src/HOL/Analysis/Uniform_Limit.thy
author paulson <lp15@cam.ac.uk>
Sun, 07 May 2023 14:52:53 +0100
changeset 77943 ffdad62bc235
parent 77434 da41823d09a7
child 78698 1b9388e6eb75
permissions -rw-r--r--
Importation of additional lemmas from metric.ml
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63594
diff changeset
     1
(*  Title:      HOL/Analysis/Uniform_Limit.thy
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     2
    Author:     Christoph Traut, TU München
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     3
    Author:     Fabian Immler, TU München
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     4
*)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     5
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     6
section \<open>Uniform Limit and Uniform Convergence\<close>
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     7
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
     8
theory Uniform_Limit
77434
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
     9
imports Connected Summation_Tests Infinite_Sum
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    10
begin
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    11
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    12
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    13
subsection \<open>Definition\<close>
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    14
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
    15
definition\<^marker>\<open>tag important\<close> uniformly_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::metric_space) \<Rightarrow> ('a \<Rightarrow> 'b) filter"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68838
diff changeset
    16
  where "uniformly_on S l = (INF e\<in>{0 <..}. principal {f. \<forall>x\<in>S. dist (f x) (l x) < e})"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    17
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
    18
abbreviation\<^marker>\<open>tag important\<close>
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    19
  "uniform_limit S f l \<equiv> filterlim f (uniformly_on S l)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    20
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
    21
definition uniformly_convergent_on where
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
    22
  "uniformly_convergent_on X f \<longleftrightarrow> (\<exists>l. uniform_limit X f l sequentially)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
    23
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
    24
definition uniformly_Cauchy_on where
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
    25
  "uniformly_Cauchy_on X f \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>x\<in>X. \<forall>(m::nat)\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e)"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
    26
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    27
proposition uniform_limit_iff:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    28
  "uniform_limit S f l F \<longleftrightarrow> (\<forall>e>0. \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    29
  unfolding filterlim_iff uniformly_on_def
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    30
  by (subst eventually_INF_base)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    31
    (fastforce
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    32
      simp: eventually_principal uniformly_on_def
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    33
      intro: bexI[where x="min a b" for a b]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
    34
      elim: eventually_mono)+
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    35
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    36
lemma uniform_limitD:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    37
  "uniform_limit S f l F \<Longrightarrow> e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    38
  by (simp add: uniform_limit_iff)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    39
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    40
lemma uniform_limitI:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    41
  "(\<And>e. e > 0 \<Longrightarrow> \<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < e) \<Longrightarrow> uniform_limit S f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    42
  by (simp add: uniform_limit_iff)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    43
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    44
lemma uniform_limit_sequentially_iff:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    45
  "uniform_limit S f l sequentially \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x \<in> S. dist (f n x) (l x) < e)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    46
  unfolding uniform_limit_iff eventually_sequentially ..
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    47
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    48
lemma uniform_limit_at_iff:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    49
  "uniform_limit S f l (at x) \<longleftrightarrow>
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    50
    (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) < e))"
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
    51
  unfolding uniform_limit_iff eventually_at by simp
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    52
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    53
lemma uniform_limit_at_le_iff:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    54
  "uniform_limit S f l (at x) \<longleftrightarrow>
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    55
    (\<forall>e>0. \<exists>d>0. \<forall>z. 0 < dist z x \<and> dist z x < d \<longrightarrow> (\<forall>x\<in>S. dist (f z x) (l x) \<le> e))"
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
    56
  unfolding uniform_limit_iff eventually_at
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    57
  by (fastforce dest: spec[where x = "e / 2" for e])
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    58
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    59
lemma metric_uniform_limit_imp_uniform_limit:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    60
  assumes f: "uniform_limit S f a F"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    61
  assumes le: "eventually (\<lambda>x. \<forall>y\<in>S. dist (g x y) (b y) \<le> dist (f x y) (a y)) F"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    62
  shows "uniform_limit S g b F"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    63
proof (rule uniform_limitI)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    64
  fix e :: real assume "0 < e"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    65
  from uniform_limitD[OF f this] le
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    66
  show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (g x y) (b y) < e"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    67
    by eventually_elim force
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    68
qed
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
    69
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    70
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    71
subsection \<open>Exchange limits\<close>
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    72
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
    73
proposition swap_uniform_limit:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    74
  assumes f: "\<forall>\<^sub>F n in F. (f n \<longlongrightarrow> g n) (at x within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    75
  assumes g: "(g \<longlongrightarrow> l) F"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    76
  assumes uc: "uniform_limit S f h F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    77
  assumes "\<not>trivial_limit F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
    78
  shows "(h \<longlongrightarrow> l) (at x within S)"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    79
proof (rule tendstoI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    80
  fix e :: real
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62949
diff changeset
    81
  define e' where "e' = e/3"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    82
  assume "0 < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    83
  then have "0 < e'" by (simp add: e'_def)
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
    84
  from uniform_limitD[OF uc \<open>0 < e'\<close>]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    85
  have "\<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (h x) (f n x) < e'"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    86
    by (simp add: dist_commute)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    87
  moreover
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    88
  from f
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    89
  have "\<forall>\<^sub>F n in F. \<forall>\<^sub>F x in at x within S. dist (g n) (f n x) < e'"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
    90
    by eventually_elim (auto dest!: tendstoD[OF _ \<open>0 < e'\<close>] simp: dist_commute)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    91
  moreover
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
    92
  from tendstoD[OF g \<open>0 < e'\<close>] have "\<forall>\<^sub>F x in F. dist l (g x) < e'"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    93
    by (simp add: dist_commute)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    94
  ultimately
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    95
  have "\<forall>\<^sub>F _ in F. \<forall>\<^sub>F x in at x within S. dist (h x) l < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    96
  proof eventually_elim
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    97
    case (elim n)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    98
    note fh = elim(1)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
    99
    note gl = elim(3)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   100
    have "\<forall>\<^sub>F x in at x within S. x \<in> S"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   101
      by (auto simp: eventually_at_filter)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   102
    with elim(2)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   103
    show ?case
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   104
    proof eventually_elim
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   105
      case (elim x)
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   106
      from fh[rule_format, OF \<open>x \<in> S\<close>] elim(1)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   107
      have "dist (h x) (g n) < e' + e'"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   108
        by (rule dist_triangle_lt[OF add_strict_mono])
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   109
      from dist_triangle_lt[OF add_strict_mono, OF this gl]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   110
      show ?case by (simp add: e'_def)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   111
    qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   112
  qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   113
  thus "\<forall>\<^sub>F x in at x within S. dist (h x) l < e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   114
    using eventually_happens by (metis \<open>\<not>trivial_limit F\<close>)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   115
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   116
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   117
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   118
subsection \<open>Uniform limit theorem\<close>
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   119
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   120
lemma tendsto_uniform_limitI:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   121
  assumes "uniform_limit S f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   122
  assumes "x \<in> S"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   123
  shows "((\<lambda>y. f y x) \<longlongrightarrow> l x) F"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   124
  using assms
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   125
  by (auto intro!: tendstoI simp: eventually_mono dest!: uniform_limitD)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   126
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   127
theorem uniform_limit_theorem:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   128
  assumes c: "\<forall>\<^sub>F n in F. continuous_on A (f n)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   129
  assumes ul: "uniform_limit A f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   130
  assumes "\<not> trivial_limit F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   131
