equal
deleted
inserted
replaced
462 lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re] |
462 lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re] |
463 lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im] |
463 lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im] |
464 lemmas Re_suminf = bounded_linear.suminf[OF bounded_linear_Re] |
464 lemmas Re_suminf = bounded_linear.suminf[OF bounded_linear_Re] |
465 lemmas Im_suminf = bounded_linear.suminf[OF bounded_linear_Im] |
465 lemmas Im_suminf = bounded_linear.suminf[OF bounded_linear_Im] |
466 |
466 |
|
467 lemma continuous_on_Complex [continuous_intros]: |
|
468 "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. Complex (f x) (g x))" |
|
469 unfolding Complex_eq by (intro continuous_intros) |
|
470 |
467 lemma tendsto_Complex [tendsto_intros]: |
471 lemma tendsto_Complex [tendsto_intros]: |
468 "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F" |
472 "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F" |
469 unfolding Complex_eq by (auto intro!: tendsto_intros) |
473 unfolding Complex_eq by (auto intro!: tendsto_intros) |
470 |
474 |
471 lemma tendsto_complex_iff: |
475 lemma tendsto_complex_iff: |
870 by (metis complex_div_cnj div_by_1 mult_1 of_real_1 power2_eq_square) |
874 by (metis complex_div_cnj div_by_1 mult_1 of_real_1 power2_eq_square) |
871 |
875 |
872 lemma i_not_in_Reals [simp, intro]: "\<i> \<notin> \<real>" |
876 lemma i_not_in_Reals [simp, intro]: "\<i> \<notin> \<real>" |
873 by (auto simp: complex_is_Real_iff) |
877 by (auto simp: complex_is_Real_iff) |
874 |
878 |
875 lemma powr_power_complex: "z \<noteq> 0 \<or> n \<noteq> 0 \<Longrightarrow> (z powr u :: complex) ^ n = z powr (of_nat n * u)" |
|
876 by (induction n) (auto simp: algebra_simps powr_add) |
|
877 |
|
878 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)" |
879 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)" |
879 by (auto simp add: DeMoivre) |
880 by (auto simp add: DeMoivre) |
880 |
881 |
881 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)" |
882 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)" |
882 by (auto simp add: DeMoivre) |
883 by (auto simp add: DeMoivre) |