src/HOL/Parity.thy
changeset 28952 15a4b2cf8c34
parent 27668 6eb20b2cecf8
child 29608 564ea783ace8
equal deleted inserted replaced
28948:1860f016886d 28952:15a4b2cf8c34
       
     1 (*  Title:      HOL/Library/Parity.thy
       
     2     Author:     Jeremy Avigad, Jacques D. Fleuriot
       
     3 *)
       
     4 
       
     5 header {* Even and Odd for int and nat *}
       
     6 
       
     7 theory Parity
       
     8 imports Plain Presburger
       
     9 begin
       
    10 
       
    11 class even_odd = type + 
       
    12   fixes even :: "'a \<Rightarrow> bool"
       
    13 
       
    14 abbreviation
       
    15   odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where
       
    16   "odd x \<equiv> \<not> even x"
       
    17 
       
    18 instantiation nat and int  :: even_odd
       
    19 begin
       
    20 
       
    21 definition
       
    22   even_def [presburger]: "even x \<longleftrightarrow> (x\<Colon>int) mod 2 = 0"
       
    23 
       
    24 definition
       
    25   even_nat_def [presburger]: "even x \<longleftrightarrow> even (int x)"
       
    26 
       
    27 instance ..
       
    28 
       
    29 end
       
    30 
       
    31 
       
    32 subsection {* Even and odd are mutually exclusive *}
       
    33 
       
    34 lemma int_pos_lt_two_imp_zero_or_one:
       
    35     "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
       
    36   by presburger
       
    37 
       
    38 lemma neq_one_mod_two [simp, presburger]: 
       
    39   "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
       
    40 
       
    41 
       
    42 subsection {* Behavior under integer arithmetic operations *}
       
    43 declare dvd_def[algebra]
       
    44 lemma nat_even_iff_2_dvd[algebra]: "even (x::nat) \<longleftrightarrow> 2 dvd x"
       
    45   by (presburger add: even_nat_def even_def)
       
    46 lemma int_even_iff_2_dvd[algebra]: "even (x::int) \<longleftrightarrow> 2 dvd x"
       
    47   by presburger
       
    48 
       
    49 lemma even_times_anything: "even (x::int) ==> even (x * y)"
       
    50   by algebra
       
    51 
       
    52 lemma anything_times_even: "even (y::int) ==> even (x * y)" by algebra
       
    53 
       
    54 lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)" 
       
    55   by (simp add: even_def zmod_zmult1_eq)
       
    56 
       
    57 lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
       
    58   apply (auto simp add: even_times_anything anything_times_even)
       
    59   apply (rule ccontr)
       
    60   apply (auto simp add: odd_times_odd)
       
    61   done
       
    62 
       
    63 lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
       
    64   by presburger
       
    65 
       
    66 lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
       
    67   by presburger
       
    68 
       
    69 lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
       
    70   by presburger
       
    71 
       
    72 lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
       
    73 
       
    74 lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
       
    75   by presburger
       
    76 
       
    77 lemma even_neg[presburger, algebra]: "even (-(x::int)) = even x" by presburger
       
    78 
       
    79 lemma even_difference:
       
    80     "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
       
    81 
       
    82 lemma even_pow_gt_zero:
       
    83     "even (x::int) ==> 0 < n ==> even (x^n)"
       
    84   by (induct n) (auto simp add: even_product)
       
    85 
       
    86 lemma odd_pow_iff[presburger, algebra]: 
       
    87   "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
       
    88   apply (induct n, simp_all)
       
    89   apply presburger
       
    90   apply (case_tac n, auto)
       
    91   apply (simp_all add: even_product)
       
    92   done
       
    93 
       
    94 lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff)
       
    95 
       
    96 lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)"
       
    97   apply (auto simp add: even_pow_gt_zero)
       
    98   apply (erule contrapos_pp, erule odd_pow)
       
    99   apply (erule contrapos_pp, simp add: even_def)
       
   100   done
       
   101 
       
   102 lemma even_zero[presburger]: "even (0::int)" by presburger
       
   103 
       
   104 lemma odd_one[presburger]: "odd (1::int)" by presburger
       
   105 
       
   106 lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero
       
   107   odd_one even_product even_sum even_neg even_difference even_power
       
   108 
       
   109 
       
   110 subsection {* Equivalent definitions *}
       
   111 
       
   112 lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
       
   113   by presburger
       
   114 
       
   115 lemma two_times_odd_div_two_plus_one: "odd (x::int) ==>
       
   116     2 * (x div 2) + 1 = x" by presburger
       
   117 
       
   118 lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
       
   119 
       
   120 lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
       
   121 
       
   122 subsection {* even and odd for nats *}
       
   123 
       
   124 lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
       
   125   by (simp add: even_nat_def)
       
   126 
       
   127 lemma even_nat_product[presburger, algebra]: "even((x::nat) * y) = (even x | even y)"
       
   128   by (simp add: even_nat_def int_mult)
       