  shows "continuous_on A l"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   132
  unfolding continuous_on_def
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   133
proof safe
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   134
  fix x assume "x \<in> A"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   135
  then have "\<forall>\<^sub>F n in F. (f n \<longlongrightarrow> f n x) (at x within A)" "((\<lambda>n. f n x) \<longlongrightarrow> l x) F"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   136
    using c ul
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   137
    by (auto simp: continuous_on_def eventually_mono tendsto_uniform_limitI)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   138
  then show "(l \<longlongrightarrow> l x) (at x within A)"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   139
    by (rule swap_uniform_limit) fact+
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   140
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   141
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   142
lemma uniformly_Cauchy_onI:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   143
  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   144
  shows   "uniformly_Cauchy_on X f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   145
  using assms unfolding uniformly_Cauchy_on_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   146
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   147
lemma uniformly_Cauchy_onI':
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   148
  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n>m. dist (f m x) (f n x) < e"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   149
  shows   "uniformly_Cauchy_on X f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   150
proof (rule uniformly_Cauchy_onI)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   151
  fix e :: real assume e: "e > 0"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   152
  from assms[OF this] obtain M
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   153
    where M: "\<And>x m n. x \<in> X \<Longrightarrow> m \<ge> M \<Longrightarrow> n > m \<Longrightarrow> dist (f m x) (f n x) < e" by fast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   154
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   155
    fix x m n assume x: "x \<in> X" and m: "m \<ge> M" and n: "n \<ge> M"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   156
    with M[OF this(1,2), of n] M[OF this(1,3), of m] e have "dist (f m x) (f n x) < e"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   157
      by (cases m n rule: linorder_cases) (simp_all add: dist_commute)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   158
  }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   159
  thus "\<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e" by fast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   160
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   161
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   162
lemma uniformly_Cauchy_imp_Cauchy:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   163
  "uniformly_Cauchy_on X f \<Longrightarrow> x \<in> X \<Longrightarrow> Cauchy (\<lambda>n. f n x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   164
  unfolding Cauchy_def uniformly_Cauchy_on_def by fast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   165
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   166
lemma uniform_limit_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   167
  fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ('c :: metric_space)" and h i :: "'b \<Rightarrow> 'c"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   168
  assumes "eventually (\<lambda>y. \<forall>x\<in>X. f y x = g y x) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   169
  assumes "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   170
  shows   "uniform_limit X f h F \<longleftrightarrow> uniform_limit X g i F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   171
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   172
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   173
    fix f g :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" and h i :: "'b \<Rightarrow> 'c"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   174
    assume C: "uniform_limit X f h F" and A: "eventually (\<lambda>y. \<forall>x\<in>X. f y x = g y x) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   175
       and B: "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   176
    {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   177
      fix e ::real assume "e > 0"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   178
      with C have "eventually (\<lambda>y. \<forall>x\<in>X. dist (f y x) (h x) < e) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   179
        unfolding uniform_limit_iff by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   180
      with A have "eventually (\<lambda>y. \<forall>x\<in>X. dist (g y x) (i x) < e) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   181
        by eventually_elim (insert B, simp_all)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   182
    }
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   183
    hence "uniform_limit X g i F" unfolding uniform_limit_iff by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   184
  } note A = this
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   185
  show ?thesis by (rule iffI) (erule A; insert assms; simp add: eq_commute)+
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   186
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   187
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   188
lemma uniform_limit_cong':
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   189
  fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ('c :: metric_space)" and h i :: "'b \<Rightarrow> 'c"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   190
  assumes "\<And>y x. x \<in> X \<Longrightarrow> f y x = g y x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   191
  assumes "\<And>x. x \<in> X \<Longrightarrow> h x = i x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   192
  shows   "uniform_limit X f h F \<longleftrightarrow> uniform_limit X g i F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   193
  using assms by (intro uniform_limit_cong always_eventually) blast+
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   194
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   195
lemma uniformly_convergent_cong:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   196
  assumes "eventually (\<lambda>x. \<forall>y\<in>A. f x y = g x y) sequentially" "A = B"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   197
  shows "uniformly_convergent_on A f \<longleftrightarrow> uniformly_convergent_on B g"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   198
  unfolding uniformly_convergent_on_def assms(2) [symmetric]
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   199
  by (intro iff_exI uniform_limit_cong eventually_mono [OF assms(1)]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   200
76722
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   201
lemma uniformly_convergent_on_compose:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   202
  assumes "uniformly_convergent_on A f"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   203
  assumes "filterlim g sequentially sequentially"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   204
  shows   "uniformly_convergent_on A (\<lambda>n. f (g n))"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   205
proof -
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   206
  from assms(1) obtain f' where "uniform_limit A f f' sequentially"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   207
    by (auto simp: uniformly_convergent_on_def)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   208
  hence "uniform_limit A (\<lambda>n. f (g n)) f' sequentially"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   209
    by (rule filterlim_compose) fact
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   210
  thus ?thesis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   211
    by (auto simp: uniformly_convergent_on_def)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   212
qed    
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   213
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   214
lemma uniformly_convergent_uniform_limit_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   215
  "uniformly_convergent_on X f \<longleftrightarrow> uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   216
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   217
  assume "uniformly_convergent_on X f"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   218
  then obtain l where l: "uniform_limit X f l sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   219
    unfolding uniformly_convergent_on_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   220
  from l have "uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially \<longleftrightarrow>
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   221
                      uniform_limit X f l sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   222
    by (intro uniform_limit_cong' limI tendsto_uniform_limitI[of f X l]) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   223
  also note l
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   224
  finally show "uniform_limit X f (\<lambda>x. lim (\<lambda>n. f n x)) sequentially" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   225
qed (auto simp: uniformly_convergent_on_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   226
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   227
lemma uniformly_convergentI: "uniform_limit X f l sequentially \<Longrightarrow> uniformly_convergent_on X f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   228
  unfolding uniformly_convergent_on_def by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   229
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   230
lemma uniformly_convergent_on_empty [iff]: "uniformly_convergent_on {} f"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   231
  by (simp add: uniformly_convergent_on_def uniform_limit_sequentially_iff)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   232
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   233
lemma uniformly_convergent_on_const [simp,intro]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   234
  "uniformly_convergent_on A (\<lambda>_. c)"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   235
  by (auto simp: uniformly_convergent_on_def uniform_limit_iff intro!: exI[of _ c])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   236
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   237
text\<open>Cauchy-type criteria for uniform convergence.\<close>
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   238
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   239
lemma Cauchy_uniformly_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   240
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: complete_space"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   241
  assumes "uniformly_Cauchy_on X f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   242
  shows   "uniformly_convergent_on X f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   243
unfolding uniformly_convergent_uniform_limit_iff uniform_limit_iff
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   244
proof safe
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   245
  let ?f = "\<lambda>x. lim (\<lambda>n. f n x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   246
  fix e :: real assume e: "e > 0"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   247
  hence "e/2 > 0" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   248
  with assms obtain N where N: "\<And>x m n. x \<in> X \<Longrightarrow> m \<ge> N \<Longrightarrow> n \<ge> N \<Longrightarrow> dist (f m x) (f n x) < e/2"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   249
    unfolding uniformly_Cauchy_on_def by fast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   250
  show "eventually (\<lambda>n. \<forall>x\<in>X. dist (f n x) (?f x) < e) sequentially"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   251
    using eventually_ge_at_top[of N]
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   252
  proof eventually_elim
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   253
    fix n assume n: "n \<ge> N"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   254
    show "\<forall>x\<in>X. dist (f n x) (?f x) < e"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   255
    proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   256
      fix x assume x: "x \<in> X"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   257
      with assms have "(\<lambda>n. f n x) \<longlonglongrightarrow> ?f x"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   258
