src/HOL/Finite_Set.thy
changeset 32705 04ce6bb14d85
parent 32679 096306d7391d
parent 32698 be4b248616c0
child 32960 69916a850301
child 32988 d1d4d7a08a66
equal deleted inserted replaced
32682:304a47739407 32705:04ce6bb14d85
  1563   apply (subst setsum_Un_disjoint [THEN sym])
  1563   apply (subst setsum_Un_disjoint [THEN sym])
  1564   apply (erule finite_subset, assumption)
  1564   apply (erule finite_subset, assumption)
  1565   apply (rule finite_subset)
  1565   apply (rule finite_subset)
  1566   prefer 2
  1566   prefer 2
  1567   apply assumption
  1567   apply assumption
  1568   apply auto
  1568   apply (auto simp add: sup_absorb2)
  1569   apply (rule setsum_cong)
       
  1570   apply auto
       
  1571 done
  1569 done
  1572 
  1570 
  1573 lemma setsum_right_distrib: 
  1571 lemma setsum_right_distrib: 
  1574   fixes f :: "'a => ('b::semiring_0)"
  1572   fixes f :: "'a => ('b::semiring_0)"
  1575   shows "r * setsum f A = setsum (%n. r * f n) A"
  1573   shows "r * setsum f A = setsum (%n. r * f n) A"