author | wenzelm |
Sat, 05 Jan 2019 17:24:33 +0100 | |
changeset 69597 | ff784d5a5bfb |
parent 69313 | b021008c5397 |
child 81332 | f94b30fa2b6c |
permissions | -rw-r--r-- |
58607
1f90ea1b4010
move Stream theory from Datatype_Examples to Library
hoelzl
parents:
58309
diff
changeset
|
1 |
(* Title: HOL/Library/Stream.thy |
50518 | 2 |
Author: Dmitriy Traytel, TU Muenchen |
3 |
Author: Andrei Popescu, TU Muenchen |
|
51778 | 4 |
Copyright 2012, 2013 |
50518 | 5 |
|
6 |
Infinite streams. |
|
7 |
*) |
|
8 |
||
60500 | 9 |
section \<open>Infinite Streams\<close> |
50518 | 10 |
|
11 |
theory Stream |
|
65366 | 12 |
imports Nat_Bijection |
50518 | 13 |
begin |
14 |
||
57206
d9be905d6283
changed syntax of map: and rel: arguments to BNF-based datatypes
blanchet
parents:
57175
diff
changeset
|
15 |
codatatype (sset: 'a) stream = |
69597 | 16 |
SCons (shd: 'a) (stl: "'a stream") (infixr \<open>##\<close> 65) |
57206
d9be905d6283
changed syntax of map: and rel: arguments to BNF-based datatypes
blanchet
parents:
57175
diff
changeset
|
17 |
for |
d9be905d6283
changed syntax of map: and rel: arguments to BNF-based datatypes
blanchet
parents:
57175
diff
changeset
|
18 |
map: smap |
d9be905d6283
changed syntax of map: and rel: arguments to BNF-based datatypes
blanchet
parents:
57175
diff
changeset
|
19 |
rel: stream_all2 |
51409 | 20 |
|
60011 | 21 |
context |
22 |
begin |
|
23 |
||
67408 | 24 |
\<comment> \<open>for code generation only\<close> |
60011 | 25 |
qualified definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
26 |
[code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s" |
51462 | 27 |
|
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
28 |
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)" |
51462 | 29 |
unfolding smember_def by auto |
30 |
||
60011 | 31 |
end |
51462 | 32 |
|
57983
6edc3529bb4e
reordered some (co)datatype property names for more consistency
blanchet
parents:
57206
diff
changeset
|
33 |
lemmas smap_simps[simp] = stream.map_sel |
6edc3529bb4e
reordered some (co)datatype property names for more consistency
blanchet
parents:
57206
diff
changeset
|
34 |
lemmas shd_sset = stream.set_sel(1) |
6edc3529bb4e
reordered some (co)datatype property names for more consistency
blanchet
parents:
57206
diff
changeset
|
35 |
lemmas stl_sset = stream.set_sel(2) |
50518 | 36 |
|
57986 | 37 |
theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]: |
38 |
assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s" |
|
50518 | 39 |
shows "P y s" |
57986 | 40 |
using assms by induct (metis stream.sel(1), auto) |
50518 | 41 |
|
59000 | 42 |
lemma smap_ctr: "smap f s = x ## s' \<longleftrightarrow> f (shd s) = x \<and> smap f (stl s) = s'" |
43 |
by (cases s) simp |
|
50518 | 44 |
|
60500 | 45 |
subsection \<open>prepend list to stream\<close> |
50518 | 46 |
|
69597 | 47 |
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr \<open>@-\<close> 65) where |
50518 | 48 |
"shift [] s = s" |
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
49 |
| "shift (x # xs) s = x ## shift xs s" |
50518 | 50 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
51 |
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s" |
51353 | 52 |
by (induct xs) auto |
53 |
||
50518 | 54 |
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" |
51141 | 55 |
by (induct xs) auto |
50518 | 56 |
|
57 |
lemma shift_simps[simp]: |
|
58 |
"shd (xs @- s) = (if xs = [] then shd s else hd xs)" |
|
59 |
"stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" |
|
51141 | 60 |
by (induct xs) auto |
50518 | 61 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
62 |
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s" |
51141 | 63 |
by (induct xs) auto |
50518 | 64 |
|
51352 | 65 |
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2" |
66 |
by (induct xs) auto |
|
67 |
||
50518 | 68 |
|
60500 | 69 |
subsection \<open>set of streams with elements in some fixed set\<close> |
50518 | 70 |
|
61681
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
71 |
context |
62093 | 72 |
notes [[inductive_internals]] |
61681
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
73 |
begin |
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
74 |
|
50518 | 75 |
coinductive_set |
54469 | 76 |
streams :: "'a set \<Rightarrow> 'a stream set" |
50518 | 77 |
for A :: "'a set" |
78 |
where |
|
