src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy
changeset 9503 3324cbbecef8
parent 9394 1ff8a6234c6a
child 9623 3ade112482af
equal deleted inserted replaced
9502:50ec59aff389 9503:3324cbbecef8
    33 \begin{matharray}{l} \All
    33 \begin{matharray}{l} \All
    34 {u\in F}{\All {v\in F}{a\ap u \leq b \ap v}} 
    34 {u\in F}{\All {v\in F}{a\ap u \leq b \ap v}} 
    35 \end{matharray} *};
    35 \end{matharray} *};
    36 
    36 
    37 lemma ex_xi: 
    37 lemma ex_xi: 
    38   "[| is_vectorspace F; !! u v. [| u \\<in> F; v \\<in> F |] ==> a u <= b v |]
    38   "[| is_vectorspace F; !! u v. [| u \<in> F; v \<in> F |] ==> a u <= b v |]
    39   ==> \\<exists>xi::real. \\<forall>y \\<in> F. a y <= xi \\<and> xi <= b y"; 
    39   ==> \<exists>xi::real. \<forall>y \<in> F. a y <= xi \<and> xi <= b y"; 
    40 proof -;
    40 proof -;
    41   assume vs: "is_vectorspace F";
    41   assume vs: "is_vectorspace F";
    42   assume r: "(!! u v. [| u \\<in> F; v \\<in> F |] ==> a u <= (b v::real))";
    42   assume r: "(!! u v. [| u \<in> F; v \<in> F |] ==> a u <= (b v::real))";
    43 
    43 
    44   txt {* From the completeness of the reals follows:
    44   txt {* From the completeness of the reals follows:
    45   The set $S = \{a\: u\dt\: u\in F\}$ has a supremum, if
    45   The set $S = \{a\: u\dt\: u\in F\}$ has a supremum, if
    46   it is non-empty and has an upper bound. *};
    46   it is non-empty and has an upper bound. *};
    47 
    47 
    48   let ?S = "{a u :: real | u. u \\<in> F}";
    48   let ?S = "{a u :: real | u. u \<in> F}";
    49 
    49 
    50   have "\\<exists>xi. isLub UNIV ?S xi";  
    50   have "\<exists>xi. isLub UNIV ?S xi";  
    51   proof (rule reals_complete);
    51   proof (rule reals_complete);
    52   
    52   
    53     txt {* The set $S$ is non-empty, since $a\ap\zero \in S$: *};
    53     txt {* The set $S$ is non-empty, since $a\ap\zero \in S$: *};
    54 
    54 
    55     from vs; have "a 0 \\<in> ?S"; by force;
    55     from vs; have "a 0 \<in> ?S"; by force;
    56     thus "\\<exists>X. X \\<in> ?S"; ..;
    56     thus "\<exists>X. X \<in> ?S"; ..;
    57 
    57 
    58     txt {* $b\ap \zero$ is an upper bound of $S$: *};
    58     txt {* $b\ap \zero$ is an upper bound of $S$: *};
    59 
    59 
    60     show "\\<exists>Y. isUb UNIV ?S Y"; 
    60     show "\<exists>Y. isUb UNIV ?S Y"; 
    61     proof; 
    61     proof; 
    62       show "isUb UNIV ?S (b 0)";
    62       show "isUb UNIV ?S (b 0)";
    63       proof (intro isUbI setleI ballI);
    63       proof (intro isUbI setleI ballI);
    64         show "b 0 \\<in> UNIV"; ..;
    64         show "b 0 \<in> UNIV"; ..;
    65       next;
    65       next;
    66 
    66 
    67         txt {* Every element $y\in S$ is less than $b\ap \zero$: *};
    67         txt {* Every element $y\in S$ is less than $b\ap \zero$: *};
    68 
    68 
    69         fix y; assume y: "y \\<in> ?S"; 
    69         fix y; assume y: "y \<in> ?S"; 