   129 
       
   130 lemma even_nat_sum[presburger, algebra]: "even ((x::nat) + y) =
       
   131     ((even x & even y) | (odd x & odd y))" by presburger
       
   132 
       
   133 lemma even_nat_difference[presburger, algebra]:
       
   134     "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
       
   135 by presburger
       
   136 
       
   137 lemma even_nat_Suc[presburger, algebra]: "even (Suc x) = odd x" by presburger
       
   138 
       
   139 lemma even_nat_power[presburger, algebra]: "even ((x::nat)^y) = (even x & 0 < y)"
       
   140   by (simp add: even_nat_def int_power)
       
   141 
       
   142 lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
       
   143 
       
   144 lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
       
   145   even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
       
   146 
       
   147 
       
   148 subsection {* Equivalent definitions *}
       
   149 
       
   150 lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==>
       
   151     x = 0 | x = Suc 0" by presburger
       
   152 
       
   153 lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
       
   154   by presburger
       
   155 
       
   156 lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
       
   157 by presburger
       
   158 
       
   159 lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
       
   160   by presburger
       
   161 
       
   162 lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
       
   163   by presburger
       
   164 
       
   165 lemma even_nat_div_two_times_two: "even (x::nat) ==>
       
   166     Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
       
   167 
       
   168 lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
       
   169     Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
       
   170 
       
   171 lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
       
   172   by presburger
       
   173 
       
   174 lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
       
   175   by presburger
       
   176 
       
   177 
       
   178 subsection {* Parity and powers *}
       
   179 
       
   180 lemma  minus_one_even_odd_power:
       
   181      "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
       
   182       (odd x --> (- 1::'a)^x = - 1)"
       
   183   apply (induct x)
       
   184   apply (rule conjI)
       
   185   apply simp
       
   186   apply (insert even_nat_zero, blast)
       
   187   apply (simp add: power_Suc)
       
   188   done
       
   189 
       
   190 lemma minus_one_even_power [simp]:
       
   191     "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
       
   192   using minus_one_even_odd_power by blast
       
   193 
       
   194 lemma minus_one_odd_power [simp]:
       
   195     "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
       
   196   using minus_one_even_odd_power by blast
       
   197 
       
   198 lemma neg_one_even_odd_power:
       
   199      "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
       
   200       (odd x --> (-1::'a)^x = -1)"
       
   201   apply (induct x)
       
   202   apply (simp, simp add: power_Suc)
       
   203   done
       
   204 
       
   205 lemma neg_one_even_power [simp]:
       
   206     "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
       
   207   using neg_one_even_odd_power by blast
       
   208 
       
   209 lemma neg_one_odd_power [simp]:
       
   210     "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
       
   211   using neg_one_even_odd_power by blast
       
   212 
       
   213 lemma neg_power_if:
       
   214      "(-x::'a::{comm_ring_1,recpower}) ^ n =
       
   215       (if even n then (x ^ n) else -(x ^ n))"
       
   216   apply (induct n)
       
   217   apply (simp_all split: split_if_asm add: power_Suc)
       
   218   done
       
   219 
       
   220 lemma zero_le_even_power: "even n ==>
       
   221     0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
       
   222   apply (simp add: even_nat_equiv_def2)
       
   223   apply (erule exE)
       
   224   apply (erule ssubst)
       
   225   apply (subst power_add)
       
   226   apply (rule zero_le_square)
       
   227   done
       
   228 
       
   229 lemma zero_le_odd_power: "odd n ==>
       
   230     (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
       
   231   apply (simp add: odd_nat_equiv_def2)
       
   232   apply (erule exE)
       
   233   apply (erule ssubst)
       
   234   apply (subst power_Suc)
       
   235   apply (subst power_add)
       
   236   apply (subst zero_le_mult_iff)
       
   237   apply auto
       
   238   apply (subgoal_tac "x = 0 & y > 0")
       
   239   apply (erule conjE, assumption)
       
   240   apply (subst power_eq_0_iff [symmetric])
       
   241   apply (subgoal_tac "0 <= x^y * x^y")
       
   242   apply simp
       
   243   apply (rule zero_le_square)+
       
   244   done
       
   245 
       
   246 lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
       
   247     (even n | (odd n & 0 <= x))"
       
   248   apply auto
       
   249   apply (subst zero_le_odd_power [symmetric])
       
   250   apply assumption+
       
   251   apply (erule zero_le_even_power)
       
   252   done
       
   253 
       
   254 lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
       
   255     (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
       
   256 
       
   257   unfolding order_less_le zero_le_power_eq by auto
       
   258 
       
   259 lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
       
   260     (odd n & x < 0)"
       
   261   apply (subst linorder_not_le [symmetric])+
       
   262   apply (subst zero_le_power_eq)
       
   263   apply auto
       
   264   done
       
   265 
       
   266 lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
       
   267     (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
       
   268   apply (subst linorder_not_less [symmetric])+
       
   269   apply (subst zero_less_power_eq)
       
