|
1 (* Title: CTT/ctt.thy |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1993 University of Cambridge |
|
5 |
|
6 Constructive Type Theory |
|
7 *) |
|
8 |
|
9 CTT = Pure + |
|
10 |
|
11 types i,t,o 0 |
|
12 |
|
13 arities i,t,o :: logic |
|
14 |
|
15 consts |
|
16 (*Types*) |
|
17 F,T :: "t" (*F is empty, T contains one element*) |
|
18 contr :: "i=>i" |
|
19 tt :: "i" |
|
20 (*Natural numbers*) |
|
21 N :: "t" |
|
22 succ :: "i=>i" |
|
23 rec :: "[i, i, [i,i]=>i] => i" |
|
24 (*Unions*) |
|
25 inl,inr :: "i=>i" |
|
26 when :: "[i, i=>i, i=>i]=>i" |
|
27 (*General Sum and Binary Product*) |
|
28 Sum :: "[t, i=>t]=>t" |
|
29 fst,snd :: "i=>i" |
|
30 split :: "[i, [i,i]=>i] =>i" |
|
31 (*General Product and Function Space*) |
|
32 Prod :: "[t, i=>t]=>t" |
|
33 (*Equality type*) |
|
34 Eq :: "[t,i,i]=>t" |
|
35 eq :: "i" |
|
36 (*Judgements*) |
|
37 Type :: "t => prop" ("(_ type)" [10] 5) |
|
38 Eqtype :: "[t,t]=>prop" ("(3_ =/ _)" [10,10] 5) |
|
39 Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) |
|
40 Eqelem :: "[i,i,t]=>prop" ("(3_ =/ _ :/ _)" [10,10,10] 5) |
|
41 Reduce :: "[i,i]=>prop" ("Reduce[_,_]") |
|
42 (*Types*) |
|
43 "@PROD" :: "[id,t,t]=>t" ("(3PROD _:_./ _)" 10) |
|
44 "@SUM" :: "[id,t,t]=>t" ("(3SUM _:_./ _)" 10) |
|
45 "+" :: "[t,t]=>t" (infixr 40) |
|
46 (*Invisible infixes!*) |
|
47 "@-->" :: "[t,t]=>t" ("(_ -->/ _)" [31,30] 30) |
|
48 "@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50) |
|
49 (*Functions*) |
|
50 lambda :: "(i => i) => i" (binder "lam " 10) |
|
51 "`" :: "[i,i]=>i" (infixl 60) |
|
52 (*Natural numbers*) |
|
53 "0" :: "i" ("0") |
|
54 (*Pairing*) |
|
55 pair :: "[i,i]=>i" ("(1<_,/_>)") |
|
56 |
|
57 translations |
|
58 "PROD x:A. B" => "Prod(A, %x. B)" |
|
59 "SUM x:A. B" => "Sum(A, %x. B)" |
|
60 |
|
61 rules |
|
62 |
|
63 (*Reduction: a weaker notion than equality; a hack for simplification. |
|
64 Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" |
|
65 are textually identical.*) |
|
66 |
|
67 (*does not verify a:A! Sound because only trans_red uses a Reduce premise |
|
68 No new theorems can be proved about the standard judgements.*) |
|
69 refl_red "Reduce[a,a]" |
|
70 red_if_equal "a = b : A ==> Reduce[a,b]" |
|
71 trans_red "[| a = b : A; Reduce[b,c] |] ==> a = c : A" |
|
72 |
|
73 (*Reflexivity*) |
|
74 |
|
75 refl_type "A type ==> A = A" |
|
76 refl_elem "a : A ==> a = a : A" |
|
77 |
|
78 (*Symmetry*) |
|
79 |
|
80 sym_type "A = B ==> B = A" |
|
81 sym_elem "a = b : A ==> b = a : A" |
|
82 |
|
83 (*Transitivity*) |
|
84 |
|
85 trans_type "[| A = B; B = C |] ==> A = C" |
|
86 trans_elem "[| a = b : A; b = c : A |] ==> a = c : A" |
|
87 |
|
88 equal_types "[| a : A; A = B |] ==> a : B" |
|
89 equal_typesL "[| a = b : A; A = B |] ==> a = b : B" |
|
90 |
|
91 (*Substitution*) |
|
92 |
|
93 subst_type "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" |
|
94 subst_typeL "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" |
|
95 |
|
96 subst_elem "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" |
|
97 subst_elemL |
|
98 "[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" |
|
99 |
|
100 |
|
101 (*The type N -- natural numbers*) |
|
102 |
|
103 NF "N type" |
|
104 NI0 "0 : N" |
|
105 NI_succ "a : N ==> succ(a) : N" |
|
106 NI_succL "a = b : N ==> succ(a) = succ(b) : N" |
|
107 |
|
108 NE |
|
109 "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ |
|
110 \ ==> rec(p, a, %u v.b(u,v)) : C(p)" |
|
111 |
|
112 NEL |
|
113 "[| p = q : N; a = c : C(0); \ |
|
114 \ !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] \ |
|
115 \ ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)" |
|
116 |
|
117 NC0 |
|
118 "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \ |
|
119 \ ==> rec(0, a, %u v.b(u,v)) = a : C(0)" |
|
120 |
|
121 NC_succ |
|
122 "[| p: N; a: C(0); \ |
|
123 \ !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> \ |
|
124 \ rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))" |
|
125 |
|
126 (*The fourth Peano axiom. See page 91 of Martin-Lof's book*) |
|
127 zero_ne_succ |
|
128 "[| a: N; 0 = succ(a) : N |] ==> 0: F" |
|
129 |
|
130 |
|
131 (*The Product of a family of types*) |
|
132 |
|
133 ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type" |
|
134 |
|
135 ProdFL |
