|
1 (* Title: HOL/Integ/Numeral.thy |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1994 University of Cambridge |
|
5 *) |
|
6 |
|
7 header{*Arithmetic on Binary Integers*} |
|
8 |
|
9 theory Numeral = IntDef |
|
10 files "Tools/numeral_syntax.ML": |
|
11 |
|
12 text{* The file @{text numeral_syntax.ML} hides the constructors Pls and Min. |
|
13 Only qualified access Numeral.Pls and Numeral.Min is allowed. |
|
14 We do not hide Bit because we need the BIT infix syntax.*} |
|
15 |
|
16 text{*This formalization defines binary arithmetic in terms of the integers |
|
17 rather than using a datatype. This avoids multiple representations (leading |
|
18 zeroes, etc.) See @{text "ZF/Integ/twos-compl.ML"}, function @{text |
|
19 int_of_binary}, for the numerical interpretation. |
|
20 |
|
21 The representation expects that @{text "(m mod 2)"} is 0 or 1, |
|
22 even if m is negative; |
|
23 For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus |
|
24 @{text "-5 = (-3)*2 + 1"}. |
|
25 *} |
|
26 |
|
27 |
|
28 typedef (Bin) |
|
29 bin = "UNIV::int set" |
|
30 by (auto) |
|
31 |
|
32 constdefs |
|
33 Pls :: "bin" |
|
34 "Pls == Abs_Bin 0" |
|
35 |
|
36 Min :: "bin" |
|
37 "Min == Abs_Bin (- 1)" |
|
38 |
|
39 Bit :: "[bin,bool] => bin" (infixl "BIT" 90) |
|
40 --{*That is, 2w+b*} |
|
41 "w BIT b == Abs_Bin ((if b then 1 else 0) + Rep_Bin w + Rep_Bin w)" |
|
42 |
|
43 |
|
44 axclass |
|
45 number < type -- {* for numeric types: nat, int, real, \dots *} |
|
46 |
|
47 consts |
|
48 number_of :: "bin => 'a::number" |
|
49 |
|
50 syntax |
|
51 "_Numeral" :: "num_const => 'a" ("_") |
|
52 Numeral0 :: 'a |
|
53 Numeral1 :: 'a |
|
54 |
|
55 translations |
|
56 "Numeral0" == "number_of Numeral.Pls" |
|
57 "Numeral1" == "number_of (Numeral.Pls BIT True)" |
|
58 |
|
59 |
|
60 setup NumeralSyntax.setup |
|
61 |
|
62 syntax (xsymbols) |
|
63 "_square" :: "'a => 'a" ("(_\<twosuperior>)" [1000] 999) |
|
64 syntax (HTML output) |
|
65 "_square" :: "'a => 'a" ("(_\<twosuperior>)" [1000] 999) |
|
66 syntax (output) |
|
67 "_square" :: "'a => 'a" ("(_ ^/ 2)" [81] 80) |
|
68 translations |
|
69 "x\<twosuperior>" == "x^2" |
|
70 "x\<twosuperior>" <= "x^(2::nat)" |
|
71 |
|
72 |
|
73 lemma Let_number_of [simp]: "Let (number_of v) f == f (number_of v)" |
|
74 -- {* Unfold all @{text let}s involving constants *} |
|
75 by (simp add: Let_def) |
|
76 |
|
77 lemma Let_0 [simp]: "Let 0 f == f 0" |
|
78 by (simp add: Let_def) |
|
79 |
|
80 lemma Let_1 [simp]: "Let 1 f == f 1" |
|
81 by (simp add: Let_def) |
|
82 |
|
83 |
|
84 constdefs |
|
85 bin_succ :: "bin=>bin" |
|
86 "bin_succ w == Abs_Bin(Rep_Bin w + 1)" |
|
87 |
|
88 bin_pred :: "bin=>bin" |
|
89 "bin_pred w == Abs_Bin(Rep_Bin w - 1)" |
|
90 |
|
91 bin_minus :: "bin=>bin" |
|
92 "bin_minus w == Abs_Bin(- (Rep_Bin w))" |
|
93 |
|
94 bin_add :: "[bin,bin]=>bin" |
|
95 "bin_add v w == Abs_Bin(Rep_Bin v + Rep_Bin w)" |
|
96 |
|
97 bin_mult :: "[bin,bin]=>bin" |
|
98 "bin_mult v w == Abs_Bin(Rep_Bin v * Rep_Bin w)" |
|
99 |
|
100 |
|
101 lemmas Bin_simps = |
|
102 bin_succ_def bin_pred_def bin_minus_def bin_add_def bin_mult_def |
|
