src/HOL/Matrix_LP/ComputeFloat.thy
changeset 46988 9f492f5b0cec
parent 45495 c55a07526dbe
child 47108 2a1953f0d20d
equal deleted inserted replaced
46987:15ce93dfe6da 46988:9f492f5b0cec
       
     1 (*  Title:      HOL/Matrix/ComputeFloat.thy
       
     2     Author:     Steven Obua
       
     3 *)
       
     4 
       
     5 header {* Floating Point Representation of the Reals *}
       
     6 
       
     7 theory ComputeFloat
       
     8 imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras"
       
     9 uses "~~/src/Tools/float.ML" ("~~/src/HOL/Tools/float_arith.ML")
       
    10 begin
       
    11 
       
    12 definition int_of_real :: "real \<Rightarrow> int"
       
    13   where "int_of_real x = (SOME y. real y = x)"
       
    14 
       
    15 definition real_is_int :: "real \<Rightarrow> bool"
       
    16   where "real_is_int x = (EX (u::int). x = real u)"
       
    17 
       
    18 lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
       
    19   by (auto simp add: real_is_int_def int_of_real_def)
       
    20 
       
    21 lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
       
    22 by (auto simp add: real_is_int_def int_of_real_def)
       
    23 
       
    24 lemma int_of_real_real[simp]: "int_of_real (real x) = x"
       
    25 by (simp add: int_of_real_def)
       
    26 
       
    27 lemma real_int_of_real[simp]: "real_is_int x \<Longrightarrow> real (int_of_real x) = x"
       
    28 by (auto simp add: int_of_real_def real_is_int_def)
       
    29 
       
    30 lemma real_is_int_add_int_of_real: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)"
       
    31 by (auto simp add: int_of_real_def real_is_int_def)
       
    32 
       
    33 lemma real_is_int_add[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a+b)"
       
    34 apply (subst real_is_int_def2)
       
    35 apply (simp add: real_is_int_add_int_of_real real_int_of_real)
       
    36 done
       
    37 
       
    38 lemma int_of_real_sub: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)"
       
    39 by (auto simp add: int_of_real_def real_is_int_def)
       
    40 
       
    41 lemma real_is_int_sub[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a-b)"
       
    42 apply (subst real_is_int_def2)
       
    43 apply (simp add: int_of_real_sub real_int_of_real)
       
    44 done
       
    45 
       
    46 lemma real_is_int_rep: "real_is_int x \<Longrightarrow> ?! (a::int). real a = x"
       
    47 by (auto simp add: real_is_int_def)
       
    48 
       
    49 lemma int_of_real_mult:
       
    50   assumes "real_is_int a" "real_is_int b"
       
    51   shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
       
    52   using assms
       
    53   by (auto simp add: real_is_int_def real_of_int_mult[symmetric]
       
    54            simp del: real_of_int_mult)
       
    55 
       
    56 lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
       
    57 apply (subst real_is_int_def2)
       
    58 apply (simp add: int_of_real_mult)
       
    59 done
       
    60 
       
    61 lemma real_is_int_0[simp]: "real_is_int (0::real)"
       
    62 by (simp add: real_is_int_def int_of_real_def)
       
    63 
       
    64 lemma real_is_int_1[simp]: "real_is_int (1::real)"
       
    65 proof -
       
    66   have "real_is_int (1::real) = real_is_int(real (1::int))" by auto
       
    67   also have "\<dots> = True" by (simp only: real_is_int_real)
       
    68   ultimately show ?thesis by auto
       
    69 qed
       
    70 
       
    71 lemma real_is_int_n1: "real_is_int (-1::real)"
       
    72 proof -
       
    73   have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
       
    74   also have "\<dots> = True" by (simp only: real_is_int_real)
       
    75   ultimately show ?thesis by auto
       
    76 qed
       
    77 
       
    78 lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
       
    79   by (auto simp: real_is_int_def intro!: exI[of _ "number_of x"])
       
    80 
       
    81 lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
       
    82 by (simp add: int_of_real_def)
       
