule ssubst) |
|
332 |
apply (rule div_add1_eq, simp) |
|
333 |
done |
|
334 |
||
27668 | 335 |
lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger |
25600 | 336 |
|
337 |
lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" |
|
27668 | 338 |
by presburger |
25600 | 339 |
|
27668 | 340 |
lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger |
341 |
lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger |
|
25600 | 342 |
|
27668 | 343 |
lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger |
25600 | 344 |
|
345 |
lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" |
|
27668 | 346 |
by presburger |
25600 | 347 |
|
21263 | 348 |
text {* Simplify, when the exponent is a numeral *} |
21256 | 349 |
|
350 |
lemmas power_0_left_number_of = power_0_left [of "number_of w", standard] |
|
351 |
declare power_0_left_number_of [simp] |
|
352 |
||
21263 | 353 |
lemmas zero_le_power_eq_number_of [simp] = |
21256 | 354 |
zero_le_power_eq [of _ "number_of w", standard] |
355 |
||
21263 | 356 |
lemmas zero_less_power_eq_number_of [simp] = |
21256 | 357 |
zero_less_power_eq [of _ "number_of w", standard] |
358 |
||
21263 | 359 |
lemmas power_le_zero_eq_number_of [simp] = |
21256 | 360 |
power_le_zero_eq [of _ "number_of w", standard] |
361 |
||
21263 | 362 |
lemmas power_less_zero_eq_number_of [simp] = |
21256 | 363 |
power_less_zero_eq [of _ "number_of w", standard] |
364 |
||
21263 | 365 |
lemmas zero_less_power_nat_eq_number_of [simp] = |
21256 | 366 |
zero_less_power_nat_eq [of _ "number_of w", standard] |
367 |
||
21263 | 368 |
lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard] |
21256 | 369 |
|
21263 | 370 |
lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard] |
21256 | 371 |
|
372 |
||
373 |
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *} |
|
374 |
||
375 |
lemma even_power_le_0_imp_0: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
376 |
"a ^ (2*k) \<le> (0::'a::{linordered_idom}) ==> a=0" |
35216 | 377 |
by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) |
21256 | 378 |
|
23522 | 379 |
lemma zero_le_power_iff[presburger]: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
380 |
"(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)" |
21256 | 381 |
proof cases |
382 |
assume even: "even n" |
|
383 |
then obtain k where "n = 2*k" |
|
384 |
by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) |
|
21263 | 385 |
thus ?thesis by (simp add: zero_le_even_power even) |
21256 | 386 |
next |
387 |
assume odd: "odd n" |
|
388 |
then obtain k where "n = Suc(2*k)" |
|
389 |
by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) |
|
390 |
thus ?thesis |
|
35216 | 391 |
by (auto simp add: zero_le_mult_iff zero_le_even_power |
21263 | 392 |
dest!: even_power_le_0_imp_0) |
393 |
qed |
|
394 |
||
21256 | 395 |
|
396 |
subsection {* Miscellaneous *} |
|
397 |
||
23522 | 398 |
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger |
399 |
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger |
|
400 |
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger |
|
401 |
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger |
|
21256 | 402 |
|
23522 | 403 |
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger |
404 |
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger |
|
21263 | 405 |
lemma even_nat_plus_one_div_two: "even (x::nat) ==> |
23522 | 406 |
(Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger |
21256 | 407 |
|
21263 | 408 |
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> |
23522 | 409 |
(Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger |
21256 | 410 |
|
411 |
end |