103 Pls_def Min_def Bit_def Abs_Bin_inverse Rep_Bin_inverse Bin_def |
|
104 |
|
105 text{*Removal of leading zeroes*} |
|
106 lemma Pls_0_eq [simp]: "Numeral.Pls BIT False = Numeral.Pls" |
|
107 by (simp add: Bin_simps) |
|
108 |
|
109 lemma Min_1_eq [simp]: "Numeral.Min BIT True = Numeral.Min" |
|
110 by (simp add: Bin_simps) |
|
111 |
|
112 subsection{*The Functions @{term bin_succ}, @{term bin_pred} and @{term bin_minus}*} |
|
113 |
|
114 lemma bin_succ_Pls [simp]: "bin_succ Numeral.Pls = Numeral.Pls BIT True" |
|
115 by (simp add: Bin_simps) |
|
116 |
|
117 lemma bin_succ_Min [simp]: "bin_succ Numeral.Min = Numeral.Pls" |
|
118 by (simp add: Bin_simps) |
|
119 |
|
120 lemma bin_succ_1 [simp]: "bin_succ(w BIT True) = (bin_succ w) BIT False" |
|
121 by (simp add: Bin_simps add_ac) |
|
122 |
|
123 lemma bin_succ_0 [simp]: "bin_succ(w BIT False) = w BIT True" |
|
124 by (simp add: Bin_simps add_ac) |
|
125 |
|
126 lemma bin_pred_Pls [simp]: "bin_pred Numeral.Pls = Numeral.Min" |
|
127 by (simp add: Bin_simps) |
|
128 |
|
129 lemma bin_pred_Min [simp]: "bin_pred Numeral.Min = Numeral.Min BIT False" |
|
130 by (simp add: Bin_simps diff_minus) |
|
131 |
|
132 lemma bin_pred_1 [simp]: "bin_pred(w BIT True) = w BIT False" |
|
133 by (simp add: Bin_simps) |
|
134 |
|
135 lemma bin_pred_0 [simp]: "bin_pred(w BIT False) = (bin_pred w) BIT True" |
|
136 by (simp add: Bin_simps diff_minus add_ac) |
|
137 |
|
138 lemma bin_minus_Pls [simp]: "bin_minus Numeral.Pls = Numeral.Pls" |
|
139 by (simp add: Bin_simps) |
|
140 |
|
141 lemma bin_minus_Min [simp]: "bin_minus Numeral.Min = Numeral.Pls BIT True" |
|
142 by (simp add: Bin_simps) |
|
143 |
|
144 lemma bin_minus_1 [simp]: |
|
145 "bin_minus (w BIT True) = bin_pred (bin_minus w) BIT True" |
|
146 by (simp add: Bin_simps add_ac diff_minus) |
|
147 |
|
148 lemma bin_minus_0 [simp]: "bin_minus(w BIT False) = (bin_minus w) BIT False" |
|
149 by (simp add: Bin_simps) |
|
150 |
|
151 |
|
152 subsection{*Binary Addition and Multiplication: |
|
153 @{term bin_add} and @{term bin_mult}*} |
|
154 |
|
155 lemma bin_add_Pls [simp]: "bin_add Numeral.Pls w = w" |
|
156 by (simp add: Bin_simps) |
|
157 |
|
158 lemma bin_add_Min [simp]: "bin_add Numeral.Min w = bin_pred w" |
|
159 by (simp add: Bin_simps diff_minus add_ac) |
|
160 |
|
161 lemma bin_add_BIT_11 [simp]: |
|
162 "bin_add (v BIT True) (w BIT True) = bin_add v (bin_succ w) BIT False" |
|
163 by (simp add: Bin_simps add_ac) |
|
164 |
|
165 lemma bin_add_BIT_10 [simp]: |
|
166 "bin_add (v BIT True) (w BIT False) = (bin_add v w) BIT True" |
|
167 by (simp add: Bin_simps add_ac) |
|
168 |
|
169 lemma bin_add_BIT_0 [simp]: |
|
170 "bin_add (v BIT False) (w BIT y) = bin_add v w BIT y" |
|
171 by (simp add: Bin_simps add_ac) |
|
172 |
|
173 lemma bin_add_Pls_right [simp]: "bin_add w Numeral.Pls = w" |
|
174 by (simp add: Bin_simps) |
|
175 |
|
176 lemma bin_add_Min_right [simp]: "bin_add w Numeral.Min = bin_pred w" |
|
177 by (simp add: Bin_simps diff_minus) |
|
178 |
|
179 lemma bin_mult_Pls [simp]: "bin_mult Numeral.Pls w = Numeral.Pls" |
|
180 by (simp add: Bin_simps) |
|
181 |
|
182 lemma bin_mult_Min [simp]: "bin_mult Numeral.Min w = bin_minus w" |
