src/HOL/Matrix_LP/ComputeFloat.thy
changeset 47108 2a1953f0d20d
parent 46988 9f492f5b0cec
child 47455 26315a545e26
equal deleted inserted replaced
47107:35807a5d8dc2 47108:2a1953f0d20d
    73   have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
    73   have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
    74   also have "\<dots> = True" by (simp only: real_is_int_real)
    74   also have "\<dots> = True" by (simp only: real_is_int_real)
    75   ultimately show ?thesis by auto
    75   ultimately show ?thesis by auto
    76 qed
    76 qed
    77 
    77 
    78 lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
    78 lemma real_is_int_numeral[simp]: "real_is_int (numeral x)"
    79   by (auto simp: real_is_int_def intro!: exI[of _ "number_of x"])
    79   by (auto simp: real_is_int_def intro!: exI[of _ "numeral x"])
       
    80 
       
    81 lemma real_is_int_neg_numeral[simp]: "real_is_int (neg_numeral x)"
       
    82   by (auto simp: real_is_int_def intro!: exI[of _ "neg_numeral x"])
    80 
    83 
    81 lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
    84 lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
    82 by (simp add: int_of_real_def)
    85 by (simp add: int_of_real_def)
    83 
    86 
    84 lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
    87 lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
    85 proof -
    88 proof -
    86   have 1: "(1::real) = real (1::int)" by auto
    89   have 1: "(1::real) = real (1::int)" by auto
    87   show ?thesis by (simp only: 1 int_of_real_real)
    90   show ?thesis by (simp only: 1 int_of_real_real)
    88 qed
    91 qed
    89 
    92 
    90 lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
    93 lemma int_of_real_numeral[simp]: "int_of_real (numeral b) = numeral b"
    91   unfolding int_of_real_def
    94   unfolding int_of_real_def
    92   by (intro some_equality)
    95   by (intro some_equality)
    93      (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
    96      (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
    94 
    97 
       
    98 lemma int_of_real_neg_numeral[simp]: "int_of_real (neg_numeral b) = neg_numeral b"
       
    99   unfolding int_of_real_def
       
   100   by (intro some_equality)
       
   101      (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
       
   102 
    95 lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
   103 lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
    96 by (rule zdiv_int)
   104 by (rule zdiv_int)
    97 
   105 
    98 lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
   106 lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
    99 by (rule zmod_int)
   107 by (rule zmod_int)
   100 
   108 
   101 lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
   109 lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
   102 by arith
   110 by arith
   103 
   111 
   104 lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
   112 lemma norm_0_1: "(1::_::numeral) = Numeral1"
   105   by auto
   113   by auto
   106 
   114 
   107 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
   115 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
   108   by simp
   116   by simp
   109 
   117 
   114   by simp
   122   by simp
   115 
   123 
   116 lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
   124 lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
   117   by simp
   125   by simp
   118 
   126 
   119 lemma int_pow_0: "(a::int)^(Numeral0) = 1"
   127 lemma int_pow_0: "(a::int)^0 = 1"
   120   by simp
   128   by simp
   121 
   129 
   122 lemma int_pow_1: "(a::int)^(Numeral1) = a"
   130 lemma int_pow_1: "(a::int)^(Numeral1) = a"
   123   by simp
   131   by simp
   124 
   132 
   125 lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
   133 lemma one_eq_Numeral1_nring: "(1::'a::numeral) = Numeral1"
   126   by simp
       
   127 
       
   128 lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
       
   129   by simp
       
   130 
       
   131 lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
       
   132   by simp
   134   by simp
   133 
   135 
   134 lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
   136 lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
   135   by simp
   137   by simp
   136 
   138 
   137 lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
   139 lemma zpower_Pls: "(z::int)^0 = Numeral1"
   138   by simp
   140   by simp
   139 
       
   140 lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
       
   141 proof -
       
   142   have 1:"((-1)::nat) = 0"
       
   143     by simp
       
   144   show ?thesis by (simp add: 1)
       