|
136 "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> \ |
|
137 \ PROD x:A.B(x) = PROD x:C.D(x)" |
|
138 |
|
139 ProdI |
|
140 "[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)" |
|
141 |
|
142 ProdIL |
|
143 "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> \ |
|
144 \ lam x.b(x) = lam x.c(x) : PROD x:A.B(x)" |
|
145 |
|
146 ProdE "[| p : PROD x:A.B(x); a : A |] ==> p`a : B(a)" |
|
147 ProdEL "[| p=q: PROD x:A.B(x); a=b : A |] ==> p`a = q`b : B(a)" |
|
148 |
|
149 ProdC |
|
150 "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> \ |
|
151 \ (lam x.b(x)) ` a = b(a) : B(a)" |
|
152 |
|
153 ProdC2 |
|
154 "p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)" |
|
155 |
|
156 |
|
157 (*The Sum of a family of types*) |
|
158 |
|
159 SumF "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type" |
|
160 SumFL |
|
161 "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A.B(x) = SUM x:C.D(x)" |
|
162 |
|
163 SumI "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A.B(x)" |
|
164 SumIL "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)" |
|
165 |
|
166 SumE |
|
167 "[| p: SUM x:A.B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \ |
|
168 \ ==> split(p, %x y.c(x,y)) : C(p)" |
|
169 |
|
170 SumEL |
|
171 "[| p=q : SUM x:A.B(x); \ |
|
172 \ !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] \ |
|
173 \ ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)" |
|
174 |
|
175 SumC |
|
176 "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \ |
|
177 \ ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)" |
|
178 |
|
179 fst_def "fst(a) == split(a, %x y.x)" |
|
180 snd_def "snd(a) == split(a, %x y.y)" |
|
181 |
|
182 |
|
183 (*The sum of two types*) |
|
184 |
|
185 PlusF "[| A type; B type |] ==> A+B type" |
|
186 PlusFL "[| A = C; B = D |] ==> A+B = C+D" |
|
187 |
|
188 PlusI_inl "[| a : A; B type |] ==> inl(a) : A+B" |
|
189 PlusI_inlL "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" |
|
190 |
|
191 PlusI_inr "[| A type; b : B |] ==> inr(b) : A+B" |
|
192 PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" |
|
193 |
|
194 PlusE |
|
195 "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); \ |
|
196 \ !!y. y:B ==> d(y): C(inr(y)) |] \ |
|
197 \ ==> when(p, %x.c(x), %y.d(y)) : C(p)" |
|
198 |
|
199 PlusEL |
|
200 "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); \ |
|
201 \ !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] \ |
|
202 \ ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)" |
|
203 |
|
204 PlusC_inl |
|
205 "[| a: A; !!x. x:A ==> c(x): C(inl(x)); \ |
|
206 \ !!y. y:B ==> d(y): C(inr(y)) |] \ |
|
207 \ ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))" |
|
208 |
|
209 PlusC_inr |
|
210 "[| b: B; !!x. x:A ==> c(x): C(inl(x)); \ |
|
211 \ !!y. y:B ==> d(y): C(inr(y)) |] \ |
|
212 \ ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))" |
|
213 |
|
214 |
|
215 (*The type Eq*) |
|
216 |
|
217 EqF "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" |
|
218 EqFL "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" |
|
219 EqI "a = b : A ==> eq : Eq(A,a,b)" |
|
220 EqE "p : Eq(A,a,b) ==> a = b : A" |
|
221 |
|
222 (*By equality of types, can prove C(p) from C(eq), an elimination rule*) |
|
223 EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" |
|
224 |
|
225 (*The type F*) |
|
226 |
|
227 FF "F type" |
|
228 FE "[| p: F; C type |] ==> contr(p) : C" |
|
229 FEL "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" |
|
230 |
|
231 (*The type T |
|
232 Martin-Lof's book (page 68) discusses elimination and computation. |
|
233 Elimination can be derived by computation and equality of types, |
|
234 but with an extra premise C(x) type x:T. |
|
235 Also computation can be derived from elimination. *) |
|
236 |
|
237 TF "T type" |
|
238 TI "tt : T" |
|
239 TE "[| p : T; c : C(tt) |] ==> c : C(p)" |
|
240 TEL "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" |
|
241 TC "p : T ==> p = tt : T" |
|
242 end |
|
243 |
|
244 |
|
245 ML |
|
246 |
|
247 val parse_translation = |
|
248 [("@-->", ndependent_tr "Prod"), ("@*", ndependent_tr "Sum")]; |
|
249 |
|
250 val print_translation = |
|
251 [("Prod", dependent_tr' ("@PROD", "@-->")), |
|
252 ("Sum", dependent_tr' ("@SUM", "@*"))]; |
|
253 |