|
183 by (simp add: Bin_simps) |
|
184 |
|
185 lemma bin_mult_1 [simp]: |
|
186 "bin_mult (v BIT True) w = bin_add ((bin_mult v w) BIT False) w" |
|
187 by (simp add: Bin_simps add_ac left_distrib) |
|
188 |
|
189 lemma bin_mult_0 [simp]: "bin_mult (v BIT False) w = (bin_mult v w) BIT False" |
|
190 by (simp add: Bin_simps left_distrib) |
|
191 |
|
192 |
|
193 |
|
194 subsection{*Converting Numerals to Rings: @{term number_of}*} |
|
195 |
|
196 axclass number_ring \<subseteq> number, comm_ring_1 |
|
197 number_of_eq: "number_of w = of_int (Rep_Bin w)" |
|
198 |
|
199 lemma number_of_succ: |
|
200 "number_of(bin_succ w) = (1 + number_of w ::'a::number_ring)" |
|
201 by (simp add: number_of_eq Bin_simps) |
|
202 |
|
203 lemma number_of_pred: |
|
204 "number_of(bin_pred w) = (- 1 + number_of w ::'a::number_ring)" |
|
205 by (simp add: number_of_eq Bin_simps) |
|
206 |
|
207 lemma number_of_minus: |
|
208 "number_of(bin_minus w) = (- (number_of w)::'a::number_ring)" |
|
209 by (simp add: number_of_eq Bin_simps) |
|
210 |
|
211 lemma number_of_add: |
|
212 "number_of(bin_add v w) = (number_of v + number_of w::'a::number_ring)" |
|
213 by (simp add: number_of_eq Bin_simps) |
|
214 |
|
215 lemma number_of_mult: |
|
216 "number_of(bin_mult v w) = (number_of v * number_of w::'a::number_ring)" |
|
217 by (simp add: number_of_eq Bin_simps) |
|
218 |
|
219 text{*The correctness of shifting. But it doesn't seem to give a measurable |
|
220 speed-up.*} |
|
221 lemma double_number_of_BIT: |
|
222 "(1+1) * number_of w = (number_of (w BIT False) ::'a::number_ring)" |
|
223 by (simp add: number_of_eq Bin_simps left_distrib) |
|
224 |
|
225 text{*Converting numerals 0 and 1 to their abstract versions*} |
|
226 lemma numeral_0_eq_0 [simp]: "Numeral0 = (0::'a::number_ring)" |
|
227 by (simp add: number_of_eq Bin_simps) |
|
228 |
|
229 lemma numeral_1_eq_1 [simp]: "Numeral1 = (1::'a::number_ring)" |
|
230 by (simp add: number_of_eq Bin_simps) |
|
231 |
|
232 text{*Special-case simplification for small constants*} |
|
233 |
|
234 text{*Unary minus for the abstract constant 1. Cannot be inserted |
|
235 as a simprule until later: it is @{text number_of_Min} re-oriented!*} |
|
236 lemma numeral_m1_eq_minus_1: "(-1::'a::number_ring) = - 1" |
|
237 by (simp add: number_of_eq Bin_simps) |
|
238 |
|
239 |
|
240 lemma mult_minus1 [simp]: "-1 * z = -(z::'a::number_ring)" |
|
241 by (simp add: numeral_m1_eq_minus_1) |
|
242 |
|
243 lemma mult_minus1_right [simp]: "z * -1 = -(z::'a::number_ring)" |
|
244 by (simp add: numeral_m1_eq_minus_1) |
|
245 |
|
246 (*Negation of a coefficient*) |
|
247 lemma minus_number_of_mult [simp]: |
|
248 "- (number_of w) * z = number_of(bin_minus w) * (z::'a::number_ring)" |
|
249 by (simp add: number_of_minus) |
|
250 |
|
251 text{*Subtraction*} |
|
252 lemma diff_number_of_eq: |
|
253 "number_of v - number_of w = |
|
254 (number_of(bin_add v (bin_minus w))::'a::number_ring)" |
|
255 by (simp add: diff_minus number_of_add number_of_minus) |
|
256 |
|
257 |
|
258 lemma number_of_Pls: "number_of Numeral.Pls = (0::'a::number_ring)" |
|