        by (auto dest!: Cauchy_convergent uniformly_Cauchy_imp_Cauchy simp: convergent_LIMSEQ_iff)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61806
diff changeset
   259
      with \<open>e/2 > 0\<close> have "eventually (\<lambda>m. m \<ge> N \<and> dist (f m x) (?f x) < e/2) sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   260
        by (intro tendstoD eventually_conj eventually_ge_at_top)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   261
      then obtain m where m: "m \<ge> N" "dist (f m x) (?f x) < e/2"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   262
        unfolding eventually_at_top_linorder by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   263
      have "dist (f n x) (?f x) \<le> dist (f n x) (f m x) + dist (f m x) (?f x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   264
          by (rule dist_triangle)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   265
      also from x n have "... < e/2 + e/2" by (intro add_strict_mono N m)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   266
      finally show "dist (f n x) (?f x) < e" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   267
    qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   268
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   269
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   270
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   271
lemma uniformly_convergent_Cauchy:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   272
  assumes "uniformly_convergent_on X f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   273
  shows "uniformly_Cauchy_on X f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   274
proof (rule uniformly_Cauchy_onI)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   275
  fix e::real assume "e > 0"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   276
  then have "0 < e / 2" by simp
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   277
  with assms[unfolded uniformly_convergent_on_def uniform_limit_sequentially_iff]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   278
  obtain l N where l:"x \<in> X \<Longrightarrow> n \<ge> N \<Longrightarrow> dist (f n x) (l x) < e / 2" for n x
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   279
    by metis
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   280
  from l l have "x \<in> X \<Longrightarrow> n \<ge> N \<Longrightarrow> m \<ge> N \<Longrightarrow> dist (f n x) (f m x) < e" for n m x
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   281
    by (rule dist_triangle_half_l)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   282
  then show "\<exists>M. \<forall>x\<in>X. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (f m x) (f n x) < e" by blast
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   283
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   284
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   285
lemma uniformly_convergent_eq_Cauchy:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   286
  "uniformly_convergent_on X f = uniformly_Cauchy_on X f" for f::"nat \<Rightarrow> 'b \<Rightarrow> 'a::complete_space"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   287
  using Cauchy_uniformly_convergent uniformly_convergent_Cauchy by blast
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   288
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   289
lemma uniformly_convergent_eq_cauchy:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   290
  fixes s::"nat \<Rightarrow> 'b \<Rightarrow> 'a::complete_space"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   291
  shows
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   292
    "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e) \<longleftrightarrow>
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   293
      (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  \<longrightarrow> dist (s m x) (s n x) < e)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   294
proof -
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   295
  have *: "(\<forall>n\<ge>N. \<forall>x. Q x \<longrightarrow> R n x) \<longleftrightarrow> (\<forall>n x. N \<le> n \<and> Q x \<longrightarrow> R n x)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   296
    "(\<forall>x. Q x \<longrightarrow> (\<forall>m\<ge>N. \<forall>n\<ge>N. S n m x)) \<longleftrightarrow> (\<forall>m n x. N \<le> m \<and> N \<le> n \<and> Q x \<longrightarrow> S n m x)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   297
    for N::nat and Q::"'b \<Rightarrow> bool" and R S
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   298
    by blast+
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   299
  show ?thesis
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   300
    using uniformly_convergent_eq_Cauchy[of "Collect P" s]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   301
    unfolding uniformly_convergent_on_def uniformly_Cauchy_on_def uniform_limit_sequentially_iff
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   302
    by (simp add: *)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   303
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   304
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   305
lemma uniformly_cauchy_imp_uniformly_convergent:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   306
  fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::complete_space"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   307
  assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   308
    and "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n \<longrightarrow> dist(s n x)(l x) < e)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   309
  shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   310
proof -
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   311
  obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   312
    using assms(1) unfolding uniformly_convergent_eq_cauchy[symmetric] by auto
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   313
  moreover
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   314
  {
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   315
    fix x
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   316
    assume "P x"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   317
    then have "l x = l' x"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   318
      using tendsto_unique[OF trivial_limit_sequentially, of "\<lambda>n. s n x" "l x" "l' x"]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   319
      using l and assms(2) unfolding lim_sequentially by blast
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   320
  }
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   321
  ultimately show ?thesis by auto
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   322
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   323
76722
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   324
lemma uniformly_convergent_on_sum_E:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   325
  fixes \<epsilon>::real and f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_space,real_normed_vector}"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   326
  assumes uconv: "uniformly_convergent_on K (\<lambda>n z. \<Sum>k<n. f k z)" and "\<epsilon>>0"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   327
  obtains N where "\<And>m n z. \<lbrakk>N \<le> m; m \<le> n; z\<in>K\<rbrakk> \<Longrightarrow> norm(\<Sum>k=m..<n. f k z) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   328
proof -
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   329
  obtain N where N: "\<And>m n z. \<lbrakk>N \<le> m; N \<le> n; z\<in>K\<rbrakk> \<Longrightarrow> dist (\<Sum>k<m. f k z) (\<Sum>k<n. f k z) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   330
    using uconv \<open>\<epsilon>>0\<close> unfolding uniformly_Cauchy_on_def uniformly_convergent_eq_Cauchy by meson
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   331
  show thesis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   332
  proof
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   333
    fix m n z
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   334
    assume "N \<le> m" "m \<le> n" "z \<in> K"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   335
    moreover have "(\<Sum>k = m..<n. f k z) = (\<Sum>k<n. f k z) - (\<Sum>k<m. f k z)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   336
      by (metis atLeast0LessThan le0 sum_diff_nat_ivl \<open>m \<le> n\<close>)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   337
    ultimately show "norm(\<Sum>k = m..<n. f k z) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   338
      using N  by (simp add: dist_norm)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   339
  qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   340
qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   341
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   342
lemma uniformly_convergent_on_sum_iff:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   343
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_space,real_normed_vector}"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   344
  shows "uniformly_convergent_on K (\<lambda>n z. \<Sum>k<n. f k z) 
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   345
     \<longleftrightarrow> (\<forall>\<epsilon>>0. \<exists>N. \<forall>m n z. N\<le>m \<longrightarrow> m\<le>n \<longrightarrow> z\<in>K \<longrightarrow> norm (\<Sum>k=m..<n. f k z) < \<epsilon>)" (is "?lhs=?rhs")
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   346
proof
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   347
  assume R: ?rhs
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   348
  show ?lhs
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   349
    unfolding uniformly_Cauchy_on_def uniformly_convergent_eq_Cauchy
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   350
  proof (intro strip)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   351
    fix \<epsilon>::real
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   352
    assume "\<epsilon>>0"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   353
    then obtain N where "\<And>m n z. \<lbrakk>N \<le> m; m \<le> n; z\<in>K\<rbrakk> \<Longrightarrow> norm(\<Sum>k = m..<n. f k z) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   354
      using R by blast
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   355
    then have "\<forall>x\<in>K. \<forall>m\<ge>N. \<forall>n\<ge>m. norm ((\<Sum>k<m. f k x) - (\<Sum>k<n. f k x)) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   356
      by (metis atLeast0LessThan le0 sum_diff_nat_ivl norm_minus_commute)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   357
    then have "\<forall>x\<in>K. \<forall>m\<ge>N. \<forall>n\<ge>N. norm ((\<Sum>k<m. f k x) - (\<Sum>k<n. f k x)) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   358
      by (metis linorder_le_cases norm_minus_commute)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   359
    then show "\<exists>M. \<forall>x\<in>K. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (\<Sum>k<m. f k x) (\<Sum>k<n. f k x) < \<epsilon>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   360
      by (metis dist_norm)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   361
  qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   362
qed (metis uniformly_convergent_on_sum_E)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   363
76724
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   364
lemma uniform_limit_suminf:
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   365
  fixes f:: "nat \<Rightarrow> 'a::{metric_space, comm_monoid_add} \<Rightarrow> 'a"
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   366
  assumes "uniformly_convergent_on X (\<lambda>n x. \<Sum>k<n. f k x)" 
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   367
  shows "uniform_limit X (\<lambda>n x. \<Sum>k<n. f k x) (\<lambda>x. \<Sum>k. f k x) sequentially"
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   368
proof -
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   369
  obtain S where S: "uniform_limit X (\<lambda>n x. \<Sum>k<n. f k x) S sequentially"
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   370
    using assms uniformly_convergent_on_def by blast
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   371
  then have "(\<Sum>k. f k x) = S x" if "x \<in> X" for x
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   372
    using that sums_iff sums_def by (blast intro: tendsto_uniform_limitI [OF S])
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   373
  with S show ?thesis
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   374
    by (simp cong: uniform_limit_cong')
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   375
qed
7ff71bdcf731 Additional new material about infinite products, etc.