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
79 |
Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A" |
50518 | 80 |
|
61681
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
81 |
end |
ca53150406c9
option "inductive_defs" controls exposure of def and mono facts;
wenzelm
parents:
61424
diff
changeset
|
82 |
|
59000 | 83 |
lemma in_streams: "stl s \<in> streams S \<Longrightarrow> shd s \<in> S \<Longrightarrow> s \<in> streams S" |
84 |
by (cases s) auto |
|
85 |
||
86 |
lemma streamsE: "s \<in> streams A \<Longrightarrow> (shd s \<in> A \<Longrightarrow> stl s \<in> streams A \<Longrightarrow> P) \<Longrightarrow> P" |
|
87 |
by (erule streams.cases) simp_all |
|
88 |
||
67399 | 89 |
lemma Stream_image: "x ## y \<in> ((##) x') ` Y \<longleftrightarrow> x = x' \<and> y \<in> Y" |
59000 | 90 |
by auto |
91 |
||
50518 | 92 |
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A" |
51141 | 93 |
by (induct w) auto |
50518 | 94 |
|
54469 | 95 |
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A" |
96 |
by (auto elim: streams.cases) |
|
97 |
||
98 |
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A" |
|
99 |
by (cases s) (auto simp: streams_Stream) |
|
100 |
||
101 |
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A" |
|
102 |
by (cases s) (auto simp: streams_Stream) |
|
103 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
104 |
lemma sset_streams: |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
105 |
assumes "sset s \<subseteq> A" |
50518 | 106 |
shows "s \<in> streams A" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
107 |
using assms proof (coinduction arbitrary: s) |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
108 |
case streams then show ?case by (cases s) simp |
50518 | 109 |
qed |
110 |
||
54469 | 111 |
lemma streams_sset: |
112 |
assumes "s \<in> streams A" |
|
113 |
shows "sset s \<subseteq> A" |
|
114 |
proof |
|
60500 | 115 |
fix x assume "x \<in> sset s" from this \<open>s \<in> streams A\<close> show "x \<in> A" |
54469 | 116 |
by (induct s) (auto intro: streams_shd streams_stl) |
117 |
qed |
|
118 |
||
119 |
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A" |
|
120 |
by (metis sset_streams streams_sset) |
|
121 |
||
122 |
lemma streams_mono: "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B" |
|
123 |
unfolding streams_iff_sset by auto |
|
124 |
||
59000 | 125 |
lemma streams_mono2: "S \<subseteq> T \<Longrightarrow> streams S \<subseteq> streams T" |
126 |
by (auto intro: streams_mono) |
|
127 |
||
54469 | 128 |
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B" |
129 |
unfolding streams_iff_sset stream.set_map by auto |
|
130 |
||
131 |
lemma streams_empty: "streams {} = {}" |
|
132 |
by (auto elim: streams.cases) |
|
133 |
||
134 |
lemma streams_UNIV[simp]: "streams UNIV = UNIV" |
|
135 |
by (auto simp: streams_iff_sset) |
|
50518 | 136 |
|
60500 | 137 |
subsection \<open>nth, take, drop for streams\<close> |
51141 | 138 |
|
69597 | 139 |
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl \<open>!!\<close> 100) where |
51141 | 140 |
"s !! 0 = shd s" |
141 |
| "s !! Suc n = stl s !! n" |
|
142 |
||
59000 | 143 |
lemma snth_Stream: "(x ## s) !! Suc i = s !! i" |
144 |
by simp |
|
145 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
146 |
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)" |
51141 | 147 |
by (induct n arbitrary: s) auto |
148 |
||
149 |
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p" |
|
150 |
by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl) |
|
151 |
||
152 |
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)" |
|
153 |
by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred) |
|
154 |
||
57175 | 155 |
lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))" |
156 |
by auto |
|
157 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
158 |
lemma snth_sset[simp]: "s !! n \<in> sset s" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
159 |
by (induct n arbitrary: s) (auto intro: shd_sset stl_sset) |
51141 | 160 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
161 |
lemma sset_range: "sset s = range (snth s)" |
51141 | 162 |
proof (intro equalityI subsetI) |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
163 |
fix x assume "x \<in> sset s" |
51141 | 164 |
thus "x \<in> range (snth s)" |
165 |
proof (induct s) |
|
166 |
case (stl s x) |
|
167 |
