src/HOL/SMT2.thy
changeset 56078 624faeda77b5
child 56083 b5d1d9c60341
equal deleted inserted replaced
56077:d397030fb27e 56078:624faeda77b5
       
     1 (*  Title:      HOL/SMT2.thy
       
     2     Author:     Sascha Boehme, TU Muenchen
       
     3 *)
       
     4 
       
     5 header {* Bindings to Satisfiability Modulo Theories (SMT) solvers based on SMT-LIB 2 *}
       
     6 
       
     7 theory SMT2
       
     8 imports Record
       
     9 keywords "smt2_status" :: diag
       
    10 begin
       
    11 
       
    12 ML_file "Tools/SMT2/smt2_utils.ML"
       
    13 ML_file "Tools/SMT2/smt2_failure.ML"
       
    14 ML_file "Tools/SMT2/smt2_config.ML"
       
    15 
       
    16 
       
    17 subsection {* Triggers for quantifier instantiation *}
       
    18 
       
    19 text {*
       
    20 Some SMT solvers support patterns as a quantifier instantiation
       
    21 heuristics.  Patterns may either be positive terms (tagged by "pat")
       
    22 triggering quantifier instantiations -- when the solver finds a
       
    23 term matching a positive pattern, it instantiates the corresponding
       
    24 quantifier accordingly -- or negative terms (tagged by "nopat")
       
    25 inhibiting quantifier instantiations.  A list of patterns
       
    26 of the same kind is called a multipattern, and all patterns in a
       
    27 multipattern are considered conjunctively for quantifier instantiation.
       
    28 A list of multipatterns is called a trigger, and their multipatterns
       
    29 act disjunctively during quantifier instantiation.  Each multipattern
       
    30 should mention at least all quantified variables of the preceding
       
    31 quantifier block.
       
    32 *}
       
    33 
       
    34 typedecl pattern
       
    35 
       
    36 consts
       
    37   pat :: "'a \<Rightarrow> pattern"
       
    38   nopat :: "'a \<Rightarrow> pattern"
       
    39 
       
    40 definition trigger :: "pattern list list \<Rightarrow> bool \<Rightarrow> bool" where "trigger _ P = P"
       
    41 
       
    42 
       
    43 subsection {* Quantifier weights *}
       
    44 
       
    45 text {*
       
    46 Weight annotations to quantifiers influence the priority of quantifier
       
    47 instantiations.  They should be handled with care for solvers, which support
       
    48 them, because incorrect choices of weights might render a problem unsolvable.
       
    49 *}
       
    50 
       
    51 definition weight :: "int \<Rightarrow> bool \<Rightarrow> bool" where "weight _ P = P"
       
    52 
       
    53 text {*
       
    54 Weights must be non-negative.  The value @{text 0} is equivalent to providing
       
    55 no weight at all.
       
    56 
       
    57 Weights should only be used at quantifiers and only inside triggers (if the
       
    58 quantifier has triggers).  Valid usages of weights are as follows:
       
    59 
       
    60 \begin{itemize}
       
    61 \item
       
    62 @{term "\<forall>x. trigger [[pat (P x)]] (weight 2 (P x))"}
       
    63 \item
       
    64 @{term "\<forall>x. weight 3 (P x)"}
       
    65 \end{itemize}
       
    66 *}
       
    67 
       
    68 
       
    69 subsection {* Higher-order encoding *}
       
    70 
       
    71 text {*
       
    72 Application is made explicit for constants occurring with varying
       
    73 numbers of arguments.  This is achieved by the introduction of the
       
    74 following constant.
       
    75 *}
       
    76 
       
    77 definition fun_app :: "'a \<Rightarrow> 'a" where "fun_app f = f"
       
    78 
       
    79 text {*
       
    80 Some solvers support a theory of arrays which can be used to encode
       
    81 higher-order functions.  The following set of lemmas specifies the
       
    82 properties of such (extensional) arrays.
       