paulson <lp15@cam.ac.uk>
parents: 76722
diff changeset
   376
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   377
text \<open>TODO: remove explicit formulations
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   378
  @{thm uniformly_convergent_eq_cauchy uniformly_cauchy_imp_uniformly_convergent}?!\<close>
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   379
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   380
lemma uniformly_convergent_imp_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   381
  "uniformly_convergent_on X f \<Longrightarrow> x \<in> X \<Longrightarrow> convergent (\<lambda>n. f n x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   382
  unfolding uniformly_convergent_on_def convergent_def
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   383
  by (auto dest: tendsto_uniform_limitI)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   384
76722
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   385
subsection \<open>Comparison Test\<close>
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   386
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   387
lemma uniformly_summable_comparison_test:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   388
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: banach"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   389
  assumes "uniformly_convergent_on A (\<lambda>N x. \<Sum>n<N. g n x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   390
  assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> g n x"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   391
  shows   "uniformly_convergent_on A (\<lambda>N x. \<Sum>n<N. f n x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   392
proof -
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   393
  have "uniformly_Cauchy_on A (\<lambda>N x. \<Sum>n<N. f n x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   394
  proof (rule uniformly_Cauchy_onI')
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   395
    fix e :: real assume e: "e > 0"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   396
    obtain M where M: "\<And>x m n. x \<in> A \<Longrightarrow> m \<ge> M \<Longrightarrow> n \<ge> M \<Longrightarrow> dist (\<Sum>k<m. g k x) (\<Sum>k<n. g k x) < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   397
      using assms(1) e unfolding uniformly_convergent_eq_Cauchy uniformly_Cauchy_on_def by metis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   398
    show "\<exists>M. \<forall>x\<in>A. \<forall>m\<ge>M. \<forall>n>m. dist (\<Sum>k<m. f k x) (\<Sum>k<n. f k x) < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   399
    proof (rule exI[of _ M], safe)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   400
      fix x m n assume xmn: "x \<in> A" "m \<ge> M" "m < n"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   401
      have nonneg: "g k x \<ge> 0" for k
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   402
        by (rule order.trans[OF _ assms(2)]) (use xmn in auto)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   403
      have "dist (\<Sum>k<m. f k x) (\<Sum>k<n. f k x) = norm (\<Sum>k\<in>{..<n}-{..<m}. f k x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   404
        using xmn by (subst sum_diff) (auto simp: dist_norm norm_minus_commute)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   405
      also have "{..<n}-{..<m} = {m..<n}"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   406
        by auto
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   407
      also have "norm (\<Sum>k\<in>{m..<n}. f k x) \<le> (\<Sum>k\<in>{m..<n}. norm (f k x))"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   408
        using norm_sum by blast
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   409
      also have "\<dots> \<le> (\<Sum>k\<in>{m..<n}. g k x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   410
        by (intro sum_mono assms xmn)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   411
      also have "\<dots> = \<bar>\<Sum>k\<in>{m..<n}. g k x\<bar>"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   412
        by (subst abs_of_nonneg) (auto simp: nonneg intro!: sum_nonneg)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   413
      also have "{m..<n} = {..<n} - {..<m}"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   414
        by auto
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   415
      also have "\<bar>\<Sum>k\<in>\<dots>. g k x\<bar> = dist (\<Sum>k<m. g k x) (\<Sum>k<n. g k x)"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   416
        using xmn by (subst sum_diff) (auto simp: abs_minus_commute dist_norm)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   417
      also have "\<dots> < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   418
        by (rule M) (use xmn in auto)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   419
      finally show "dist (\<Sum>k<m. f k x) (\<Sum>k<n. f k x) < e" .
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   420
    qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   421
  qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   422
  thus ?thesis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   423
    unfolding uniformly_convergent_eq_Cauchy .
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   424
qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   425
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   426
lemma uniform_limit_compose_uniformly_continuous_on:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   427
  fixes f :: "'a :: metric_space \<Rightarrow> 'b :: metric_space"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   428
  assumes lim: "uniform_limit A g g' F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   429
  assumes cont: "uniformly_continuous_on B f"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   430
  assumes ev: "eventually (\<lambda>x. \<forall>y\<in>A. g x y \<in> B) F" and "closed B"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   431
  shows   "uniform_limit A (\<lambda>x y. f (g x y)) (\<lambda>y. f (g' y)) F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   432
proof (cases "F = bot")
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   433
  case [simp]: False
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   434
  show ?thesis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   435
    unfolding uniform_limit_iff
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   436
  proof safe
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   437
    fix e :: real assume e: "e > 0"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   438
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   439
    have g'_in_B: "g' y \<in> B" if "y \<in> A" for y
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   440
    proof (rule Lim_in_closed_set)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   441
      show "eventually (\<lambda>x. g x y \<in> B) F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   442
        using ev by eventually_elim (use that in auto)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   443
      show "((\<lambda>x. g x y) \<longlongrightarrow> g' y) F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   444
        using lim that by (metis tendsto_uniform_limitI)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   445
    qed (use \<open>closed B\<close> in auto)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   446
  
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   447
    obtain d where d: "d > 0" "\<And>x y. x \<in> B \<Longrightarrow> y \<in> B \<Longrightarrow> dist x y < d \<Longrightarrow> dist (f x) (f y) < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   448
      using e cont unfolding uniformly_continuous_on_def by metis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   449
    from lim have "eventually (\<lambda>x. \<forall>y\<in>A. dist (g x y) (g' y) < d) F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   450
      unfolding uniform_limit_iff using \<open>d > 0\<close>  by meson
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   451
    thus "eventually (\<lambda>x. \<forall>y\<in>A. dist (f (g x y)) (f (g' y)) < e) F"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   452
      using assms(3)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   453
    proof eventually_elim
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   454
      case (elim x)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   455
      show "\<forall>y\<in>A. dist (f (g x y)) (f (g' y)) < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   456
      proof safe
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   457
        fix y assume y: "y \<in> A"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   458
        show "dist (f (g x y)) (f (g' y)) < e"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   459
        proof (rule d)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   460
          show "dist (g x y) (g' y) < d"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   461
            using elim y by blast
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   462
        qed (use y elim g'_in_B in auto)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   463
      qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   464
    qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   465
  qed
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   466
qed (auto simp: filterlim_def)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   467
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   468
lemma uniformly_convergent_on_compose_uniformly_continuous_on:
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   469
  fixes f :: "'a :: metric_space \<Rightarrow> 'b :: metric_space"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   470
  assumes lim: "uniformly_convergent_on A g"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   471
  assumes cont: "uniformly_continuous_on B f"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   472
  assumes ev: "eventually (\<lambda>x. \<forall>y\<in>A. g x y \<in> B) sequentially" and "closed B"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   473
  shows   "uniformly_convergent_on A (\<lambda>x y. f (g x y))"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   474
proof -
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   475
  from lim obtain g' where g': "uniform_limit A g g' sequentially"
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   476
    by (auto simp: uniformly_convergent_on_def)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   477
  thus ?thesis
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   478
    using uniform_limit_compose_uniformly_continuous_on[OF g' cont ev \<open>closed B\<close>]
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   479
    by (auto simp: uniformly_convergent_on_def)
b1d57dd345e1 First round of moving material from the number theory development
paulson <lp15@cam.ac.uk>
parents: 73932
diff changeset
   480
qed
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   481
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   482
subsection \<open>Weierstrass M-Test\<close>
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   483
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   484
proposition Weierstrass_m_test_ev:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   485
fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   486
assumes "eventually (\<lambda>n. \<forall>x\<in>A. norm (f n x) \<le> M n) sequentially"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   487
assumes "summable M"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   488
shows "uniform_limit A (\<lambda>n x. \<Sum>i<n. f i x) (\<lambda>x. suminf (\<lambda>i. f i x)) sequentially"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   489
proof (rule uniform_limitI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   490
  fix e :: real
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   491
  assume "0 < e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   492
  from suminf_exist_split[OF \<open>0 < e\<close> \<open>summable M\<close>]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   493
  have "\<forall>\<^sub>F k in sequentially. norm (\<Sum>i. M (i + k)) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   494
    by (auto simp: eventually_sequentially)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   495
  with eventually_all_ge_at_top[OF assms(1)]
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   496
    show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>A. dist (\<Sum>i<n. f i x) (\<Sum>i. f i x) < e"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   497
  proof eventually_elim
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   498
    case (elim k)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   499
    show ?case
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   500
    proof safe
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   501
      fix x assume "x \<in> A"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   502
      have "\<exists>N. \<forall>n\<ge>N. norm (f n x) \<le> M n"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   503
        using assms(1) \<open>x \<in> A\<close> by (force simp: eventually_at_top_linorder)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   504
      hence summable_norm_f: "summable (\<lambda>n. norm (f n x))"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   505
        by(rule summable_norm_comparison_test[OF _ \<open>summable M\<close>])
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   506
      have summable_f: "summable (\<lambda>n. f n x)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   507
        using summable_norm_cancel[OF summable_norm_f] .