    70         from y; have "\\<exists>u \\<in> F. y = a u"; by fast;
    70         from y; have "\<exists>u \<in> F. y = a u"; by fast;
    71         thus "y <= b 0"; 
    71         thus "y <= b 0"; 
    72         proof;
    72         proof;
    73           fix u; assume "u \\<in> F"; 
    73           fix u; assume "u \<in> F"; 
    74           assume "y = a u";
    74           assume "y = a u";
    75           also; have "a u <= b 0"; by (rule r) (simp!)+;
    75           also; have "a u <= b 0"; by (rule r) (simp!)+;
    76           finally; show ?thesis; .;
    76           finally; show ?thesis; .;
    77         qed;
    77         qed;
    78       qed;
    78       qed;
    79     qed;
    79     qed;
    80   qed;
    80   qed;
    81 
    81 
    82   thus "\\<exists>xi. \\<forall>y \\<in> F. a y <= xi \\<and> xi <= b y"; 
    82   thus "\<exists>xi. \<forall>y \<in> F. a y <= xi \<and> xi <= b y"; 
    83   proof (elim exE);
    83   proof (elim exE);
    84     fix xi; assume "isLub UNIV ?S xi"; 
    84     fix xi; assume "isLub UNIV ?S xi"; 
    85     show ?thesis;
    85     show ?thesis;
    86     proof (intro exI conjI ballI); 
    86     proof (intro exI conjI ballI); 
    87    
    87    
    88       txt {* For all $y\in F$ holds $a\ap y \leq \xi$: *};
    88       txt {* For all $y\in F$ holds $a\ap y \leq \xi$: *};
    89      
    89      
    90       fix y; assume y: "y \\<in> F";
    90       fix y; assume y: "y \<in> F";
    91       show "a y <= xi";    
    91       show "a y <= xi";    
    92       proof (rule isUbD);  
    92       proof (rule isUbD);  
    93         show "isUb UNIV ?S xi"; ..;
    93         show "isUb UNIV ?S xi"; ..;
    94       qed (force!);
    94       qed (force!);
    95     next;
    95     next;
    96 
    96 
    97       txt {* For all $y\in F$ holds $\xi\leq b\ap y$: *};
    97       txt {* For all $y\in F$ holds $\xi\leq b\ap y$: *};
    98 
    98 
    99       fix y; assume "y \\<in> F";
    99       fix y; assume "y \<in> F";
   100       show "xi <= b y";  
   100       show "xi <= b y";  
   101       proof (intro isLub_le_isUb isUbI setleI);
   101       proof (intro isLub_le_isUb isUbI setleI);
   102         show "b y \\<in> UNIV"; ..;
   102         show "b y \<in> UNIV"; ..;
   103         show "\\<forall>ya \\<in> ?S. ya <= b y"; 
   103         show "\<forall>ya \<in> ?S. ya <= b y"; 
   104         proof;
   104         proof;
   105           fix au; assume au: "au \\<in> ?S ";
   105           fix au; assume au: "au \<in> ?S ";
   106           hence "\\<exists>u \\<in> F. au = a u"; by fast;
   106           hence "\<exists>u \<in> F. au = a u"; by fast;
   107           thus "au <= b y";
   107           thus "au <= b y";
   108           proof;
   108           proof;
   109             fix u; assume "u \\<in> F"; assume "au = a u";  
   109             fix u; assume "u \<in> F"; assume "au = a u";  
   110             also; have "... <= b y"; by (rule r);
