equal
deleted
inserted
replaced
396 by (meson associated_def divides_trans) |
396 by (meson associated_def divides_trans) |
397 |
397 |
398 |
398 |
399 subsubsection \<open>Multiplication and associativity\<close> |
399 subsubsection \<open>Multiplication and associativity\<close> |
400 |
400 |
401 lemma (in monoid_cancel) mult_cong_r: |
401 lemma (in monoid) mult_cong_r: |
402 assumes "b \<sim> b'" "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G" |
402 assumes "b \<sim> b'" "a \<in> carrier G" "b \<in> carrier G" "b' \<in> carrier G" |
403 shows "a \<otimes> b \<sim> a \<otimes> b'" |
403 shows "a \<otimes> b \<sim> a \<otimes> b'" |
404 by (meson assms associated_def divides_mult_lI) |
404 by (meson assms associated_def divides_mult_lI) |
405 |
405 |
406 lemma (in comm_monoid_cancel) mult_cong_l: |
406 lemma (in comm_monoid) mult_cong_l: |
407 assumes "a \<sim> a'" "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G" |
407 assumes "a \<sim> a'" "a \<in> carrier G" "a' \<in> carrier G" "b \<in> carrier G" |
408 shows "a \<otimes> b \<sim> a' \<otimes> b" |
408 shows "a \<otimes> b \<sim> a' \<otimes> b" |
409 using assms m_comm mult_cong_r by auto |
409 using assms m_comm mult_cong_r by auto |
410 |
410 |
411 lemma (in monoid_cancel) assoc_l_cancel: |
411 lemma (in monoid_cancel) assoc_l_cancel: |
721 qed |
721 qed |
722 from this bunit show "P" by (rule e1) |
722 from this bunit show "P" by (rule e1) |
723 qed |
723 qed |
724 qed |
724 qed |
725 |
725 |
|
726 lemma divides_irreducible_condition: |
|
727 assumes "irreducible G r" and "a \<in> carrier G" |
|
728 shows "a divides\<^bsub>G\<^esub> r \<Longrightarrow> a \<in> Units G \<or> a \<sim>\<^bsub>G\<^esub> r" |
|
729 using assms unfolding irreducible_def properfactor_def associated_def |
|
730 by (cases "r divides\<^bsub>G\<^esub> a", auto) |
726 |
731 |
727 subsubsection \<open>Prime elements\<close> |
732 subsubsection \<open>Prime elements\<close> |
728 |
733 |
729 lemma primeI: |
734 lemma primeI: |
730 fixes G (structure) |
735 fixes G (structure) |