equal
deleted
inserted
replaced
317 by (auto simp add: in_respects) |
317 by (auto simp add: in_respects) |
318 |
318 |
319 lemma ball_reg_right: |
319 lemma ball_reg_right: |
320 assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x" |
320 assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x" |
321 shows "All P \<longrightarrow> Ball R Q" |
321 shows "All P \<longrightarrow> Ball R Q" |
322 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
322 using a by (metis Collect_def Collect_mem_eq) |
323 |
323 |
324 lemma bex_reg_left: |
324 lemma bex_reg_left: |
325 assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x" |
325 assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x" |
326 shows "Bex R Q \<longrightarrow> Ex P" |
326 shows "Bex R Q \<longrightarrow> Ex P" |
327 using a by (metis COMBC_def Collect_def Collect_mem_eq) |
327 using a by (metis Collect_def Collect_mem_eq) |
328 |
328 |
329 lemma ball_reg_left: |
329 lemma ball_reg_left: |
330 assumes a: "equivp R" |
330 assumes a: "equivp R" |
331 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" |
331 shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P" |
332 using a by (metis equivp_reflp in_respects) |
332 using a by (metis equivp_reflp in_respects) |
379 |
379 |
380 lemma ball_reg: |
380 lemma ball_reg: |
381 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
381 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
382 and b: "Ball R P" |
382 and b: "Ball R P" |
383 shows "Ball R Q" |
383 shows "Ball R Q" |
384 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
384 using a b by (metis Collect_def Collect_mem_eq) |
385 |
385 |
386 lemma bex_reg: |
386 lemma bex_reg: |
387 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
387 assumes a: "!x :: 'a. (R x --> P x --> Q x)" |
388 and b: "Bex R P" |
388 and b: "Bex R P" |
389 shows "Bex R Q" |
389 shows "Bex R Q" |
390 using a b by (metis COMBC_def Collect_def Collect_mem_eq) |
390 using a b by (metis Collect_def Collect_mem_eq) |
391 |
391 |
392 |
392 |
393 lemma ball_all_comm: |
393 lemma ball_all_comm: |
394 assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)" |
394 assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)" |
395 shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)" |
395 shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)" |