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   508
      have summable_norm_f_plus_k: "summable (\<lambda>i. norm (f (i + k) x))"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   509
        using summable_ignore_initial_segment[OF summable_norm_f]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   510
        by auto
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   511
      have summable_M_plus_k: "summable (\<lambda>i. M (i + k))"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   512
        using summable_ignore_initial_segment[OF \<open>summable M\<close>]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   513
        by auto
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   514
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   515
      have "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) = norm ((\<Sum>i. f i x) - (\<Sum>i<k. f i x))"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   516
        using dist_norm dist_commute by (subst dist_commute)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   517
      also have "... = norm (\<Sum>i. f (i + k) x)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   518
        using suminf_minus_initial_segment[OF summable_f, where k=k] by simp
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   519
      also have "... \<le> (\<Sum>i. norm (f (i + k) x))"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   520
        using summable_norm[OF summable_norm_f_plus_k] .
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   521
      also have "... \<le> (\<Sum>i. M (i + k))"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   522
        by (rule suminf_le[OF _ summable_norm_f_plus_k summable_M_plus_k])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   523
           (insert elim(1) \<open>x \<in> A\<close>, simp)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   524
      finally show "dist (\<Sum>i<k. f i x) (\<Sum>i. f i x) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   525
        using elim by auto
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   526
    qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   527
  qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   528
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   529
62175
8ffc4d0e652d isabelle update_cartouches -c -t;
wenzelm
parents: 62131
diff changeset
   530
text\<open>Alternative version, formulated as in HOL Light\<close>
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
   531
corollary\<^marker>\<open>tag unimportant\<close> series_comparison_uniform:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   532
  fixes f :: "_ \<Rightarrow> nat \<Rightarrow> _ :: banach"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   533
  assumes g: "summable g" and le: "\<And>n x. N \<le> n \<and> x \<in> A \<Longrightarrow> norm(f x n) \<le> g n"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63627
diff changeset
   534
    shows "\<exists>l. \<forall>e. 0 < e \<longrightarrow> (\<exists>N. \<forall>n x. N \<le> n \<and> x \<in> A \<longrightarrow> dist(sum (f x) {..<n}) (l x) < e)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   535
proof -
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   536
  have 1: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>A. norm (f x n) \<le> g n"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   537
    using le eventually_sequentially by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   538
  show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   539
    apply (rule_tac x="(\<lambda>x. \<Sum>i. f x i)" in exI)
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   540
    apply (metis (no_types, lifting) eventually_sequentially uniform_limitD [OF Weierstrass_m_test_ev [OF 1 g]])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   541
    done
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   542
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   543
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
   544
corollary\<^marker>\<open>tag unimportant\<close> Weierstrass_m_test:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   545
  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   546
  assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> M n"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   547
  assumes "summable M"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 61973
diff changeset
   548
  shows "uniform_limit A (\<lambda>n x. \<Sum>i<n. f i x) (\<lambda>x. suminf (\<lambda>i. f i x)) sequentially"
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   549
  using assms by (intro Weierstrass_m_test_ev always_eventually) auto
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   550
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
   551
corollary\<^marker>\<open>tag unimportant\<close> Weierstrass_m_test'_ev:
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   552
  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   553
  assumes "eventually (\<lambda>n. \<forall>x\<in>A. norm (f n x) \<le> M n) sequentially" "summable M"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   554
  shows   "uniformly_convergent_on A (\<lambda>n x. \<Sum>i<n. f i x)"
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   555
  unfolding uniformly_convergent_on_def by (rule exI, rule Weierstrass_m_test_ev[OF assms])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   556
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
   557
corollary\<^marker>\<open>tag unimportant\<close> Weierstrass_m_test':
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   558
  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> _ :: banach"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   559
  assumes "\<And>n x. x \<in> A \<Longrightarrow> norm (f n x) \<le> M n" "summable M"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   560
  shows   "uniformly_convergent_on A (\<lambda>n x. \<Sum>i<n. f i x)"
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   561
  unfolding uniformly_convergent_on_def by (rule exI, rule Weierstrass_m_test[OF assms])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61222
diff changeset
   562
77434
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   563
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   564
lemma Weierstrass_m_test_general:
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   565
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c :: banach"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   566
  fixes M :: "'a \<Rightarrow> real"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   567
  assumes norm_le:  "\<And>x y. x \<in> X \<Longrightarrow> y \<in> Y \<Longrightarrow> norm (f x y) \<le> M x"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   568
  assumes summable: "M summable_on X"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   569
  shows "uniform_limit Y (\<lambda>X y. \<Sum>x\<in>X. f x y) (\<lambda>y. \<Sum>\<^sub>\<infinity>x\<in>X. f x y) (finite_subsets_at_top X)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   570
proof (rule uniform_limitI)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   571
  fix \<epsilon> :: real
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   572
  assume "\<epsilon> > 0"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   573
  define S where "S = (\<lambda>y. \<Sum>\<^sub>\<infinity>x\<in>X. f x y)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   574
  have S: "((\<lambda>x. f x y) has_sum S y) X" if y: "y \<in> Y" for y
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   575
    unfolding S_def 
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   576
  proof (rule has_sum_infsum)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   577
    have "(\<lambda>x. norm (f x y)) summable_on X"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   578
      by (rule abs_summable_on_comparison_test'[OF summable norm_le]) (use y in auto)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   579
    thus "(\<lambda>x. f x y) summable_on X"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   580
      by (metis abs_summable_summable)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   581
  qed
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   582
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   583
  define T where "T = (\<Sum>\<^sub>\<infinity>x\<in>X. M x)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   584
  have T: "(M has_sum T) X"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   585
    unfolding T_def by (simp add: local.summable)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   586
  have M_summable: "M summable_on X'" if "X' \<subseteq> X" for X'
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   587
    using local.summable summable_on_subset_banach that by blast
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   588
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   589
  have f_summable: "(\<lambda>x. f x y) summable_on X'" if "X' \<subseteq> X" "y \<in> Y" for X' y
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   590
    using S summable_on_def summable_on_subset_banach that by blast
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   591
  have "eventually (\<lambda>X'. dist (\<Sum>x\<in>X'. M x) T < \<epsilon>) (finite_subsets_at_top X)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   592
    using T \<open>\<epsilon> > 0\<close> unfolding T_def has_sum_def tendsto_iff by blast
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   593
  moreover have "eventually (\<lambda>X'. finite X' \<and> X' \<subseteq> X) (finite_subsets_at_top X)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   594
    by (simp add: eventually_finite_subsets_at_top_weakI)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   595
  ultimately show "\<forall>\<^sub>F X' in finite_subsets_at_top X. \<forall>y\<in>Y. dist (\<Sum>x\<in>X'. f x y) (\<Sum>\<^sub>\<infinity>x\<in>X. f x y) < \<epsilon>"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   596
  proof eventually_elim
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   597
    case X': (elim X')
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   598
    show "\<forall>y\<in>Y. dist (\<Sum>x\<in>X'. f x y) (\<Sum>\<^sub>\<infinity>x\<in>X. f x y) < \<epsilon>"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   599
    proof
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   600
      fix y assume y: "y \<in> Y"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   601
      have 1: "((\<lambda>x. f x y) has_sum (S y - (\<Sum>x\<in>X'. f x y))) (X - X')"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   602
        using X' y by (intro has_sum_Diff S has_sum_finite[of X'] f_summable) auto
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   603
      have 2: "(M has_sum (T - (\<Sum>x\<in>X'. M x))) (X - X')"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   604
        using X' y by (intro has_sum_Diff T has_sum_finite[of X'] M_summable) auto
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   605
      have "dist (\<Sum>x\<in>X'. f x y) (\<Sum>\<^sub>\<infinity>x\<in>X. f x y) = norm (S y - (\<Sum>x\<in>X'. f x y))"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   606
        by (simp add: dist_norm norm_minus_commute S_def)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   607
      also have "norm (S y - (\<Sum>x\<in>X'. f x y)) \<le> (\<Sum>\<^sub>\<infinity>x\<in>X-X'. M x)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   608
        using 2 y by (intro norm_infsum_le[OF 1 _ norm_le]) (auto simp: infsumI)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   609
      also have "\<dots> = T - (\<Sum>x\<in>X'. M x)"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   610
        using 2 by (auto simp: infsumI)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   611
      also have "\<dots> < \<epsilon>"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   612
        using X' by (simp add: dist_norm)
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   613
      finally show "dist (\<Sum>x\<in>X'. f x y) (\<Sum>\<^sub>\<infinity>x\<in>X. f x y) < \<epsilon>" .