then obtain n where "x = stl s !! n" by auto |
|
168 |
thus ?case by (auto intro: range_eqI[of _ _ "Suc n"]) |
|
169 |
qed (auto intro: range_eqI[of _ _ 0]) |
|
170 |
qed auto |
|
50518 | 171 |
|
59000 | 172 |
lemma streams_iff_snth: "s \<in> streams X \<longleftrightarrow> (\<forall>n. s !! n \<in> X)" |
173 |
by (force simp: streams_iff_sset sset_range) |
|
174 |
||
175 |
lemma snth_in: "s \<in> streams X \<Longrightarrow> s !! n \<in> X" |
|
176 |
by (simp add: streams_iff_snth) |
|
177 |
||
50518 | 178 |
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where |
179 |
"stake 0 s = []" |
|
180 |
| "stake (Suc n) s = shd s # stake n (stl s)" |
|
181 |
||
51141 | 182 |
lemma length_stake[simp]: "length (stake n s) = n" |
183 |
by (induct n arbitrary: s) auto |
|
184 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
185 |
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)" |
51141 | 186 |
by (induct n arbitrary: s) auto |
187 |
||
57175 | 188 |
lemma take_stake: "take n (stake m s) = stake (min n m) s" |
189 |
proof (induct m arbitrary: s n) |
|
190 |
case (Suc m) thus ?case by (cases n) auto |
|
191 |
qed simp |
|
192 |
||
50518 | 193 |
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where |
194 |
"sdrop 0 s = s" |
|
195 |
| "sdrop (Suc n) s = sdrop n (stl s)" |
|
196 |
||
51141 | 197 |
lemma sdrop_simps[simp]: |
198 |
"shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s" |
|
199 |
by (induct n arbitrary: s) auto |
|
200 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
201 |
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)" |
51141 | 202 |
by (induct n arbitrary: s) auto |
50518 | 203 |
|
51352 | 204 |
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)" |
205 |
by (induct n) auto |
|
206 |
||
57175 | 207 |
lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)" |
208 |
proof (induct m arbitrary: s n) |
|
209 |
case (Suc m) thus ?case by (cases n) auto |
|
210 |
qed simp |
|
211 |
||
50518 | 212 |
lemma stake_sdrop: "stake n s @- sdrop n s = s" |
51141 | 213 |
by (induct n arbitrary: s) auto |
214 |
||
215 |
lemma id_stake_snth_sdrop: |
|
216 |
"s = stake i s @- s !! i ## sdrop (Suc i) s" |
|
217 |
by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse) |
|
50518 | 218 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
219 |
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R") |
51141 | 220 |
proof |
221 |
assume ?R |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
222 |
then have "\<And>n. smap f (sdrop n s) = sdrop n s'" |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
223 |
by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2)) |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
224 |
then show ?L using sdrop.simps(1) by metis |
51141 | 225 |
qed auto |
226 |
||
227 |
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0" |
|
228 |
by (induct n) auto |
|
50518 | 229 |
|
57175 | 230 |
lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s" |
231 |
by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv) |
|
50518 | 232 |
|
57175 | 233 |
lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s" |
234 |
by (induct i arbitrary: w s) (auto simp: neq_Nil_conv) |
|
50518 | 235 |
|
236 |
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" |
|
51141 | 237 |
by (induct m arbitrary: s) auto |
50518 | 238 |
|
239 |
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" |
|
51141 | 240 |
by (induct m arbitrary: s) auto |
241 |
||
57175 | 242 |
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)" |
243 |
by (induct n arbitrary: m s) auto |
|
244 |
||
64320
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
245 |
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where |
51430 | 246 |
"sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)" |
247 |
||
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
248 |
lemma sdrop_while_SCons[code]: |
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
249 |
"sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)" |
51430 | 250 |
by (subst sdrop_while.simps) simp |
251 |
||
252 |
lemma sdrop_while_sdrop_LEAST: |
|
253 |
assumes "\<exists>n. P (s !! n)" |
|
67091 | 254 |
shows "sdrop_while (Not \<circ> P) s = sdrop (LEAST n. P (s !! n)) s" |
51430 | 255 |
proof - |
256 |
from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n" |
|
257 |
and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le) |