   270   apply auto
       
   271   done
       
   272 
       
   273 lemma power_even_abs: "even n ==>
       
   274     (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
       
   275   apply (subst power_abs [symmetric])
       
   276   apply (simp add: zero_le_even_power)
       
   277   done
       
   278 
       
   279 lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
       
   280   by (induct n) auto
       
   281 
       
   282 lemma power_minus_even [simp]: "even n ==>
       
   283     (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
       
   284   apply (subst power_minus)
       
   285   apply simp
       
   286   done
       
   287 
       
   288 lemma power_minus_odd [simp]: "odd n ==>
       
   289     (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
       
   290   apply (subst power_minus)
       
   291   apply simp
       
   292   done
       
   293 
       
   294 
       
   295 subsection {* General Lemmas About Division *}
       
   296 
       
   297 lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" 
       
   298 apply (induct "m")
       
   299 apply (simp_all add: mod_Suc)
       
   300 done
       
   301 
       
   302 declare Suc_times_mod_eq [of "number_of w", standard, simp]
       
   303 
       
   304 lemma [simp]: "n div k \<le> (Suc n) div k"
       
   305 by (simp add: div_le_mono) 
       
   306 
       
   307 lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
       
   308 by arith
       
   309 
       
   310 lemma div_2_gt_zero [simp]: "(1::nat) < n ==> 0 < n div 2" 
       
   311 by arith
       
   312 
       
   313   (* Potential use of algebra : Equality modulo n*)
       
   314 lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
       
   315 by (simp add: mult_ac add_ac)
       
   316 
       
   317 lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
       
   318 proof -
       
   319   have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
       
   320   also have "... = Suc m mod n" by (rule mod_mult_self3) 
       
   321   finally show ?thesis .
       
   322 qed
       
   323 
       
   324 lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
       
   325 apply (subst mod_Suc [of m]) 
       
   326 apply (subst mod_Suc [of "m mod n"], simp) 
       
   327 done
       
   328 
       
   329 
       
   330 subsection {* More Even/Odd Results *}
       
   331  
       
   332 lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger
       
   333 lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger
       
   334 lemma even_add [simp]: "even(m + n::nat) = (even m = even n)"  by presburger
       
   335 
       
   336 lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger
       
   337 
       
   338 lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
       
   339     (a mod c + Suc 0 mod c) div c" 
       
   340   apply (subgoal_tac "Suc a = a + Suc 0")
       
   341   apply (erule ssubst)
       
   342   apply (rule div_add1_eq, simp)
       
   343   done
       
   344 
       
   345 lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger
       
   346 
       
   347 lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)"
       
   348 by presburger
       
   349 
       
   350 lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))"  by presburger
       
   351 lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger
       
   352 
       
   353 lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger
       
   354 
       
   355 lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)"
       
   356   by presburger
       
   357 
       
   358 text {* Simplify, when the exponent is a numeral *}
       
   359 
       
   360 lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
       
   361 declare power_0_left_number_of [simp]
       
   362 
       
   363 lemmas zero_le_power_eq_number_of [simp] =
       
   364     zero_le_power_eq [of _ "number_of w", standard]
       
   365 
       
   366 lemmas zero_less_power_eq_number_of [simp] =
       
   367     zero_less_power_eq [of _ "number_of w", standard]
       
   368 
       
   369 lemmas power_le_zero_eq_number_of [simp] =
       
   370     power_le_zero_eq [of _ "number_of w", standard]
       
   371 
       
   372 lemmas power_less_zero_eq_number_of [simp] =
       
   373     power_less_zero_eq [of _ "number_of w", standard]
       
   374 
       
   375 lemmas zero_less_power_nat_eq_number_of [simp] =
       
   376     zero_less_power_nat_eq [of _ "number_of w", standard]
       
   377 
       
   378 lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]
       
   379 
       
   380 lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]
       
   381 
       
   382 
       
   383 subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
       
   384 
       
   385 lemma even_power_le_0_imp_0:
       
   386     "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
       
   387   by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)
       
   388 
       
   389 lemma zero_le_power_iff[presburger]:
       
   390   "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
       
   391 proof cases
       
   392   assume even: "even n"
       
   393   then obtain k where "n = 2*k"
       
   394     by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
       
   395   thus ?thesis by (simp add: zero_le_even_power even)
       
   396 next
       
   397   assume odd: "odd n"
       
   398   then obtain k where "n = Suc(2*k)"
       
   399     by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
       
   400   thus ?thesis
       
   401     by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power
       
   402              dest!: even_power_le_0_imp_0)
       
   403 qed
       
   404 
       
   405 
       
   406 subsection {* Miscellaneous *}
       
   407 
       
   408 lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger
       
   409 
       
   410 lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
       
   411 lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
       
   412 lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
       
   413 lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
       
   414 
       
   415 lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
       
   416 lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
       
   417 lemma even_nat_plus_one_div_two: "even (x::nat) ==>
       
   418     (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
       
   419 
       
   420 lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
       
   421     (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger
       
   422 
       
   423 end