   110             also; have "... <= b y"; by (rule r);
   111             finally; show ?thesis; .;
   111             finally; show ?thesis; .;
   112           qed;
   112           qed;
   113         qed;
   113         qed;
   114       qed; 
   114       qed; 
   119 text{* \medskip The function $h'$ is defined as a
   119 text{* \medskip The function $h'$ is defined as a
   120 $h'\ap x = h\ap y + a\cdot \xi$ where $x = y + a\mult \xi$
   120 $h'\ap x = h\ap y + a\cdot \xi$ where $x = y + a\mult \xi$
   121 is a linear extension of $h$ to $H'$. *};
   121 is a linear extension of $h$ to $H'$. *};
   122 
   122 
   123 lemma h'_lf: 
   123 lemma h'_lf: 
   124   "[| h' == (\\<lambda>x. let (y, a) = SOME (y, a). x = y + a \\<cdot> x0 \\<and> y \\<in> H 
   124   "[| h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
   125                 in h y + a * xi);
   125                 in h y + a * xi);
   126   H' == H + lin x0; is_subspace H E; is_linearform H h; x0 \\<notin> H; 
   126   H' == H + lin x0; is_subspace H E; is_linearform H h; x0 \<notin> H; 
   127   x0 \\<in> E; x0 \\<noteq> 0; is_vectorspace E |]
   127   x0 \<in> E; x0 \<noteq> 0; is_vectorspace E |]
   128   ==> is_linearform H' h'";
   128   ==> is_linearform H' h'";
   129 proof -;
   129 proof -;
   130   assume h'_def: 
   130   assume h'_def: 
   131     "h' == (\\<lambda>x. let (y, a) = SOME (y, a). x = y + a \\<cdot> x0 \\<and> y \\<in> H 
   131     "h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
   132                in h y + a * xi)"
   132                in h y + a * xi)"
   133     and H'_def: "H' == H + lin x0" 
   133     and H'_def: "H' == H + lin x0" 
   134     and vs: "is_subspace H E" "is_linearform H h" "x0 \\<notin> H"
   134     and vs: "is_subspace H E" "is_linearform H h" "x0 \<notin> H"
   135       "x0 \\<noteq> 0" "x0 \\<in> E" "is_vectorspace E";
   135       "x0 \<noteq> 0" "x0 \<in> E" "is_vectorspace E";
   136 
   136 
   137   have h': "is_vectorspace H'"; 
   137   have h': "is_vectorspace H'"; 
   138   proof (unfold H'_def, rule vs_sum_vs);
   138   proof (unfold H'_def, rule vs_sum_vs);
   139     show "is_subspace (lin x0) E"; ..;
   139     show "is_subspace (lin x0) E"; ..;
   140   qed; 
   140   qed; 
   141 
   141 
   142   show ?thesis;
   142   show ?thesis;
   143   proof;
   143   proof;
   144     fix x1 x2; assume x1: "x1 \\<in> H'" and x2: "x2 \\<in> H'"; 
   144     fix x1 x2; assume x1: "x1 \<in> H'" and x2: "x2 \<in> H'"; 
   145 
   145 
   146     txt{* We now have to show that $h'$ is additive, i.~e.\
   146     txt{* We now have to show that $h'$ is additive, i.~e.\
   147     $h' \ap (x_1\plus x_2) = h'\ap x_1 + h'\ap x_2$
   147     $h' \ap (x_1\plus x_2) = h'\ap x_1 + h'\ap x_2$
   148     for $x_1, x_2\in H$. *}; 
   148     for $x_1, x_2\in H$. *}; 
   149 
   149 
   150     have x1x2: "x1 + x2 \\<in> H'"; 
   150     have x1x2: "x1 + x2 \<in> H'"; 
   151       by (rule vs_add_closed, rule h'); 