|
258 |
thus ?thesis unfolding * |
|
259 |
proof (induct m arbitrary: s) |
|
260 |
case (Suc m) |
|
261 |
hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)" |
|
262 |
by (metis (full_types) not_less_eq_eq snth.simps(2)) |
|
263 |
moreover from Suc(3) have "\<not> (P (s !! 0))" by blast |
|
264 |
ultimately show ?case by (subst sdrop_while.simps) simp |
|
265 |
qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1)) |
|
266 |
qed |
|
267 |
||
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
268 |
primcorec sfilter where |
67091 | 269 |
"shd (sfilter P s) = shd (sdrop_while (Not \<circ> P) s)" |
270 |
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not \<circ> P) s))" |
|
52905 | 271 |
|
272 |
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)" |
|
273 |
proof (cases "P x") |
|
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
274 |
case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons) |
52905 | 275 |
next |
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
276 |
case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons) |
52905 | 277 |
qed |
278 |
||
51141 | 279 |
|
60500 | 280 |
subsection \<open>unary predicates lifted to streams\<close> |
51141 | 281 |
|
282 |
definition "stream_all P s = (\<forall>p. P (s !! p))" |
|
283 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
284 |
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
285 |
unfolding stream_all_def sset_range by auto |
51141 | 286 |
|
287 |
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)" |
|
288 |
unfolding stream_all_iff list_all_iff by auto |
|
289 |
||
54469 | 290 |
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X" |
291 |
by simp |
|
292 |
||
51141 | 293 |
|
60500 | 294 |
subsection \<open>recurring stream out of a list\<close> |
51141 | 295 |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
296 |
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
297 |
"shd (cycle xs) = hd xs" |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
298 |
| "stl (cycle xs) = cycle (tl xs @ [hd xs])" |
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
299 |
|
51141 | 300 |
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
301 |
proof (coinduction arbitrary: u) |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
302 |
case Eq_stream then show ?case using stream.collapse[of "cycle u"] |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
303 |
by (auto intro!: exI[of _ "tl u @ [hd u]"]) |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
304 |
qed |
51141 | 305 |
|
51409 | 306 |
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
307 |
by (subst cycle.ctr) simp |
50518 | 308 |
|
309 |
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s" |
|
51141 | 310 |
by (auto dest: arg_cong[of _ _ stl]) |
50518 | 311 |
|
312 |
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" |
|
313 |
proof (induct n arbitrary: u) |
|
314 |
case (Suc n) thus ?case by (cases u) auto |
|
315 |
qed auto |
|
316 |
||
317 |
lemma stake_cycle_le[simp]: |
|
318 |
assumes "u \<noteq> []" "n < length u" |
|
319 |
shows "stake n (cycle u) = take n u" |
|
320 |
using min_absorb2[OF less_imp_le_nat[OF assms(2)]] |
|
51141 | 321 |
by (subst cycle_decomp[OF assms(1)], subst stake_append) auto |
50518 | 322 |
|
323 |
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u" |
|
57175 | 324 |
by (subst cycle_decomp) (auto simp: stake_shift) |
50518 | 325 |
|
326 |
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u" |
|
57175 | 327 |
by (subst cycle_decomp) (auto simp: sdrop_shift) |
50518 | 328 |
|
329 |
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> |
|
330 |
stake n (cycle u) = concat (replicate (n div length u) u)" |
|
68260 | 331 |
by (induct "n div length u" arbitrary: n u) |
332 |
(auto simp: stake_add [symmetric] mod_eq_0_iff_dvd elim!: dvdE) |
|
50518 | 333 |
|
334 |
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> |
|
335 |
sdrop n (cycle u) = cycle u" |
|
68260 | 336 |
by (induct "n div length u" arbitrary: n u) |
337 |
(auto simp: sdrop_add [symmetric] mod_eq_0_iff_dvd elim!: dvdE) |
|
50518 | 338 |
|
339 |
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow> |
|
340 |
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" |
|
64242
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
haftmann
parents:
63649
diff
changeset
|
341 |