   145 qed
       
   146 
   141 
   147 lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
   142 lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
   148   by simp
   143   by simp
   149 
   144 
   150 lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
   145 lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
   158 
   153 
   159 lemma not_false_eq_true: "(~ False) = True" by simp
   154 lemma not_false_eq_true: "(~ False) = True" by simp
   160 
   155 
   161 lemma not_true_eq_false: "(~ True) = False" by simp
   156 lemma not_true_eq_false: "(~ True) = False" by simp
   162 
   157 
   163 lemmas binarith =
   158 lemmas powerarith = nat_numeral zpower_numeral_even
   164   normalize_bin_simps
   159   zpower_numeral_odd zpower_Pls
   165   pred_bin_simps succ_bin_simps
       
   166   add_bin_simps minus_bin_simps mult_bin_simps
       
   167 
       
   168 lemma int_eq_number_of_eq:
       
   169   "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)"
       
   170   by (rule eq_number_of_eq)
       
   171 
       
   172 lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)"
       
   173   by (simp only: iszero_number_of_Pls)
       
   174 
       
   175 lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
       
   176   by simp
       
   177 
       
   178 lemma int_iszero_number_of_Bit0: "iszero ((number_of (Int.Bit0 w))::int) = iszero ((number_of w)::int)"
       
   179   by simp
       
   180 
       
   181 lemma int_iszero_number_of_Bit1: "\<not> iszero ((number_of (Int.Bit1 w))::int)"
       
   182   by simp
       
   183 
       
   184 lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
       
   185   unfolding neg_def number_of_is_id by simp
       
   186 
       
   187 lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))"
       
   188   by simp
       
   189 
       
   190 lemma int_neg_number_of_Min: "neg (-1::int)"
       
   191   by simp
       
   192 
       
   193 lemma int_neg_number_of_Bit0: "neg ((number_of (Int.Bit0 w))::int) = neg ((number_of w)::int)"
       
   194   by simp
       
   195 
       
   196 lemma int_neg_number_of_Bit1: "neg ((number_of (Int.Bit1 w))::int) = neg ((number_of w)::int)"
       
   197   by simp
       
   198 
       
   199 lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
       
   200   unfolding neg_def number_of_is_id by (simp add: not_less)
       
   201 
       
   202 lemmas intarithrel =
       
   203   int_eq_number_of_eq
       
   204   lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_Bit0
       
   205   lift_bool[OF int_iszero_number_of_Bit1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min]
       
   206   int_neg_number_of_Bit0 int_neg_number_of_Bit1 int_le_number_of_eq
       
   207 
       
   208 lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
       
   209   by simp
       
   210 
       
   211 lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
       
   212   by simp
       
   213 
       
   214 lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)"
       
   215   by simp
       
   216 
       
   217 lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
       
   218   by simp
       
   219 
       
   220 lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym
       
   221 
       
   222 lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
       
   223 
       
   224 lemmas powerarith = nat_number_of zpower_number_of_even
       
   225   zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
       
   226   zpower_Pls zpower_Min
       
   227 
   160 
   228 definition float :: "(int \<times> int) \<Rightarrow> real" where
   161 definition float :: "(int \<times> int) \<Rightarrow> real" where
   229   "float = (\<lambda>(a, b). real a * 2 powr real b)"
   162   "float = (\<lambda>(a, b). real a * 2 powr real b)"
   230 
   163 
   231 lemma float_add_l0: "float (0, e) + x = x"
   164 lemma float_add_l0: "float (0, e) + x = x"
   300 
   233 
   301 lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
   234 lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
   302           float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
   235           float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
   303 
   236 
   304 (* for use with the compute oracle *)
   237 (* for use with the compute oracle *)
   305 lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
   238 lemmas arith = arith_simps rel_simps diff_nat_numeral nat_0
       
   239   nat_neg_numeral powerarith floatarith not_false_eq_true not_true_eq_false
   306 
   240 
   307 use "~~/src/HOL/Tools/float_arith.ML"
   241 use "~~/src/HOL/Tools/float_arith.ML"
   308 
   242 
   309 end
   243 end