259 by (simp add: number_of_eq Bin_simps) |
|
260 |
|
261 lemma number_of_Min: "number_of Numeral.Min = (- 1::'a::number_ring)" |
|
262 by (simp add: number_of_eq Bin_simps) |
|
263 |
|
264 lemma number_of_BIT: |
|
265 "number_of(w BIT x) = (if x then 1 else (0::'a::number_ring)) + |
|
266 (number_of w) + (number_of w)" |
|
267 by (simp add: number_of_eq Bin_simps) |
|
268 |
|
269 |
|
270 |
|
271 subsection{*Equality of Binary Numbers*} |
|
272 |
|
273 text{*First version by Norbert Voelker*} |
|
274 |
|
275 lemma eq_number_of_eq: |
|
276 "((number_of x::'a::number_ring) = number_of y) = |
|
277 iszero (number_of (bin_add x (bin_minus y)) :: 'a)" |
|
278 by (simp add: iszero_def compare_rls number_of_add number_of_minus) |
|
279 |
|
280 lemma iszero_number_of_Pls: "iszero ((number_of Numeral.Pls)::'a::number_ring)" |
|
281 by (simp add: iszero_def numeral_0_eq_0) |
|
282 |
|
283 lemma nonzero_number_of_Min: "~ iszero ((number_of Numeral.Min)::'a::number_ring)" |
|
284 by (simp add: iszero_def numeral_m1_eq_minus_1 eq_commute) |
|
285 |
|
286 |
|
287 subsection{*Comparisons, for Ordered Rings*} |
|
288 |
|
289 lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_idom))" |
|
290 proof - |
|
291 have "a + a = (1+1)*a" by (simp add: left_distrib) |
|
292 with zero_less_two [where 'a = 'a] |
|
293 show ?thesis by force |
|
294 qed |
|
295 |
|
296 lemma le_imp_0_less: |
|
297 assumes le: "0 \<le> z" shows "(0::int) < 1 + z" |
|
298 proof - |
|
299 have "0 \<le> z" . |
|
300 also have "... < z + 1" by (rule less_add_one) |
|
301 also have "... = 1 + z" by (simp add: add_ac) |
|
302 finally show "0 < 1 + z" . |
|
303 qed |
|
304 |
|
305 lemma odd_nonzero: "1 + z + z \<noteq> (0::int)"; |
|
306 proof (cases z rule: int_cases) |
|
307 case (nonneg n) |
|
308 have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) |
|
309 thus ?thesis using le_imp_0_less [OF le] |
|
310 by (auto simp add: add_assoc) |
|
311 next |
|
312 case (neg n) |
|
313 show ?thesis |
|
314 proof |
|
315 assume eq: "1 + z + z = 0" |
|
316 have "0 < 1 + (int n + int n)" |
|
317 by (simp add: le_imp_0_less add_increasing) |
|
318 also have "... = - (1 + z + z)" |
|
319 by (simp add: neg add_assoc [symmetric]) |
|
320 also have "... = 0" by (simp add: eq) |
|
321 finally have "0<0" .. |
|
322 thus False by blast |
|
323 qed |
|
324 qed |
|
325 |
|
326 |
|
327 text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} |
|
328 lemma Ints_odd_nonzero: "a \<in> Ints ==> 1 + a + a \<noteq> (0::'a::ordered_idom)" |
|
329 proof (unfold Ints_def) |
|
330 assume "a \<in> range of_int" |
|
331 then obtain z where a: "a = of_int z" .. |
|
332 show ?thesis |
|
333 proof |
|
334 assume eq: "1 + a + a = 0" |
|
335 hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) |
|
336 hence "1 + z + z = 0" by (simp only: of_int_eq_iff) |
|
337 with odd_nonzero show False by blast |
|
338 qed |
|
339 qed |
|
340 |
|
341 lemma Ints_number_of: "(number_of w :: 'a::number_ring) \<in> Ints" |
|
342 by (simp add: number_of_eq Ints_def) |
|
343 |
|
344 |
|
345 lemma iszero_number_of_BIT: |
|
346 "iszero (number_of (w BIT x)::'a) = |
|
