src/HOL/Complex.thy
changeset 78685 07c35dec9dac
parent 77278 e20f5b9ad776
child 78698 1b9388e6eb75
equal deleted inserted replaced
78670:f8595f6d39a5 78685:07c35dec9dac
   462 lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re]
   462 lemmas sums_Re = bounded_linear.sums [OF bounded_linear_Re]
   463 lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im]
   463 lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im]
   464 lemmas Re_suminf = bounded_linear.suminf[OF bounded_linear_Re]
   464 lemmas Re_suminf = bounded_linear.suminf[OF bounded_linear_Re]
   465 lemmas Im_suminf = bounded_linear.suminf[OF bounded_linear_Im]
   465 lemmas Im_suminf = bounded_linear.suminf[OF bounded_linear_Im]
   466 
   466 
       
   467 lemma continuous_on_Complex [continuous_intros]:
       
   468   "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> continuous_on A (\<lambda>x. Complex (f x) (g x))"
       
   469   unfolding Complex_eq by (intro continuous_intros)
       
   470 
   467 lemma tendsto_Complex [tendsto_intros]:
   471 lemma tendsto_Complex [tendsto_intros]:
   468   "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F"
   472   "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) \<longlongrightarrow> Complex a b) F"
   469   unfolding Complex_eq by (auto intro!: tendsto_intros)
   473   unfolding Complex_eq by (auto intro!: tendsto_intros)
   470 
   474 
   471 lemma tendsto_complex_iff:
   475 lemma tendsto_complex_iff:
   870   by (metis complex_div_cnj div_by_1 mult_1 of_real_1 power2_eq_square)
   874   by (metis complex_div_cnj div_by_1 mult_1 of_real_1 power2_eq_square)
   871 
   875 
   872 lemma i_not_in_Reals [simp, intro]: "\<i> \<notin> \<real>"
   876 lemma i_not_in_Reals [simp, intro]: "\<i> \<notin> \<real>"
   873   by (auto simp: complex_is_Real_iff)
   877   by (auto simp: complex_is_Real_iff)
   874 
   878 
   875 lemma powr_power_complex: "z \<noteq> 0 \<or> n \<noteq> 0 \<Longrightarrow> (z powr u :: complex) ^ n = z powr (of_nat n * u)"
       
   876   by (induction n) (auto simp: algebra_simps powr_add)
       
   877   
       
   878 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)"
   879 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re (cis a ^ n)"
   879   by (auto simp add: DeMoivre)
   880   by (auto simp add: DeMoivre)
   880 
   881 
   881 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)"
   882 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im (cis a ^ n)"
   882   by (auto simp add: DeMoivre)
   883   by (auto simp add: DeMoivre)