    83 *}
       
    84 
       
    85 lemmas array_rules = ext fun_upd_apply fun_upd_same fun_upd_other  fun_upd_upd fun_app_def
       
    86 
       
    87 
       
    88 subsection {* Integer division and modulo for Z3 *}
       
    89 
       
    90 definition z3div :: "int \<Rightarrow> int \<Rightarrow> int" where
       
    91   "z3div k l = (if 0 \<le> l then k div l else -(k div (-l)))"
       
    92 
       
    93 definition z3mod :: "int \<Rightarrow> int \<Rightarrow> int" where
       
    94   "z3mod k l = (if 0 \<le> l then k mod l else k mod (-l))"
       
    95 
       
    96 
       
    97 subsection {* Setup *}
       
    98 
       
    99 ML_file "Tools/SMT2/smt2_builtin.ML"
       
   100 ML_file "Tools/SMT2/smt2_datatypes.ML"
       
   101 ML_file "Tools/SMT2/smt2_normalize.ML"
       
   102 ML_file "Tools/SMT2/smt2_translate.ML"
       
   103 ML_file "Tools/SMT2/smt2_solver.ML"
       
   104 ML_file "Tools/SMT2/smtlib2.ML"
       
   105 ML_file "Tools/SMT2/smtlib2_interface.ML"
       
   106 ML_file "Tools/SMT2/z3_new_interface.ML"
       
   107 ML_file "Tools/SMT2/z3_new_proof.ML"
       
   108 ML_file "Tools/SMT2/z3_new_proof_tools.ML"
       
   109 ML_file "Tools/SMT2/z3_new_proof_literals.ML"
       
   110 ML_file "Tools/SMT2/z3_new_proof_rules.ML"
       
   111 ML_file "Tools/SMT2/z3_new_proof_methods.ML"
       
   112 ML_file "Tools/SMT2/z3_new_proof_replay.ML"
       
   113 ML_file "Tools/SMT2/z3_new_isar.ML"
       
   114 ML_file "Tools/SMT2/smt2_setup_solvers.ML"
       
   115 
       
   116 method_setup smt2 = {*
       
   117   Scan.optional Attrib.thms [] >>
       
   118     (fn thms => fn ctxt =>
       
   119       METHOD (fn facts => HEADGOAL (SMT2_Solver.smt2_tac ctxt (thms @ facts))))
       
   120 *} "apply an SMT solver to the current goal (based on SMT-LIB 2)"
       
   121 
       
   122 
       
   123 subsection {* Configuration *}
       
   124 
       
   125 text {*
       
   126 The current configuration can be printed by the command
       
   127 @{text smt2_status}, which shows the values of most options.
       
   128 *}
       
   129 
       
   130 
       
   131 
       
   132 subsection {* General configuration options *}
       
   133 
       
   134 text {*
       
   135 The option @{text smt2_solver} can be used to change the target SMT
       
   136 solver.  The possible values can be obtained from the @{text smt2_status}
       
   137 command.
       
   138 
       
   139 Due to licensing restrictions, Yices and Z3 are not installed/enabled
       
   140 by default.  Z3 is free for non-commercial applications and can be enabled
       
   141 by setting Isabelle system option @{text z3_non_commercial} to @{text yes}.
       
   142 *}
       
   143 
       
   144 declare [[ smt2_solver = z3_new ]]
       
   145 
       
   146 text {*
       
   147 Since SMT solvers are potentially non-terminating, there is a timeout
       
   148 (given in seconds) to restrict their runtime.  A value greater than
       
   149 120 (seconds) is in most cases not advisable.
       
   150 *}
       
   151 
       
   152 declare [[ smt2_timeout = 20 ]]
       
   153 
       
   154 text {*
       
   155 SMT solvers apply randomized heuristics.  In case a problem is not
       
   156 solvable by an SMT solver, changing the following option might help.
       
   157 *}
       
   158 
       
   159 declare [[ smt2_random_seed = 1 ]]
       
   160 
       
   161 text {*
       
   162 In general, the binding to SMT solvers runs as an oracle, i.e, the SMT
       
   163 solvers are fully trusted without additional checks.  The following
       
   164 option can cause the SMT solver to run in proof-producing mode, giving
       
   165 a checkable certificate.  This is currently only implemented for Z3.
       
   166 *}
       
   167 
       
   168 declare [[ smt2_oracle = false ]]
       
   169 
       
   170 text {*
       
   171 Each SMT solver provides several commandline options to tweak its
       
   172 behaviour.  They can be passed to the solver by setting the following
       
   173 options.
       
   174 *}
       
   175 
       
   176 (* declare [[ cvc3_options = "" ]] TODO *)
       
   177 (* declare [[ yices_options = "" ]] TODO *)
       
   178 (* declare [[ z3_options = "" ]] TODO *)
       
   179 
       
   180 text {*
       
   181 The SMT method provides an inference mechanism to detect simple triggers
       
   182 in quantified formulas, which might increase the number of problems
       
   183 solvable by SMT solvers (note: triggers guide quantifier instantiations
       
   184 in the SMT solver).  To turn it on, set the following option.
       