347 (~x & iszero (number_of w::'a::{ordered_idom,number_ring}))" |
|
348 by (simp add: iszero_def number_of_eq Bin_simps double_eq_0_iff |
|
349 Ints_odd_nonzero Ints_def) |
|
350 |
|
351 lemma iszero_number_of_0: |
|
352 "iszero (number_of (w BIT False) :: 'a::{ordered_idom,number_ring}) = |
|
353 iszero (number_of w :: 'a)" |
|
354 by (simp only: iszero_number_of_BIT simp_thms) |
|
355 |
|
356 lemma iszero_number_of_1: |
|
357 "~ iszero (number_of (w BIT True)::'a::{ordered_idom,number_ring})" |
|
358 by (simp only: iszero_number_of_BIT simp_thms) |
|
359 |
|
360 |
|
361 |
|
362 subsection{*The Less-Than Relation*} |
|
363 |
|
364 lemma less_number_of_eq_neg: |
|
365 "((number_of x::'a::{ordered_idom,number_ring}) < number_of y) |
|
366 = neg (number_of (bin_add x (bin_minus y)) :: 'a)" |
|
367 apply (subst less_iff_diff_less_0) |
|
368 apply (simp add: neg_def diff_minus number_of_add number_of_minus) |
|
369 done |
|
370 |
|
371 text{*If @{term Numeral0} is rewritten to 0 then this rule can't be applied: |
|
372 @{term Numeral0} IS @{term "number_of Numeral.Pls"} *} |
|
373 lemma not_neg_number_of_Pls: |
|
374 "~ neg (number_of Numeral.Pls ::'a::{ordered_idom,number_ring})" |
|
375 by (simp add: neg_def numeral_0_eq_0) |
|
376 |
|
377 lemma neg_number_of_Min: |
|
378 "neg (number_of Numeral.Min ::'a::{ordered_idom,number_ring})" |
|
379 by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1) |
|
380 |
|
381 lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_idom))" |
|
382 proof - |
|
383 have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib) |
|
384 also have "... = (a < 0)" |
|
385 by (simp add: mult_less_0_iff zero_less_two |
|
386 order_less_not_sym [OF zero_less_two]) |
|
387 finally show ?thesis . |
|
388 qed |
|
389 |
|
390 lemma odd_less_0: "(1 + z + z < 0) = (z < (0::int))"; |
|
391 proof (cases z rule: int_cases) |
|
392 case (nonneg n) |
|
393 thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing |
|
394 le_imp_0_less [THEN order_less_imp_le]) |
|
395 next |
|
396 case (neg n) |
|
397 thus ?thesis by (simp del: int_Suc |
|
398 add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls) |
|
399 qed |
|
400 |
|
401 text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} |
|
402 lemma Ints_odd_less_0: |
|
403 "a \<in> Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_idom))"; |
|
404 proof (unfold Ints_def) |
|
405 assume "a \<in> range of_int" |
|
406 then obtain z where a: "a = of_int z" .. |
|
407 hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" |
|
408 by (simp add: a) |
|
409 also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0) |
|
410 also have "... = (a < 0)" by (simp add: a) |
|
411 finally show ?thesis . |
|
412 qed |
|
413 |
|
414 lemma neg_number_of_BIT: |
|
415 "neg (number_of (w BIT x)::'a) = |
|
416 neg (number_of w :: 'a::{ordered_idom,number_ring})" |
|
417 by (simp add: neg_def number_of_eq Bin_simps double_less_0_iff |
|
418 Ints_odd_less_0 Ints_def) |
|
419 |
|
420 |
|
421 text{*Less-Than or Equals*} |
|
422 |
|
423 text{*Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals*} |
|
424 lemmas le_number_of_eq_not_less = |
|