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   614
    qed
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   615
  qed
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   616
qed
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   617
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   618
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69597
diff changeset
   619
subsection\<^marker>\<open>tag unimportant\<close> \<open>Structural introduction rules\<close>
68838
5e013478bced tagged some theories
immler
parents: 67685
diff changeset
   620
77434
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   621
lemma uniform_limit_eq_rhs: "uniform_limit X f l F \<Longrightarrow> l = m \<Longrightarrow> uniform_limit X f m F"
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   622
  by simp
da41823d09a7 Imported a theorem about Infinite_Sum. Importing this theory a bit earlier is causing syntactic ambiguities with Infinite_Set_Sum however; no_notation needed
paulson <lp15@cam.ac.uk>
parents: 76724
diff changeset
   623
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   624
named_theorems uniform_limit_intros "introduction rules for uniform_limit"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   625
setup \<open>
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69529
diff changeset
   626
  Global_Theory.add_thms_dynamic (\<^binding>\<open>uniform_limit_eq_intros\<close>,
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   627
    fn context =>
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69529
diff changeset
   628
      Named_Theorems.get (Context.proof_of context) \<^named_theorems>\<open>uniform_limit_intros\<close>
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   629
      |> map_filter (try (fn thm => @{thm uniform_limit_eq_rhs} OF [thm])))
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   630
\<close>
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   631
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   632
lemma (in bounded_linear) uniform_limit[uniform_limit_intros]:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   633
  assumes "uniform_limit X g l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   634
  shows "uniform_limit X (\<lambda>a b. f (g a b)) (\<lambda>a. f (l a)) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   635
proof (rule uniform_limitI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   636
  fix e::real
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   637
  from pos_bounded obtain K
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   638
    where K: "\<And>x y. dist (f x) (f y) \<le> K * dist x y" "K > 0"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   639
    by (auto simp: ac_simps dist_norm diff[symmetric])
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   640
  assume "0 < e" with \<open>K > 0\<close> have "e / K > 0" by simp
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   641
  from uniform_limitD[OF assms this]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   642
  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f (g n x)) (f (l x)) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   643
    by eventually_elim (metis le_less_trans mult.commute pos_less_divide_eq K)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   644
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   645
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   646
lemma (in bounded_linear) uniformly_convergent_on:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   647
  assumes "uniformly_convergent_on A g"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   648
  shows   "uniformly_convergent_on A (\<lambda>x y. f (g x y))"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   649
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   650
  from assms obtain l where "uniform_limit A g l sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   651
    unfolding uniformly_convergent_on_def by blast
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   652
  hence "uniform_limit A (\<lambda>x y. f (g x y)) (\<lambda>x. f (l x)) sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   653
    by (rule uniform_limit)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   654
  thus ?thesis unfolding uniformly_convergent_on_def by blast
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   655
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 66827
diff changeset
   656
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   657
lemmas bounded_linear_uniform_limit_intros[uniform_limit_intros] =
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   658
  bounded_linear.uniform_limit[OF bounded_linear_Im]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   659
  bounded_linear.uniform_limit[OF bounded_linear_Re]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   660
  bounded_linear.uniform_limit[OF bounded_linear_cnj]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   661
  bounded_linear.uniform_limit[OF bounded_linear_fst]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   662
  bounded_linear.uniform_limit[OF bounded_linear_snd]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   663
  bounded_linear.uniform_limit[OF bounded_linear_zero]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   664
  bounded_linear.uniform_limit[OF bounded_linear_of_real]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   665
  bounded_linear.uniform_limit[OF bounded_linear_inner_left]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   666
  bounded_linear.uniform_limit[OF bounded_linear_inner_right]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   667
  bounded_linear.uniform_limit[OF bounded_linear_divide]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   668
  bounded_linear.uniform_limit[OF bounded_linear_scaleR_right]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   669
  bounded_linear.uniform_limit[OF bounded_linear_mult_left]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   670
  bounded_linear.uniform_limit[OF bounded_linear_mult_right]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   671
  bounded_linear.uniform_limit[OF bounded_linear_scaleR_left]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   672
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67371
diff changeset
   673
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   674
lemmas uniform_limit_uminus[uniform_limit_intros] =
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   675
  bounded_linear.uniform_limit[OF bounded_linear_minus[OF bounded_linear_ident]]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   676
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   677
lemma uniform_limit_const[uniform_limit_intros]: "uniform_limit S (\<lambda>x. c) c f"
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   678
  by (auto intro!: uniform_limitI)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   679
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   680
lemma uniform_limit_add[uniform_limit_intros]:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   681
  fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   682
  assumes "uniform_limit X f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   683
  assumes "uniform_limit X g m F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   684
  shows "uniform_limit X (\<lambda>a b. f a b + g a b) (\<lambda>a. l a + m a) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   685
proof (rule uniform_limitI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   686
  fix e::real
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   687
  assume "0 < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   688
  hence "0 < e / 2" by simp
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   689
  from
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   690
    uniform_limitD[OF assms(1) this]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   691
    uniform_limitD[OF assms(2) this]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   692
  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (f n x + g n x) (l x + m x) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   693
    by eventually_elim (simp add: dist_triangle_add_half)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   694
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   695
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   696
lemma uniform_limit_minus[uniform_limit_intros]:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   697
  fixes f g::"'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_vector"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   698
  assumes "uniform_limit X f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   699
  assumes "uniform_limit X g m F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   700
  shows "uniform_limit X (\<lambda>a b. f a b - g a b) (\<lambda>a. l a - m a) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   701
  unfolding diff_conv_add_uminus
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   702
  by (rule uniform_limit_intros assms)+
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   703
62949
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   704
lemma uniform_limit_norm[uniform_limit_intros]:
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   705
  assumes "uniform_limit S g l f"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   706
  shows "uniform_limit S (\<lambda>x y. norm (g x y)) (\<lambda>x. norm (l x)) f"
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   707
  using assms
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   708
  apply (rule metric_uniform_limit_imp_uniform_limit)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   709
  apply (rule eventuallyI)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   710
  by (metis dist_norm norm_triangle_ineq3 real_norm_def)
f36a54da47a4 added derivative of scaling in exponential function
immler
parents: 62393
diff changeset
   711
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   712
lemma (in bounded_bilinear) bounded_uniform_limit[uniform_limit_intros]:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   713
  assumes "uniform_limit X f l F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   714
  assumes "uniform_limit X g m F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   715
  assumes "bounded (m ` X)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   716
  assumes "bounded (l ` X)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   717
  shows "uniform_limit X (\<lambda>a b. prod (f a b) (g a b)) (\<lambda>a. prod (l a) (m a)) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   718
proof (rule uniform_limitI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   719
  fix e::real
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   720
  from pos_bounded obtain K where K:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   721
    "0 < K" "\<And>a b. norm (prod a b) \<le> norm a * norm b * K"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   722
    by auto
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   723
  hence "sqrt (K*4) > 0" by simp
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   724
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   725
  from assms obtain Km Kl
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   726
  where Km: "Km > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (m x) \<le> Km"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   727
    and Kl: "Kl > 0" "\<And>x. x \<in> X \<Longrightarrow> norm (l x) \<le> Kl"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   728
    by (auto simp: bounded_pos)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   729
  hence "K * Km * 4 > 0" "K * Kl * 4 > 0"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   730
    using \<open>K > 0\<close>
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   731
    by simp_all
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   732
  assume "0 < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   733
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   734
  hence "sqrt e > 0" by simp
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   735