    83 
       
    84 lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
       
    85 proof -
       
    86   have 1: "(1::real) = real (1::int)" by auto
       
    87   show ?thesis by (simp only: 1 int_of_real_real)
       
    88 qed
       
    89 
       
    90 lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
       
    91   unfolding int_of_real_def
       
    92   by (intro some_equality)
       
    93      (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
       
    94 
       
    95 lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
       
    96 by (rule zdiv_int)
       
    97 
       
    98 lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
       
    99 by (rule zmod_int)
       
   100 
       
   101 lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
       
   102 by arith
       
   103 
       
   104 lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
       
   105   by auto
       
   106 
       
   107 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
       
   108   by simp
       
   109 
       
   110 lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
       
   111   by simp
       
   112 
       
   113 lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
       
   114   by simp
       
   115 
       
   116 lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
       
   117   by simp
       
   118 
       
   119 lemma int_pow_0: "(a::int)^(Numeral0) = 1"
       
   120   by simp
       
   121 
       
   122 lemma int_pow_1: "(a::int)^(Numeral1) = a"
       
   123   by simp
       
   124 
       
   125 lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
       
   126   by simp
       
   127 
       
   128 lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
       
   129   by simp
       
   130 
       
   131 lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
       
   132   by simp
       
   133 
       
   134 lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
       
   135   by simp
       
   136 
       
   137 lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
       
   138   by simp
       
   139 
       
   140 lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
       
   141 proof -
       
   142   have 1:"((-1)::nat) = 0"
       
   143     by simp
       
   144   show ?thesis by (simp add: 1)
       
   145 qed
       
   146 
       
   147 lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
       
   148   by simp
       
   149 
       
   150 lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
       
   151   by simp
       
   152 
       
   153 lemma lift_bool: "x \<Longrightarrow> x=True"
       
   154   by simp
       
   155 
       
   156 lemma nlift_bool: "~x \<Longrightarrow> x=False"
       
   157   by simp
       
   158 
       
   159 lemma not_false_eq_true: "(~ False) = True" by simp
       
   160 
       
   161 lemma not_true_eq_false: "(~ True) = False" by simp
       
   162 
       
   163 lemmas binarith =
       
   164   normalize_bin_simps
       
   165   pred_bin_simps succ_bin_simps
       
   166   add_bin_simps minus_bin_simps mult_bin_simps
       
   167 
       
   168 lemma int_eq_number_of_eq:
       
   169   "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)"
       
   170   by (rule eq_number_of_eq)
       
   171 
       
   172 lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)"
       
   173   by (simp only: iszero_number_of_Pls)
       
   174 
       
   175 lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
       
   176   by simp
       
   177 
       
   178 lemma int_iszero_number_of_Bit0: "iszero ((number_of (Int.Bit0 w))::int) = iszero ((number_of w)::int)"
       
   179   by simp
       
   180 
       
   181 lemma int_iszero_number_of_Bit1: "\<not> iszero ((number_of (Int.Bit1 w))::int)"
       
   182   by simp
       
   183 
       
   184 lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
       
   185   unfolding neg_def number_of_is_id by simp
       
   186 
       
   187 lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))"
       
   188   by simp
       
   189 
       
   190 lemma int_neg_number_of_Min: "neg (-1::int)"
       
   191   by simp
       
   192 
       
   193 lemma int_neg_number_of_Bit0: "neg ((number_of (Int.Bit0 w))::int) = neg ((number_of w)::int)"
       
   194   by simp
       
   195 
       
   196 lemma int_neg_number_of_Bit1: "neg ((number_of (Int.Bit1 w))::int) = neg ((number_of w)::int)"
       
   197   by simp
       
   198 
       
   199 lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
       
   200   unfolding neg_def number_of_is_id by (simp add: not_less)
       
   201 
       
   202 lemmas intarithrel =
       
   203   int_eq_number_of_eq
       
   204   lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_Bit0
       
   205   lift_bool[OF int_iszero_number_of_Bit1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min]
       