425 linorder_not_less [of "number_of w" "number_of v", symmetric, |
|
426 standard] |
|
427 |
|
428 lemma le_number_of_eq: |
|
429 "((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y) |
|
430 = (~ (neg (number_of (bin_add y (bin_minus x)) :: 'a)))" |
|
431 by (simp add: le_number_of_eq_not_less less_number_of_eq_neg) |
|
432 |
|
433 |
|
434 text{*Absolute value (@{term abs})*} |
|
435 |
|
436 lemma abs_number_of: |
|
437 "abs(number_of x::'a::{ordered_idom,number_ring}) = |
|
438 (if number_of x < (0::'a) then -number_of x else number_of x)" |
|
439 by (simp add: abs_if) |
|
440 |
|
441 |
|
442 text{*Re-orientation of the equation nnn=x*} |
|
443 lemma number_of_reorient: "(number_of w = x) = (x = number_of w)" |
|
444 by auto |
|
445 |
|
446 |
|
447 |
|
448 |
|
449 subsection{*Simplification of arithmetic operations on integer constants.*} |
|
450 |
|
451 lemmas bin_arith_extra_simps = |
|
452 number_of_add [symmetric] |
|
453 number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric] |
|
454 number_of_mult [symmetric] |
|
455 diff_number_of_eq abs_number_of |
|
456 |
|
457 text{*For making a minimal simpset, one must include these default simprules. |
|
458 Also include @{text simp_thms} or at least @{term "(~False)=True"} *} |
|
459 lemmas bin_arith_simps = |
|
460 Pls_0_eq Min_1_eq |
|
461 bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0 |
|
462 bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0 |
|
463 bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11 |
|
464 bin_minus_Pls bin_minus_Min bin_minus_1 bin_minus_0 |
|
465 bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 |
|
466 bin_add_Pls_right bin_add_Min_right |
|
467 abs_zero abs_one bin_arith_extra_simps |
|
468 |
|
469 text{*Simplification of relational operations*} |
|
470 lemmas bin_rel_simps = |
|
471 eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min |
|
472 iszero_number_of_0 iszero_number_of_1 |
|
473 less_number_of_eq_neg |
|
474 not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1 |
|
475 neg_number_of_Min neg_number_of_BIT |
|
476 le_number_of_eq |
|
477 |
|
478 declare bin_arith_extra_simps [simp] |
|
479 declare bin_rel_simps [simp] |
|
480 |
|
481 |
|
482 subsection{*Simplification of arithmetic when nested to the right*} |
|
483 |
|
484 lemma add_number_of_left [simp]: |
|
485 "number_of v + (number_of w + z) = |
|
486 (number_of(bin_add v w) + z::'a::number_ring)" |
|
487 by (simp add: add_assoc [symmetric]) |
|
488 |
|
489 lemma mult_number_of_left [simp]: |
|
490 "number_of v * (number_of w * z) = |
|
491 (number_of(bin_mult v w) * z::'a::number_ring)" |
|
492 by (simp add: mult_assoc [symmetric]) |
|
493 |
|
494 lemma add_number_of_diff1: |
|
495 "number_of v + (number_of w - c) = |
|
496 number_of(bin_add v w) - (c::'a::number_ring)" |
|
497 by (simp add: diff_minus add_number_of_left) |
|
498 |
|
499 lemma add_number_of_diff2 [simp]: "number_of v + (c - number_of w) = |
|
500 number_of (bin_add v (bin_minus w)) + (c::'a::number_ring)" |
|
501 apply (subst diff_number_of_eq [symmetric]) |
|
502 apply (simp only: compare_rls) |
|
503 done |
|
504 |
|
505 end |