  from uniform_limitD[OF assms(1) divide_pos_pos[OF this \<open>sqrt (K*4) > 0\<close>]]
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   736
    uniform_limitD[OF assms(2) divide_pos_pos[OF this \<open>sqrt (K*4) > 0\<close>]]
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   737
    uniform_limitD[OF assms(1) divide_pos_pos[OF \<open>e > 0\<close> \<open>K * Km * 4 > 0\<close>]]
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   738
    uniform_limitD[OF assms(2) divide_pos_pos[OF \<open>e > 0\<close> \<open>K * Kl * 4 > 0\<close>]]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   739
  show "\<forall>\<^sub>F n in F. \<forall>x\<in>X. dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   740
  proof eventually_elim
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   741
    case (elim n)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   742
    show ?case
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   743
    proof safe
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   744
      fix x assume "x \<in> X"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   745
      have "dist (prod (f n x) (g n x)) (prod (l x) (m x)) \<le>
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   746
        norm (prod (f n x - l x) (g n x - m x)) +
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   747
        norm (prod (f n x - l x) (m x)) +
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   748
        norm (prod (l x) (g n x - m x))"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   749
        by (auto simp: dist_norm prod_diff_prod intro: order_trans norm_triangle_ineq add_mono)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   750
      also note K(2)[of "f n x - l x" "g n x - m x"]
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   751
      also from elim(1)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   752
      have "norm (f n x - l x) \<le> sqrt e / sqrt (K * 4)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   753
        by simp
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   754
      also from elim(2)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   755
      have "norm (g n x - m x) \<le> sqrt e / sqrt (K * 4)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   756
        by simp
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   757
      also have "sqrt e / sqrt (K * 4) * (sqrt e / sqrt (K * 4)) * K = e / 4"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   758
        using \<open>K > 0\<close> \<open>e > 0\<close> by auto
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   759
      also note K(2)[of "f n x - l x" "m x"]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   760
      also note K(2)[of "l x" "g n x - m x"]
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   761
      also from elim(3)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   762
      have "norm (f n x - l x) \<le> e / (K * Km * 4)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   763
        by simp
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   764
      also from elim(4)[THEN bspec, OF \<open>_ \<in> X\<close>, unfolded dist_norm]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   765
      have "norm (g n x - m x) \<le> e / (K * Kl * 4)"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   766
        by simp
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   767
      also note Kl(2)[OF \<open>_ \<in> X\<close>]
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   768
      also note Km(2)[OF \<open>_ \<in> X\<close>]
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   769
      also have "e / (K * Km * 4) * Km * K = e / 4"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   770
        using \<open>K > 0\<close> \<open>Km > 0\<close> by simp
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   771
      also have " Kl * (e / (K * Kl * 4)) * K = e / 4"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   772
        using \<open>K > 0\<close> \<open>Kl > 0\<close> by simp
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   773
      also have "e / 4 + e / 4 + e / 4 < e" using \<open>e > 0\<close> by simp
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   774
      finally show "dist (prod (f n x) (g n x)) (prod (l x) (m x)) < e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60812
diff changeset
   775
        using \<open>K > 0\<close> \<open>Kl > 0\<close> \<open>Km > 0\<close> \<open>e > 0\<close>
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   776
        by (simp add: algebra_simps mult_right_mono divide_right_mono)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   777
    qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   778
  qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   779
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   780
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   781
lemmas bounded_bilinear_bounded_uniform_limit_intros[uniform_limit_intros] =
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   782
  bounded_bilinear.bounded_uniform_limit[OF Inner_Product.bounded_bilinear_inner]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   783
  bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_mult]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   784
  bounded_bilinear.bounded_uniform_limit[OF Real_Vector_Spaces.bounded_bilinear_scaleR]
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   785
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   786
lemma uniform_lim_mult:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   787
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_algebra"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   788
  assumes f: "uniform_limit S f l F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   789
      and g: "uniform_limit S g m F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   790
      and l: "bounded (l ` S)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   791
      and m: "bounded (m ` S)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   792
    shows "uniform_limit S (\<lambda>a b. f a b * g a b) (\<lambda>a. l a * m a) F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   793
  by (intro bounded_bilinear_bounded_uniform_limit_intros assms)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   794
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   795
lemma uniform_lim_inverse:
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   796
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_field"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   797
  assumes f: "uniform_limit S f l F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   798
      and b: "\<And>x. x \<in> S \<Longrightarrow> b \<le> norm(l x)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   799
      and "b > 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   800
    shows "uniform_limit S (\<lambda>x y. inverse (f x y)) (inverse \<circ> l) F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   801
proof (rule uniform_limitI)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   802
  fix e::real
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   803
  assume "e > 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   804
  have lte: "dist (inverse (f x y)) ((inverse \<circ> l) y) < e"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   805
           if "b/2 \<le> norm (f x y)" "norm (f x y - l y) < e * b\<^sup>2 / 2" "y \<in> S"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   806
           for x y
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   807
  proof -
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   808
    have [simp]: "l y \<noteq> 0" "f x y \<noteq> 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   809
      using \<open>b > 0\<close> that b [OF \<open>y \<in> S\<close>] by fastforce+
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   810
    have "norm (l y - f x y) <  e * b\<^sup>2 / 2"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   811
      by (metis norm_minus_commute that(2))
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   812
    also have "... \<le> e * (norm (f x y) * norm (l y))"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   813
      using \<open>e > 0\<close> that b [OF \<open>y \<in> S\<close>] apply (simp add: power2_eq_square)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   814
      by (metis \<open>b > 0\<close> less_eq_real_def mult.left_commute mult_mono')
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   815
    finally show ?thesis
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70136
diff changeset
   816
      by (auto simp: dist_norm field_split_simps norm_mult norm_divide)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   817
  qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   818
  have "\<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (f n x) (l x) < b/2"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   819
    using uniform_limitD [OF f, of "b/2"] by (simp add: \<open>b > 0\<close>)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   820
  then have "\<forall>\<^sub>F x in F. \<forall>y\<in>S. b/2 \<le> norm (f x y)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   821
    apply (rule eventually_mono)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   822
    using b apply (simp only: dist_norm)
73932
fd21b4a93043 added opaque_combs and renamed hide_lams to opaque_lifting
desharna
parents: 70817
diff changeset
   823
    by (metis (no_types, opaque_lifting) diff_zero dist_commute dist_norm norm_triangle_half_l not_less)
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   824
  then have "\<forall>\<^sub>F x in F. \<forall>y\<in>S. b/2 \<le> norm (f x y) \<and> norm (f x y - l y) < e * b\<^sup>2 / 2"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   825
    apply (simp only: ball_conj_distrib dist_norm [symmetric])
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   826
    apply (rule eventually_conj, assumption)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   827
      apply (rule uniform_limitD [OF f, of "e * b ^ 2 / 2"])
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   828
    using \<open>b > 0\<close> \<open>e > 0\<close> by auto
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   829
  then show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (inverse (f x y)) ((inverse \<circ> l) y) < e"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   830
    using lte by (force intro: eventually_mono)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   831
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   832
65037
2cf841ff23be some new material, also recasting some theorems using “obtains”
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   833
lemma uniform_lim_divide:
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   834
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::real_normed_field"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   835
  assumes f: "uniform_limit S f l F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   836
      and g: "uniform_limit S g m F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   837
      and l: "bounded (l ` S)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   838
      and b: "\<And>x. x \<in> S \<Longrightarrow> b \<le> norm(m x)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   839
      and "b > 0"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   840
    shows "uniform_limit S (\<lambda>a b. f a b / g a b) (\<lambda>a. l a / m a) F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   841
proof -
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   842
  have m: "bounded ((inverse \<circ> m) ` S)"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   843
    using b \<open>b > 0\<close>
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   844
    apply (simp add: bounded_iff)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   845
    by (metis le_imp_inverse_le norm_inverse)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   846
  have "uniform_limit S (\<lambda>a b. f a b * inverse (g a b))
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   847