   206   int_neg_number_of_Bit0 int_neg_number_of_Bit1 int_le_number_of_eq
       
   207 
       
   208 lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
       
   209   by simp
       
   210 
       
   211 lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
       
   212   by simp
       
   213 
       
   214 lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)"
       
   215   by simp
       
   216 
       
   217 lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
       
   218   by simp
       
   219 
       
   220 lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym
       
   221 
       
   222 lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
       
   223 
       
   224 lemmas powerarith = nat_number_of zpower_number_of_even
       
   225   zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
       
   226   zpower_Pls zpower_Min
       
   227 
       
   228 definition float :: "(int \<times> int) \<Rightarrow> real" where
       
   229   "float = (\<lambda>(a, b). real a * 2 powr real b)"
       
   230 
       
   231 lemma float_add_l0: "float (0, e) + x = x"
       
   232   by (simp add: float_def)
       
   233 
       
   234 lemma float_add_r0: "x + float (0, e) = x"
       
   235   by (simp add: float_def)
       
   236 
       
   237 lemma float_add:
       
   238   "float (a1, e1) + float (a2, e2) =
       
   239   (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) else float (a1*2^(nat (e1-e2))+a2, e2))"
       
   240   by (simp add: float_def algebra_simps powr_realpow[symmetric] powr_divide2[symmetric])
       
   241 
       
   242 lemma float_mult_l0: "float (0, e) * x = float (0, 0)"
       
   243   by (simp add: float_def)
       
   244 
       
   245 lemma float_mult_r0: "x * float (0, e) = float (0, 0)"
       
   246   by (simp add: float_def)
       
   247 
       
   248 lemma float_mult:
       
   249   "float (a1, e1) * float (a2, e2) = (float (a1 * a2, e1 + e2))"
       
   250   by (simp add: float_def powr_add)
       
   251 
       
   252 lemma float_minus:
       
   253   "- (float (a,b)) = float (-a, b)"
       
   254   by (simp add: float_def)
       
   255 
       
   256 lemma zero_le_float:
       
   257   "(0 <= float (a,b)) = (0 <= a)"
       
   258   using powr_gt_zero[of 2 "real b", arith]
       
   259   by (simp add: float_def zero_le_mult_iff)
       
   260 
       
   261 lemma float_le_zero:
       
   262   "(float (a,b) <= 0) = (a <= 0)"
       
   263   using powr_gt_zero[of 2 "real b", arith]
       
   264   by (simp add: float_def mult_le_0_iff)
       
   265 
       
   266 lemma float_abs:
       
   267   "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
       
   268   using powr_gt_zero[of 2 "real b", arith]
       
   269   by (simp add: float_def abs_if mult_less_0_iff)
       
   270 
       
   271 lemma float_zero:
       
   272   "float (0, b) = 0"
       
   273   by (simp add: float_def)
       
   274 
       
   275 lemma float_pprt:
       
   276   "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
       
   277   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   278 
       
   279 lemma float_nprt:
       
   280   "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
       
   281   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   282 
       
   283 definition lbound :: "real \<Rightarrow> real"
       
   284   where "lbound x = min 0 x"
       
   285 
       
   286 definition ubound :: "real \<Rightarrow> real"
       
   287   where "ubound x = max 0 x"
       
   288 
       
   289 lemma lbound: "lbound x \<le> x"   
       
   290   by (simp add: lbound_def)
       
   291 
       
   292 lemma ubound: "x \<le> ubound x"
       
   293   by (simp add: ubound_def)
       
   294 
       
   295 lemma pprt_lbound: "pprt (lbound x) = float (0, 0)"
       
   296   by (auto simp: float_def lbound_def)
       
   297 
       
   298 lemma nprt_ubound: "nprt (ubound x) = float (0, 0)"
       
   299   by (auto simp: float_def ubound_def)
       
   300 
       
   301 lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
       
   302           float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
       
   303 
       
   304 (* for use with the compute oracle *)
       
   305 lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
       
   306 
       
   307 use "~~/src/HOL/Tools/float_arith.ML"
       
   308 
       
   309 end