   151       by (rule vs_add_closed, rule h'); 
   152     from x1; 
   152     from x1; 
   153     have ex_x1: "\\<exists>y1 a1. x1 = y1 + a1 \\<cdot> x0  \\<and> y1 \\<in> H"; 
   153     have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0  \<and> y1 \<in> H"; 
   154       by (unfold H'_def vs_sum_def lin_def) fast;
   154       by (unfold H'_def vs_sum_def lin_def) fast;
   155     from x2; 
   155     from x2; 
   156     have ex_x2: "\\<exists>y2 a2. x2 = y2 + a2 \\<cdot> x0 \\<and> y2 \\<in> H"; 
   156     have ex_x2: "\<exists>y2 a2. x2 = y2 + a2 \<cdot> x0 \<and> y2 \<in> H"; 
   157       by (unfold H'_def vs_sum_def lin_def) fast;
   157       by (unfold H'_def vs_sum_def lin_def) fast;
   158     from x1x2; 
   158     from x1x2; 
   159     have ex_x1x2: "\\<exists>y a. x1 + x2 = y + a \\<cdot> x0 \\<and> y \\<in> H";
   159     have ex_x1x2: "\<exists>y a. x1 + x2 = y + a \<cdot> x0 \<and> y \<in> H";
   160       by (unfold H'_def vs_sum_def lin_def) fast;
   160       by (unfold H'_def vs_sum_def lin_def) fast;
   161 
   161 
   162     from ex_x1 ex_x2 ex_x1x2;
   162     from ex_x1 ex_x2 ex_x1x2;
   163     show "h' (x1 + x2) = h' x1 + h' x2";
   163     show "h' (x1 + x2) = h' x1 + h' x2";
   164     proof (elim exE conjE);
   164     proof (elim exE conjE);
   165       fix y1 y2 y a1 a2 a;
   165       fix y1 y2 y a1 a2 a;
   166       assume y1: "x1 = y1 + a1 \\<cdot> x0"     and y1': "y1 \\<in> H"
   166       assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
   167          and y2: "x2 = y2 + a2 \\<cdot> x0"     and y2': "y2 \\<in> H" 
   167          and y2: "x2 = y2 + a2 \<cdot> x0"     and y2': "y2 \<in> H" 
   168          and y: "x1 + x2 = y + a \\<cdot> x0"   and y':  "y  \\<in> H"; 
   168          and y: "x1 + x2 = y + a \<cdot> x0"   and y':  "y  \<in> H"; 
   169       txt {* \label{decomp-H-use}*}
   169       txt {* \label{decomp-H-use}*}
   170       have ya: "y1 + y2 = y \\<and> a1 + a2 = a"; 
   170       have ya: "y1 + y2 = y \<and> a1 + a2 = a"; 
   171       proof (rule decomp_H')
   171       proof (rule decomp_H')
   172         show "y1 + y2 + (a1 + a2) \\<cdot> x0 = y + a \\<cdot> x0"; 
   172         show "y1 + y2 + (a1 + a2) \<cdot> x0 = y + a \<cdot> x0"; 
   173           by (simp! add: vs_add_mult_distrib2 [of E]);
   173           by (simp! add: vs_add_mult_distrib2 [of E]);
   174         show "y1 + y2 \\<in> H"; ..;
   174         show "y1 + y2 \<in> H"; ..;
   175       qed;
   175       qed;
   176 
   176 
   177       have "h' (x1 + x2) = h y + a * xi";
   177       have "h' (x1 + x2) = h y + a * xi";
   178 	by (rule h'_definite);
   178 	by (rule h'_definite);
   179       also; have "... = h (y1 + y2) + (a1 + a2) * xi"; 
   179       also; have "... = h (y1 + y2) + (a1 + a2) * xi"; 
   195     i.~e.\ $h'\ap (c \mult x_1) = c \cdot h'\ap x_1$
   195     i.~e.\ $h'\ap (c \mult x_1) = c \cdot h'\ap x_1$
   196     for $x\in H$ and $c\in \bbbR$. 
   196     for $x\in H$ and $c\in \bbbR$. 
