equal
deleted
inserted
replaced
1515 lemma ab_semigroup_idem_mult_max: |
1515 lemma ab_semigroup_idem_mult_max: |
1516 "class.ab_semigroup_idem_mult max" |
1516 "class.ab_semigroup_idem_mult max" |
1517 proof qed (auto simp add: max_def) |
1517 proof qed (auto simp add: max_def) |
1518 |
1518 |
1519 lemma max_lattice: |
1519 lemma max_lattice: |
1520 "class.semilattice_inf (op \<ge>) (op >) max" |
1520 "class.semilattice_inf max (op \<ge>) (op >)" |
1521 by (fact min_max.dual_semilattice) |
1521 by (fact min_max.dual_semilattice) |
1522 |
1522 |
1523 lemma dual_max: |
1523 lemma dual_max: |
1524 "ord.max (op \<ge>) = min" |
1524 "ord.max (op \<ge>) = min" |
1525 by (auto simp add: ord.max_def_raw min_def fun_eq_iff) |
1525 by (auto simp add: ord.max_def_raw min_def fun_eq_iff) |
1609 |
1609 |
1610 lemma Max_ge [simp]: |
1610 lemma Max_ge [simp]: |
1611 assumes "finite A" and "x \<in> A" |
1611 assumes "finite A" and "x \<in> A" |
1612 shows "x \<le> Max A" |
1612 shows "x \<le> Max A" |
1613 proof - |
1613 proof - |
1614 interpret semilattice_inf "op \<ge>" "op >" max |
1614 interpret semilattice_inf max "op \<ge>" "op >" |
1615 by (rule max_lattice) |
1615 by (rule max_lattice) |
1616 from assms show ?thesis by (simp add: Max_def fold1_belowI) |
1616 from assms show ?thesis by (simp add: Max_def fold1_belowI) |
1617 qed |
1617 qed |
1618 |
1618 |
1619 lemma Min_ge_iff [simp, no_atp]: |
1619 lemma Min_ge_iff [simp, no_atp]: |
1623 |
1623 |
1624 lemma Max_le_iff [simp, no_atp]: |
1624 lemma Max_le_iff [simp, no_atp]: |
1625 assumes "finite A" and "A \<noteq> {}" |
1625 assumes "finite A" and "A \<noteq> {}" |
1626 shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)" |
1626 shows "Max A \<le> x \<longleftrightarrow> (\<forall>a\<in>A. a \<le> x)" |
1627 proof - |
1627 proof - |
1628 interpret semilattice_inf "op \<ge>" "op >" max |
1628 interpret semilattice_inf max "op \<ge>" "op >" |
1629 by (rule max_lattice) |
1629 by (rule max_lattice) |
1630 from assms show ?thesis by (simp add: Max_def below_fold1_iff) |
1630 from assms show ?thesis by (simp add: Max_def below_fold1_iff) |
1631 qed |
1631 qed |
1632 |
1632 |
1633 lemma Min_gr_iff [simp, no_atp]: |
1633 lemma Min_gr_iff [simp, no_atp]: |