         (\<lambda>a. l a * (inverse \<circ> m) a) F"
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   848
    by (rule uniform_lim_mult [OF f uniform_lim_inverse [OF g b \<open>b > 0\<close>] l m])
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   849
  then show ?thesis
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   850
    by (simp add: field_class.field_divide_inverse)
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   851
qed
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   852
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   853
lemma uniform_limit_null_comparison:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   854
  assumes "\<forall>\<^sub>F x in F. \<forall>a\<in>S. norm (f x a) \<le> g x a"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   855
  assumes "uniform_limit S g (\<lambda>_. 0) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   856
  shows "uniform_limit S f (\<lambda>_. 0) F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   857
  using assms(2)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   858
proof (rule metric_uniform_limit_imp_uniform_limit)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   859
  show "\<forall>\<^sub>F x in F. \<forall>y\<in>S. dist (f x y) 0 \<le> dist (g x y) 0"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   860
    using assms(1) by (rule eventually_mono) (force simp add: dist_norm)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   861
qed
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   862
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   863
lemma uniform_limit_on_Un:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   864
  "uniform_limit I f g F \<Longrightarrow> uniform_limit J f g F \<Longrightarrow> uniform_limit (I \<union> J) f g F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   865
  by (auto intro!: uniform_limitI dest!: uniform_limitD elim: eventually_elim2)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   866
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   867
lemma uniform_limit_on_empty [iff]:
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   868
  "uniform_limit {} f g F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   869
  by (auto intro!: uniform_limitI)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   870
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   871
lemma uniform_limit_on_UNION:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   872
  assumes "finite S"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   873
  assumes "\<And>s. s \<in> S \<Longrightarrow> uniform_limit (h s) f g F"
69313
b021008c5397 removed legacy input syntax
haftmann
parents: 69260
diff changeset
   874
  shows "uniform_limit (\<Union>(h ` S)) f g F"
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   875
  using assms
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   876
  by induct (auto intro: uniform_limit_on_empty uniform_limit_on_Un)
60812
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   877
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   878
lemma uniform_limit_on_Union:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   879
  assumes "finite I"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   880
  assumes "\<And>J. J \<in> I \<Longrightarrow> uniform_limit J f g F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   881
  shows "uniform_limit (Union I) f g F"
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   882
  by (metis SUP_identity_eq assms uniform_limit_on_UNION)
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   883
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   884
lemma uniform_limit_on_subset:
8fff64349793 added theory Uniform_Limit
immler
parents:
diff changeset
   885
  "uniform_limit J f g F \<Longrightarrow> I \<subseteq> J \<Longrightarrow> uniform_limit I f g F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61808
diff changeset
   886
  by (auto intro!: uniform_limitI dest!: uniform_limitD intro: eventually_mono)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   887
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   888
lemma uniform_limit_bounded:
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   889
  fixes f::"'i \<Rightarrow> 'a::topological_space \<Rightarrow> 'b::metric_space"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   890
  assumes l: "uniform_limit S f l F"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   891
  assumes bnd: "\<forall>\<^sub>F i in F. bounded (f i ` S)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   892
  assumes "F \<noteq> bot"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   893
  shows "bounded (l ` S)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   894
proof -
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   895
  from l have "\<forall>\<^sub>F n in F. \<forall>x\<in>S. dist (l x) (f n x) < 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   896
    by (auto simp: uniform_limit_iff dist_commute dest!: spec[where x=1])
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   897
  with bnd
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   898
  have "\<forall>\<^sub>F n in F. \<exists>M. \<forall>x\<in>S. dist undefined (l x) \<le> M + 1"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   899
    by eventually_elim
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   900
      (auto intro!: order_trans[OF dist_triangle2 add_mono] intro: less_imp_le
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   901
        simp: bounded_any_center[where a=undefined])
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   902
  then show ?thesis using assms
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   903
    by (auto simp: bounded_any_center[where a=undefined] dest!: eventually_happens)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   904
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65037
diff changeset
   905
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   906
lemma uniformly_convergent_add:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   907
  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   908
      uniformly_convergent_on A (\<lambda>k x. f k x + g k x :: 'a :: {real_normed_algebra})"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   909
  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_add)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   910
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   911
lemma uniformly_convergent_minus:
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   912
  "uniformly_convergent_on A f \<Longrightarrow> uniformly_convergent_on A g\<Longrightarrow>
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   913
      uniformly_convergent_on A (\<lambda>k x. f k x - g k x :: 'a :: {real_normed_algebra})"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   914
  unfolding uniformly_convergent_on_def by (blast dest: uniform_limit_minus)
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   915
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   916
lemma uniformly_convergent_mult:
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
   917
  "uniformly_convergent_on A f \<Longrightarrow>
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   918
      uniformly_convergent_on A (\<lambda>k x. c * f k x :: 'a :: {real_normed_algebra})"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   919
  unfolding uniformly_convergent_on_def
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   920
  by (blast dest: bounded_linear_uniform_limit_intros(13))
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
   921
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   922
subsection\<open>Power series and uniform convergence\<close>
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   923
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   924
proposition powser_uniformly_convergent:
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   925
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   926
  assumes "r < conv_radius a"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   927
  shows "uniformly_convergent_on (cball \<xi> r) (\<lambda>n x. \<Sum>i<n. a i * (x - \<xi>) ^ i)"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   928
proof (cases "0 \<le> r")
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   929
  case True
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   930
  then have *: "summable (\<lambda>n. norm (a n) * r ^ n)"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   931
    using abs_summable_in_conv_radius [of "of_real r" a] assms
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   932
    by (simp add: norm_mult norm_power)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   933
  show ?thesis
69529
4ab9657b3257 capitalize proper names in lemma names
nipkow
parents: 69313
diff changeset
   934
    by (simp add: Weierstrass_m_test'_ev [OF _ *] norm_mult norm_power
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   935
              mult_left_mono power_mono dist_norm norm_minus_commute)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   936
next
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   937
  case False then show ?thesis by (simp add: not_le)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   938
qed
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   939
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   940
lemma powser_uniform_limit:
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   941
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   942
  assumes "r < conv_radius a"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   943
  shows "uniform_limit (cball \<xi> r) (\<lambda>n x. \<Sum>i<n. a i * (x - \<xi>) ^ i) (\<lambda>x. suminf (\<lambda>i. a i * (x - \<xi>) ^ i)) sequentially"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   944
using powser_uniformly_convergent [OF assms]
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   945
by (simp add: Uniform_Limit.uniformly_convergent_uniform_limit_iff Series.suminf_eq_lim)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   946
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   947
lemma powser_continuous_suminf:
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   948
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   949
  assumes "r < conv_radius a"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   950
  shows "continuous_on (cball \<xi> r) (\<lambda>x. suminf (\<lambda>i. a i * (x - \<xi>) ^ i))"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   951
apply (rule uniform_limit_theorem [OF _ powser_uniform_limit])
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   952
apply (rule eventuallyI continuous_intros assms)+
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   953
apply (simp add:)
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   954
done
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   955
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   956
lemma powser_continuous_sums:
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   957
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   958
  assumes r: "r < conv_radius a"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   959
      and sm: "\<And>x. x \<in> cball \<xi> r \<Longrightarrow> (\<lambda>n. a n * (x - \<xi>) ^ n) sums (f x)"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   960
  shows "continuous_on (cball \<xi> r) f"
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   961
apply (rule continuous_on_cong [THEN iffD1, OF refl _ powser_continuous_suminf [OF r]])
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   962
using sm sums_unique by fastforce
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62175
diff changeset
   963
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67371
diff changeset
   964
lemmas uniform_limit_subset_union = uniform_limit_on_subset[OF uniform_limit_on_Union]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67371
diff changeset
   965
62390
842917225d56 more canonical names
nipkow
parents: 62175
diff changeset
   966
end
62393
a620a8756b7c resolved conflict
nipkow
parents: 62381 62390
diff changeset
   967