   197     *}; 
   197     *}; 
   198 
   198 
   199   next;  
   199   next;  
   200     fix c x1; assume x1: "x1 \\<in> H'";    
   200     fix c x1; assume x1: "x1 \<in> H'";    
   201     have ax1: "c \\<cdot> x1 \\<in> H'";
   201     have ax1: "c \<cdot> x1 \<in> H'";
   202       by (rule vs_mult_closed, rule h');
   202       by (rule vs_mult_closed, rule h');
   203     from x1; 
   203     from x1; 
   204     have ex_x: "!! x. x\\<in> H' ==> \\<exists>y a. x = y + a \\<cdot> x0 \\<and> y \\<in> H";
   204     have ex_x: "!! x. x\<in> H' ==> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H";
   205       by (unfold H'_def vs_sum_def lin_def) fast;
   205       by (unfold H'_def vs_sum_def lin_def) fast;
   206 
   206 
   207     from x1; have ex_x1: "\\<exists>y1 a1. x1 = y1 + a1 \\<cdot> x0 \\<and> y1 \\<in> H";
   207     from x1; have ex_x1: "\<exists>y1 a1. x1 = y1 + a1 \<cdot> x0 \<and> y1 \<in> H";
   208       by (unfold H'_def vs_sum_def lin_def) fast;
   208       by (unfold H'_def vs_sum_def lin_def) fast;
   209     with ex_x [of "c \\<cdot> x1", OF ax1];
   209     with ex_x [of "c \<cdot> x1", OF ax1];
   210     show "h' (c \\<cdot> x1) = c * (h' x1)";  
   210     show "h' (c \<cdot> x1) = c * (h' x1)";  
   211     proof (elim exE conjE);
   211     proof (elim exE conjE);
   212       fix y1 y a1 a; 
   212       fix y1 y a1 a; 
   213       assume y1: "x1 = y1 + a1 \\<cdot> x0"     and y1': "y1 \\<in> H"
   213       assume y1: "x1 = y1 + a1 \<cdot> x0"     and y1': "y1 \<in> H"
   214         and y: "c \\<cdot> x1 = y  + a \\<cdot> x0"    and y': "y \\<in> H"; 
   214         and y: "c \<cdot> x1 = y  + a \<cdot> x0"    and y': "y \<in> H"; 
   215 
   215 
   216       have ya: "c \\<cdot> y1 = y \\<and> c * a1 = a"; 
   216       have ya: "c \<cdot> y1 = y \<and> c * a1 = a"; 
   217       proof (rule decomp_H'); 
   217       proof (rule decomp_H'); 
   218 	show "c \\<cdot> y1 + (c * a1) \\<cdot> x0 = y + a \\<cdot> x0"; 
   218 	show "c \<cdot> y1 + (c * a1) \<cdot> x0 = y + a \<cdot> x0"; 
   219           by (simp! add: vs_add_mult_distrib1);
   219           by (simp! add: vs_add_mult_distrib1);
   220         show "c \\<cdot> y1 \\<in> H"; ..;
   220         show "c \<cdot> y1 \<in> H"; ..;
   221       qed;
   221       qed;
   222 
   222 
   223       have "h' (c \\<cdot> x1) = h y + a * xi"; 
   223       have "h' (c \<cdot> x1) = h y + a * xi"; 
   224 	by (rule h'_definite);
   224 	by (rule h'_definite);
   225       also; have "... = h (c \\<cdot> y1) + (c * a1) * xi";
   225       also; have "... = h (c \<cdot> y1) + (c * a1) * xi";
   226         by (simp add: ya);
   226         by (simp add: ya);
   227       also; from vs y1'; have "... = c * h y1 + c * a1 * xi"; 
   227       also; from vs y1'; have "... = c * h y1 + c * a1 * xi"; 
   228 	by (simp add: linearform_mult [of H]);
   228 	by (simp add: linearform_mult [of H]);
   229       also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; 
   229       also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; 
   230 	by (simp add: real_add_mult_distrib2 real_mult_assoc);
   230 	by (simp add: real_add_mult_distrib2 real_mult_assoc);
   237 
   237 
   238 text{* \medskip The linear extension $h'$ of $h$
   238 text{* \medskip The linear extension $h'$ of $h$