by (subst div_mult_mod_eq[of n "length u", symmetric], unfold stake_add[symmetric]) auto |
50518 | 342 |
|
343 |
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)" |
|
51141 | 344 |
by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) |
345 |
||
63192 | 346 |
lemma sset_cycle[simp]: |
64320
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
347 |
assumes "xs \<noteq> []" |
63192 | 348 |
shows "sset (cycle xs) = set xs" |
349 |
proof (intro set_eqI iffI) |
|
350 |
fix x |
|
351 |
assume "x \<in> sset (cycle xs)" |
|
352 |
then show "x \<in> set xs" using assms |
|
353 |
by (induction "cycle xs" arbitrary: xs rule: sset_induct) (fastforce simp: neq_Nil_conv)+ |
|
354 |
qed (metis assms UnI1 cycle_decomp sset_shift) |
|
355 |
||
51141 | 356 |
|
60500 | 357 |
subsection \<open>iterated application of a function\<close> |
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
358 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
359 |
primcorec siterate where |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
360 |
"shd (siterate f x) = x" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
361 |
| "stl (siterate f x) = siterate f (f x)" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
362 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
363 |
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
364 |
by (induct n arbitrary: s) auto |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
365 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
366 |
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
367 |
by (induct n arbitrary: x) (auto simp: funpow_swap1) |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
368 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
369 |
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
370 |
by (induct n arbitrary: x) (auto simp: funpow_swap1) |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
371 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
372 |
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
373 |
by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc) |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
374 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
375 |
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
376 |
by (auto simp: sset_range) |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
377 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
378 |
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
379 |
by (coinduction arbitrary: x) auto |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
380 |
|
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
381 |
|
60500 | 382 |
subsection \<open>stream repeating a single element\<close> |
51141 | 383 |
|
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
384 |
abbreviation "sconst \<equiv> siterate id" |
51141 | 385 |
|
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
386 |
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
387 |
by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial) |
51141 | 388 |
|
57175 | 389 |
lemma sset_sconst[simp]: "sset (sconst x) = {x}" |
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
390 |
by (simp add: sset_siterate) |
51141 | 391 |
|
57175 | 392 |
lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}" |
393 |
proof |
|
394 |
assume "sset s = {x}" |
|
395 |
then show "s = sconst x" |
|
396 |
proof (coinduction arbitrary: s) |
|
397 |
case Eq_stream |
|
63649 | 398 |
then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (cases s; auto)+ |
57175 | 399 |
then have "sset (stl s) = {x}" by (cases "stl s") auto |
60500 | 400 |
with \<open>shd s = x\<close> show ?case by auto |
57175 | 401 |
qed |
402 |
qed simp |
|
403 |
||
59016 | 404 |
lemma sconst_cycle: "sconst x = cycle [x]" |
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
405 |
by coinduction auto |
51141 | 406 |
|
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
407 |
lemma smap_sconst: "smap f (sconst x) = sconst (f x)" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
408 |
by coinduction auto |
51141 | 409 |
|
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
410 |
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A" |
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
411 |
by (simp add: streams_iff_sset) |
51141 | 412 |
|
64320
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
413 |
