equal
deleted
inserted
replaced
183 by (simp add: linearform_add [of H] |
183 by (simp add: linearform_add [of H] |
184 real_add_mult_distrib); |
184 real_add_mult_distrib); |
185 also; have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"; |
185 also; have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"; |
186 by simp; |
186 by simp; |
187 also; have "h y1 + a1 * xi = h' x1"; |
187 also; have "h y1 + a1 * xi = h' x1"; |
188 by (rule h'_definite [RS sym]); |
188 by (rule h'_definite [symmetric]); |
189 also; have "h y2 + a2 * xi = h' x2"; |
189 also; have "h y2 + a2 * xi = h' x2"; |
190 by (rule h'_definite [RS sym]); |
190 by (rule h'_definite [symmetric]); |
191 finally; show ?thesis; .; |
191 finally; show ?thesis; .; |
192 qed; |
192 qed; |
193 |
193 |
194 txt{* We further have to show that $h'$ is multiplicative, |
194 txt{* We further have to show that $h'$ is multiplicative, |
195 i.~e.\ $h'\ap (c \mult x_1) = c \cdot h'\ap x_1$ |
195 i.~e.\ $h'\ap (c \mult x_1) = c \cdot h'\ap x_1$ |
227 also; from vs y1'; have "... = c * h y1 + c * a1 * xi"; |
227 also; from vs y1'; have "... = c * h y1 + c * a1 * xi"; |
228 by (simp add: linearform_mult [of H]); |
228 by (simp add: linearform_mult [of H]); |
229 also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; |
229 also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; |
230 by (simp add: real_add_mult_distrib2 real_mult_assoc); |
230 by (simp add: real_add_mult_distrib2 real_mult_assoc); |
231 also; have "h y1 + a1 * xi = h' x1"; |
231 also; have "h y1 + a1 * xi = h' x1"; |
232 by (rule h'_definite [RS sym]); |
232 by (rule h'_definite [symmetric]); |
233 finally; show ?thesis; .; |
233 finally; show ?thesis; .; |
234 qed; |
234 qed; |
235 qed; |
235 qed; |
236 qed; |
236 qed; |
237 |
237 |
298 have "- a * (p (rinv a \<cdot> y + x0)) = p (a \<cdot> (rinv a \<cdot> y + x0))"; |
298 have "- a * (p (rinv a \<cdot> y + x0)) = p (a \<cdot> (rinv a \<cdot> y + x0))"; |
299 by (simp add: seminorm_abs_homogenous abs_minus_eqI2); |
299 by (simp add: seminorm_abs_homogenous abs_minus_eqI2); |
300 also; from nz vs y; have "... = p (y + a \<cdot> x0)"; |
300 also; from nz vs y; have "... = p (y + a \<cdot> x0)"; |
301 by (simp add: vs_add_mult_distrib1); |
301 by (simp add: vs_add_mult_distrib1); |
302 also; from nz vs y; have "a * (h (rinv a \<cdot> y)) = h y"; |
302 also; from nz vs y; have "a * (h (rinv a \<cdot> y)) = h y"; |
303 by (simp add: linearform_mult [RS sym]); |
303 by (simp add: linearform_mult [symmetric]); |
304 finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .; |
304 finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .; |
305 |
305 |
306 hence "h y + a * xi <= h y + p (y + a \<cdot> x0) - h y"; |
306 hence "h y + a * xi <= h y + p (y + a \<cdot> x0) - h y"; |
307 by (simp add: real_add_left_cancel_le); |
307 by (simp add: real_add_left_cancel_le); |
308 thus ?thesis; by simp; |
308 thus ?thesis; by simp; |
327 have "a * p (rinv a \<cdot> y + x0) = p (a \<cdot> (rinv a \<cdot> y + x0))"; |
327 have "a * p (rinv a \<cdot> y + x0) = p (a \<cdot> (rinv a \<cdot> y + x0))"; |
328 by (simp add: seminorm_abs_homogenous abs_eqI2); |
328 by (simp add: seminorm_abs_homogenous abs_eqI2); |
329 also; from nz vs y; have "... = p (y + a \<cdot> x0)"; |
329 also; from nz vs y; have "... = p (y + a \<cdot> x0)"; |
330 by (simp add: vs_add_mult_distrib1); |
330 by (simp add: vs_add_mult_distrib1); |
331 also; from nz vs y; have "a * h (rinv a \<cdot> y) = h y"; |
331 also; from nz vs y; have "a * h (rinv a \<cdot> y) = h y"; |
332 by (simp add: linearform_mult [RS sym]); |
332 by (simp add: linearform_mult [symmetric]); |
333 finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .; |
333 finally; have "a * xi <= p (y + a \<cdot> x0) - h y"; .; |
334 |
334 |
335 hence "h y + a * xi <= h y + (p (y + a \<cdot> x0) - h y)"; |
335 hence "h y + a * xi <= h y + (p (y + a \<cdot> x0) - h y)"; |
336 by (simp add: real_add_left_cancel_le); |
336 by (simp add: real_add_left_cancel_le); |
337 thus ?thesis; by simp; |
337 thus ?thesis; by simp; |