   239 is bounded by the seminorm $p$. *};
   239 is bounded by the seminorm $p$. *};
   240 
   240 
   241 lemma h'_norm_pres:
   241 lemma h'_norm_pres:
   242   "[| h' == (\\<lambda>x. let (y, a) = SOME (y, a). x = y + a \\<cdot> x0 \\<and> y \\<in> H 
   242   "[| h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
   243                  in h y + a * xi);
   243                  in h y + a * xi);
   244   H' == H + lin x0; x0 \\<notin> H; x0 \\<in> E; x0 \\<noteq> 0; is_vectorspace E; 
   244   H' == H + lin x0; x0 \<notin> H; x0 \<in> E; x0 \<noteq> 0; is_vectorspace E; 
   245   is_subspace H E; is_seminorm E p; is_linearform H h; 
   245   is_subspace H E; is_seminorm E p; is_linearform H h; 
   246   \\<forall>y \\<in> H. h y <= p y; 
   246   \<forall>y \<in> H. h y <= p y; 
   247   \\<forall>y \\<in> H. - p (y + x0) - h y <= xi \\<and> xi <= p (y + x0) - h y |]
   247   \<forall>y \<in> H. - p (y + x0) - h y <= xi \<and> xi <= p (y + x0) - h y |]
   248    ==> \\<forall>x \\<in> H'. h' x <= p x"; 
   248    ==> \<forall>x \<in> H'. h' x <= p x"; 
   249 proof; 
   249 proof; 
   250   assume h'_def: 
   250   assume h'_def: 
   251     "h' == (\\<lambda>x. let (y, a) = SOME (y, a). x = y + a \\<cdot> x0 \\<and> y \\<in> H 
   251     "h' == (\<lambda>x. let (y, a) = SOME (y, a). x = y + a \<cdot> x0 \<and> y \<in> H 
   252                in (h y) + a * xi)"
   252                in (h y) + a * xi)"
   253     and H'_def: "H' == H + lin x0" 
   253     and H'_def: "H' == H + lin x0" 
   254     and vs: "x0 \\<notin> H" "x0 \\<in> E" "x0 \\<noteq> 0" "is_vectorspace E" 
   254     and vs: "x0 \<notin> H" "x0 \<in> E" "x0 \<noteq> 0" "is_vectorspace E" 
   255             "is_subspace H E" "is_seminorm E p" "is_linearform H h" 
   255             "is_subspace H E" "is_seminorm E p" "is_linearform H h" 
   256     and a: "\\<forall>y \\<in> H. h y <= p y";
   256     and a: "\<forall>y \<in> H. h y <= p y";
   257   presume a1: "\\<forall>ya \\<in> H. - p (ya + x0) - h ya <= xi";
   257   presume a1: "\<forall>ya \<in> H. - p (ya + x0) - h ya <= xi";
   258   presume a2: "\\<forall>ya \\<in> H. xi <= p (ya + x0) - h ya";
   258   presume a2: "\<forall>ya \<in> H. xi <= p (ya + x0) - h ya";
   259   fix x; assume "x \\<in> H'"; 
   259   fix x; assume "x \<in> H'"; 
   260   have ex_x: 
   260   have ex_x: 
   261     "!! x. x \\<in> H' ==> \\<exists>y a. x = y + a \\<cdot> x0 \\<and> y \\<in> H";
   261     "!! x. x \<in> H' ==> \<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H";
   262     by (unfold H'_def vs_sum_def lin_def) fast;
   262     by (unfold H'_def vs_sum_def lin_def) fast;
   263   have "\\<exists>y a. x = y + a \\<cdot> x0 \\<and> y \\<in> H";
   263   have "\<exists>y a. x = y + a \<cdot> x0 \<and> y \<in> H";
   264     by (rule ex_x);
   264     by (rule ex_x);
   265   thus "h' x <= p x";
   265   thus "h' x <= p x";
   266   proof (elim exE conjE);
   266   proof (elim exE conjE);
   267     fix y a; assume x: "x = y + a \\<cdot> x0" and y: "y \\<in> H";
   267     fix y a; assume x: "x = y + a \<cdot> x0" and y: "y \<in> H";
   268     have "h' x = h y + a * xi";
   268     have "h' x = h y + a * xi";
   269       by (rule h'_definite);
   269       by (rule h'_definite);
   270 
   270 
   271     txt{* Now we show  