lemma streams_empty_iff: "streams S = {} \<longleftrightarrow> S = {}" |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
414 |
proof safe |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
415 |
fix x assume "x \<in> S" "streams S = {}" |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
416 |
then have "sconst x \<in> streams S" |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
417 |
by (intro sconst_streams) |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
418 |
then show "x \<in> {}" |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
419 |
unfolding \<open>streams S = {}\<close> by simp |
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
420 |
qed (auto simp: streams_empty) |
51141 | 421 |
|
60500 | 422 |
subsection \<open>stream of natural numbers\<close> |
51141 | 423 |
|
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
424 |
abbreviation "fromN \<equiv> siterate Suc" |
54469 | 425 |
|
51141 | 426 |
abbreviation "nats \<equiv> fromN 0" |
427 |
||
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
428 |
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}" |
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
429 |
by (auto simp add: sset_siterate le_iff_add) |
54497
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
hoelzl
parents:
54469
diff
changeset
|
430 |
|
57175 | 431 |
lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)" |
432 |
by (coinduction arbitrary: s n) |
|
68406 | 433 |
(force simp: neq_Nil_conv Let_def Suc_diff_Suc simp flip: snth.simps(2) |
434 |
intro: stream.map_cong split: if_splits) |
|
57175 | 435 |
|
436 |
lemma stream_smap_nats: "s = smap (snth s) nats" |
|
437 |
using stream_smap_fromN[where n = 0] by simp |
|
438 |
||
51141 | 439 |
|
60500 | 440 |
subsection \<open>flatten a stream of lists\<close> |
51462 | 441 |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
442 |
primcorec flat where |
51462 | 443 |
"shd (flat ws) = hd (shd ws)" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
444 |
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)" |
51462 | 445 |
|
446 |
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)" |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
447 |
by (subst flat.ctr) simp |
51462 | 448 |
|
449 |
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws" |
|
450 |
by (induct xs) auto |
|
451 |
||
452 |
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)" |
|
453 |
by (cases ws) auto |
|
454 |
||
64320
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
455 |
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then |
51462 | 456 |
shd s ! n else flat (stl s) !! (n - length (shd s)))" |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
457 |
by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less) |
51462 | 458 |
|
64320
ba194424b895
HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents:
64242
diff
changeset
|
459 |
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
460 |
sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R") |
51462 | 461 |
proof safe |
67613 | 462 |
fix x assume ?P "x \<in> ?L" |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
463 |
then obtain m where "x = flat s !! m" by (metis image_iff sset_range) |
60500 | 464 |
with \<open>?P\<close> obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)" |
51462 | 465 |
proof (atomize_elim, induct m arbitrary: s rule: less_induct) |
466 |
case (less y) |
|
467 |
thus ?case |
|
468 |
proof (cases "y < length (shd s)") |
|
469 |
case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1)) |
|
470 |
next |
|
471 |
case False |
|
472 |
hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth) |
|
473 |
moreover |
|
53374
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53290
diff
changeset
|
474 |
{ from less(2) have *: "length (shd s) > 0" by (cases s) simp_all |
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53290
diff
changeset
|
475 |
with False have "y > 0" by (cases y) simp_all |
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents:
53290
diff
changeset
|
476 |
with * have "y - length (shd s) < y" by simp |
51462 | 477 |
} |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
478 |
moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto |
51462 | 479 |
ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto |
480 |
thus ?thesis by (metis snth.simps(2)) |
|
481 |
qed |
|