   271     txt{* Now we show  
   272     $h\ap y + a \cdot \xi\leq  p\ap (y\plus a \mult x_0)$ 
   272     $h\ap y + a \cdot \xi\leq  p\ap (y\plus a \mult x_0)$ 
   273     by case analysis on $a$. *};
   273     by case analysis on $a$. *};
   274 
   274 
   275     also; have "... <= p (y + a \\<cdot> x0)";
   275     also; have "... <= p (y + a \<cdot> x0)";
   276     proof (rule linorder_less_split); 
   276     proof (rule linorder_less_split); 
   277 
   277 
   278       assume z: "a = #0"; 
   278       assume z: "a = #0"; 
   279       with vs y a; show ?thesis; by simp;
   279       with vs y a; show ?thesis; by simp;
   280 
   280 
   281     txt {* In the case $a < 0$, we use $a_1$ with $\idt{ya}$ 
   281     txt {* In the case $a < 0$, we use $a_1$ with $\idt{ya}$ 
   282     taken as $y/a$: *};
   282     taken as $y/a$: *};
   283 
   283 
   284     next;
   284     next;
   285       assume lz: "a < #0"; hence nz: "a \\<noteq> #0"; by simp;
   285       assume lz: "a < #0"; hence nz: "a \<noteq> #0"; by simp;
   286       from a1; 
   286       from a1; 
   287       have "- p (rinv a \\<cdot> y + x0) - h (rinv a \\<cdot> y) <= xi";
   287       have "- p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y) <= xi";
   288         by (rule bspec) (simp!);
   288         by (rule bspec) (simp!);
   289 
   289 
   290       txt {* The thesis for this case now follows by a short  
   290       txt {* The thesis for this case now follows by a short  
   291       calculation. *};      
   291       calculation. *};      
   292       hence "a * xi <= a * (- p (rinv a \\<cdot> y + x0) - h (rinv a \\<cdot> y))";
   292       hence "a * xi <= a * (- p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y))";
   293         by (rule real_mult_less_le_anti [OF lz]);
   293         by (rule real_mult_less_le_anti [OF lz]);
   294       also; 
   294       also; 
   295       have "... = - a * (p (rinv a \\<cdot> y + x0)) - a * (h (rinv a \\<cdot> y))";
   295       have "... = - a * (p (rinv a \<cdot> y + x0)) - a * (h (rinv a \<cdot> y))";
   296         by (rule real_mult_diff_distrib);
   296         by (rule real_mult_diff_distrib);
   297       also; from lz vs y; 
   297       also; from lz vs y; 
   298       have "- a * (p (rinv a \\<cdot> y + x0)) = p (a \\<cdot> (rinv a \\<cdot> y + x0))";
   298       have "- a * (p (rinv a \<cdot> y + x0)) = p (a \<cdot> (rinv a \<cdot> y + x0))";
   299         by (simp add: seminorm_abs_homogenous abs_minus_eqI2);
   299         by (simp add: seminorm_abs_homogenous abs_minus_eqI2);
   300       also; from nz vs y; have "... = p (y + a \\<cdot> x0)";
   300       also; from nz vs y; have "... = p (y + a \<cdot> x0)";
   301         by (simp add: vs_add_mult_distrib1);
   301         by (simp add: vs_add_mult_distrib1);
   302       also; from nz vs y; have "a * (h (rinv a \\<cdot> y)) =  h y";
   302       also; from nz vs y; have "a * (h (rinv a \<cdot> y)) =  h y";
   303         by (simp add: linearform_mult [RS sym]);
   303         by (simp add: linearform_mult [RS sym]);
   304       finally; have "a * xi <= p (y + a \\<cdot> x0) - h y"; .;
   304       finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .;
   305 
   305 
   306       hence "h y + a * xi <= h y + p (y + a \\<cdot> x0) - h y";