482 |
qed |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
483 |
thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem) |
51462 | 484 |
next |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
485 |
fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L" |
57986 | 486 |
by (induct rule: sset_induct) |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
487 |
(metis UnI1 flat_unfold shift.simps(1) sset_shift, |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
488 |
metis UnI2 flat_unfold shd_sset stl_sset sset_shift) |
51462 | 489 |
qed |
490 |
||
491 |
||
60500 | 492 |
subsection \<open>merge a stream of streams\<close> |
51462 | 493 |
|
494 |
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
495 |
"smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)" |
51462 | 496 |
|
497 |
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m" |
|
498 |
by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2)) |
|
499 |
||
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
500 |
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)" |
51462 | 501 |
proof (cases "n \<le> m") |
502 |
case False thus ?thesis unfolding smerge_def |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
503 |
by (subst sset_flat) |
53290 | 504 |
(auto simp: stream.set_map in_set_conv_nth simp del: stake.simps |
51462 | 505 |
intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp]) |
506 |
next |
|
507 |
case True thus ?thesis unfolding smerge_def |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
508 |
by (subst sset_flat) |
53290 | 509 |
(auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps |
51462 | 510 |
intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp]) |
511 |
qed |
|
512 |
||
69313 | 513 |
lemma sset_smerge: "sset (smerge ss) = \<Union>(sset ` (sset ss))" |
51462 | 514 |
proof safe |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
515 |
fix x assume "x \<in> sset (smerge ss)" |
69313 | 516 |
thus "x \<in> \<Union>(sset ` (sset ss))" |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
517 |
unfolding smerge_def by (subst (asm) sset_flat) |
53290 | 518 |
(auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+) |
51462 | 519 |
next |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
520 |
fix s x assume "s \<in> sset ss" "x \<in> sset s" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
521 |
thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range) |
51462 | 522 |
qed |
523 |
||
524 |
||
60500 | 525 |
subsection \<open>product of two streams\<close> |
51462 | 526 |
|
527 |
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
528 |
"sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)" |
51462 | 529 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
530 |
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2" |
53290 | 531 |
unfolding sproduct_def sset_smerge by (auto simp: stream.set_map) |
51462 | 532 |
|
533 |
||
60500 | 534 |
subsection \<open>interleave two streams\<close> |
51462 | 535 |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
536 |
primcorec sinterleave where |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
537 |
"shd (sinterleave s1 s2) = shd s1" |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
538 |
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)" |
51462 | 539 |
|
540 |
lemma sinterleave_code[code]: |
|
541 |
"sinterleave (x ## s1) s2 = x ## sinterleave s2 s1" |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
542 |
by (subst sinterleave.ctr) simp |
51462 | 543 |
|
544 |
lemma sinterleave_snth[simp]: |
|
545 |
"even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)" |
|
58710
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58607
diff
changeset
|
546 |
"odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)" |
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58607
diff
changeset
|
547 |
by (induct n arbitrary: s1 s2) simp_all |
51462 | 548 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
549 |
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2" |
51462 | 550 |
proof (intro equalityI subsetI) |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
551 |
fix x assume "x \<in> sset (sinterleave s1 s2)" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
552 |
then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
553 |
thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto |
51462 | 554 |
next |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
555 |
fix x assume "x \<in> sset s1 \<union> sset s2" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
556 |
thus "x \<in> sset (sinterleave s1 s2)" |
51462 | 557 |
proof |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
558 |
assume "x \<in> sset s1" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
559 |
then obtain n where "x = s1 !! n" unfolding sset_range by blast |
51462 | 560 |
hence "sinterleave s1 s2 !! (2 * n) = x" by simp |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
561 |
thus ?thesis unfolding sset_range by blast |
51462 | 562 |
next |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
563 |
assume "x \<in> sset s2" |
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
564 |
then obtain n where "x = s2 !! n" unfolding sset_range by blast |
51462 | 565 |
hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
566 |
thus ?thesis unfolding sset_range by blast |
51462 | 567 |
qed |
568 |
qed |
|
569 |
||
570 |
||
60500 | 571 |
subsection \<open>zip\<close> |
51141 | 572 |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
573 |
primcorec szip where |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
574 |
"shd (szip s1 s2) = (shd s1, shd s2)" |
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
575 |
| "stl (szip s1 s2) = szip (stl s1) (stl s2)" |
51141 | 576 |
|
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
577 |
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
578 |
by (subst szip.ctr) simp |
51409 | 579 |
|
51141 | 580 |
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)" |
581 |
by (induct n arbitrary: s1 s2) auto |
|
582 |
||
57175 | 583 |
lemma stake_szip[simp]: |
584 |
"stake n (szip s1 s2) = zip (stake n s1) (stake n s2)" |
|
585 |
by (induct n arbitrary: s1 s2) auto |
|
586 |
||
587 |
lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)" |
|
588 |
by (induct n arbitrary: s1 s2) auto |
|
589 |
||
590 |
lemma smap_szip_fst: |
|
591 |
"smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1" |
|
592 |
by (coinduction arbitrary: s1 s2) auto |
|
593 |
||
594 |
lemma smap_szip_snd: |
|
595 |
"smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2" |
|
596 |
by (coinduction arbitrary: s1 s2) auto |
|
597 |
||
51141 | 598 |
|
60500 | 599 |
subsection \<open>zip via function\<close> |
51141 | 600 |
|
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
601 |
primcorec smap2 where |
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
602 |
"shd (smap2 f s1 s2) = f (shd s1) (shd s2)" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
603 |
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)" |
51141 | 604 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
605 |
lemma smap2_unfold[code]: |
54720
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
traytel
parents:
54498
diff
changeset
|
606 |
"smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
607 |
by (subst smap2.ctr) simp |
51409 | 608 |
|
51772
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
traytel
parents:
51766
diff
changeset
|
609 |
lemma smap2_szip: |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60500
diff
changeset
|
610 |
"smap2 f s1 s2 = smap (case_prod f) (szip s1 s2)" |
54027
e5853a648b59
use new coinduction method and primcorec in examples
traytel
parents:
53808
diff
changeset
|
611 |
by (coinduction arbitrary: s1 s2) auto |
50518 | 612 |
|
57175 | 613 |
lemma smap_smap2[simp]: |
614 |
"smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2" |
|
615 |
unfolding smap2_szip stream.map_comp o_def split_def .. |
|
616 |
||
617 |
lemma smap2_alt: |
|
618 |
"(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)" |
|
619 |
unfolding smap2_szip smap_alt by auto |
|
620 |
||
621 |
lemma snth_smap2[simp]: |
|
622 |
"smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)" |
|
623 |
by (induct n arbitrary: s1 s2) auto |
|
624 |
||
625 |
lemma stake_smap2[simp]: |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
60500
diff
changeset
|
626 |
"stake n (smap2 f s1 s2) = map (case_prod f) (zip (stake n s1) (stake n s2))" |
57175 | 627 |
by (induct n arbitrary: s1 s2) auto |
628 |
||
629 |
lemma sdrop_smap2[simp]: |
|
630 |
"sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)" |
|
631 |
by (induct n arbitrary: s1 s2) auto |
|
632 |
||
50518 | 633 |
end |