   306       hence "h y + a * xi <= h y + p (y + a \<cdot> x0) - h y";
   307         by (simp add: real_add_left_cancel_le);
   307         by (simp add: real_add_left_cancel_le);
   308       thus ?thesis; by simp;
   308       thus ?thesis; by simp;
   309 
   309 
   310       txt {* In the case $a > 0$, we use $a_2$ with $\idt{ya}$ 
   310       txt {* In the case $a > 0$, we use $a_2$ with $\idt{ya}$ 
   311       taken as $y/a$: *};
   311       taken as $y/a$: *};
   312 
   312 
   313     next; 
   313     next; 
   314       assume gz: "#0 < a"; hence nz: "a \\<noteq> #0"; by simp;
   314       assume gz: "#0 < a"; hence nz: "a \<noteq> #0"; by simp;
   315       from a2; have "xi <= p (rinv a \\<cdot> y + x0) - h (rinv a \\<cdot> y)";
   315       from a2; have "xi <= p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y)";
   316         by (rule bspec) (simp!);
   316         by (rule bspec) (simp!);
   317 
   317 
   318       txt {* The thesis for this case follows by a short
   318       txt {* The thesis for this case follows by a short
   319       calculation: *};
   319       calculation: *};
   320 
   320 
   321       with gz; 
   321       with gz; 
   322       have "a * xi <= a * (p (rinv a \\<cdot> y + x0) - h (rinv a \\<cdot> y))";
   322       have "a * xi <= a * (p (rinv a \<cdot> y + x0) - h (rinv a \<cdot> y))";
   323         by (rule real_mult_less_le_mono);
   323         by (rule real_mult_less_le_mono);
   324       also; have "... = a * p (rinv a \\<cdot> y + x0) - a * h (rinv a \\<cdot> y)";
   324       also; have "... = a * p (rinv a \<cdot> y + x0) - a * h (rinv a \<cdot> y)";
   325         by (rule real_mult_diff_distrib2); 
   325         by (rule real_mult_diff_distrib2); 
   326       also; from gz vs y; 
   326       also; from gz vs y; 
   327       have "a * p (rinv a \\<cdot> y + x0) = p (a \\<cdot> (rinv a \\<cdot> y + x0))";
   327       have "a * p (rinv a \<cdot> y + x0) = p (a \<cdot> (rinv a \<cdot> y + x0))";
   328         by (simp add: seminorm_abs_homogenous abs_eqI2);
   328         by (simp add: seminorm_abs_homogenous abs_eqI2);
   329       also; from nz vs y; have "... = p (y + a \\<cdot> x0)";
   329       also; from nz vs y; have "... = p (y + a \<cdot> x0)";
   330         by (simp add: vs_add_mult_distrib1);
   330         by (simp add: vs_add_mult_distrib1);
   331       also; from nz vs y; have "a * h (rinv a \\<cdot> y) = h y";
   331       also; from nz vs y; have "a * h (rinv a \<cdot> y) = h y";
   332         by (simp add: linearform_mult [RS sym]); 
   332         by (simp add: linearform_mult [RS sym]); 
   333       finally; have "a * xi <= p (y + a \\<cdot> x0) - h y"; .;
   333       finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .;
   334  
   334  
   335       hence "h y + a * xi <= h y + (p (y + a \\<cdot> x0) - h y)";
   335       hence "h y + a * xi <= h y + (p (y + a \<cdot> x0) - h y)";
   336         by (simp add: real_add_left_cancel_le);
   336         by (simp add: real_add_left_cancel_le);
   337       thus ?thesis; by simp;
   337       thus ?thesis; by simp;
   338     qed;
   338     qed;
   339     also; from x; have "... = p x"; by simp;
   339     also; from x; have "... = p x"; by simp;
   340     finally; show ?thesis; .;
   340     finally; show ?thesis; .;