   185 *}
       
   186 
       
   187 declare [[ smt2_infer_triggers = false ]]
       
   188 
       
   189 text {*
       
   190 Enable the following option to use built-in support for div/mod, datatypes,
       
   191 and records in Z3.  Currently, this is implemented only in oracle mode.
       
   192 *}
       
   193 
       
   194 declare [[ z3_new_extensions = false ]]
       
   195 
       
   196 text {*
       
   197 The SMT method monomorphizes the given facts, that is, it tries to
       
   198 instantiate all schematic type variables with fixed types occurring
       
   199 in the problem.  This is a (possibly nonterminating) fixed-point
       
   200 construction whose cycles are limited by the following option.
       
   201 *}
       
   202 
       
   203 declare [[ monomorph_max_rounds = 5 ]]
       
   204 
       
   205 text {*
       
   206 In addition, the number of generated monomorphic instances is limited
       
   207 by the following option.
       
   208 *}
       
   209 
       
   210 declare [[ monomorph_max_new_instances = 500 ]]
       
   211 
       
   212 
       
   213 
       
   214 subsection {* Certificates *}
       
   215 
       
   216 text {*
       
   217 By setting the option @{text smt2_certificates} to the name of a file,
       
   218 all following applications of an SMT solver a cached in that file.
       
   219 Any further application of the same SMT solver (using the very same
       
   220 configuration) re-uses the cached certificate instead of invoking the
       
   221 solver.  An empty string disables caching certificates.
       
   222 
       
   223 The filename should be given as an explicit path.  It is good
       
   224 practice to use the name of the current theory (with ending
       
   225 @{text ".certs"} instead of @{text ".thy"}) as the certificates file.
       
   226 Certificate files should be used at most once in a certain theory context,
       
   227 to avoid race conditions with other concurrent accesses.
       
   228 *}
       
   229 
       
   230 declare [[ smt2_certificates = "" ]]
       
   231 
       
   232 text {*
       
   233 The option @{text smt2_read_only_certificates} controls whether only
       
   234 stored certificates are should be used or invocation of an SMT solver
       
   235 is allowed.  When set to @{text true}, no SMT solver will ever be
       
   236 invoked and only the existing certificates found in the configured
       
   237 cache are used;  when set to @{text false} and there is no cached
       
   238 certificate for some proposition, then the configured SMT solver is
       
   239 invoked.
       
   240 *}
       
   241 
       
   242 declare [[ smt2_read_only_certificates = false ]]
       
   243 
       
   244 
       
   245 
       
   246 subsection {* Tracing *}
       
   247 
       
   248 text {*
       
   249 The SMT method, when applied, traces important information.  To
       
   250 make it entirely silent, set the following option to @{text false}.
       
   251 *}
       
   252 
       
   253 declare [[ smt2_verbose = true ]]
       
   254 
       
   255 text {*
       
   256 For tracing the generated problem file given to the SMT solver as
       
   257 well as the returned result of the solver, the option
       
   258 @{text smt2_trace} should be set to @{text true}.
       
   259 *}
       
   260 
       
   261 declare [[ smt2_trace = false ]]
       
   262 
       
   263 text {*
       
   264 From the set of assumptions given to the SMT solver, those assumptions
       
   265 used in the proof are traced when the following option is set to
       
   266 @{term true}.  This only works for Z3 when it runs in non-oracle mode
       
   267 (see options @{text smt2_solver} and @{text smt2_oracle} above).
       
   268 *}
       
   269 
       
   270 declare [[ smt2_trace_used_facts = false ]]
       
   271 
       
   272 
       
   273 subsection {* Schematic rules for Z3 proof reconstruction *}
       
   274 
       
   275 text {*
       
   276 Several prof rules of Z3 are not very well documented.  There are two
       
   277 lemma groups which can turn failing Z3 proof reconstruction attempts
       
   278 into succeeding ones: the facts in @{text z3_rule} are tried prior to
       
   279 any implemented reconstruction procedure for all uncertain Z3 proof
       
   280 rules;  the facts in @{text z3_simp} are only fed to invocations of
       
   281 the simplifier when reconstructing theory-specific proof steps.
       
   282 *}
       
   283 
       
   284 lemmas [z3_new_rule] =
       
   285   refl eq_commute conj_commute disj_commute simp_thms nnf_simps
       
   286   ring_distribs field_simps times_divide_eq_right times_divide_eq_left
       
   287   if_True if_False not_not
       
   288 
       
   289 lemma [z3_new_rule]:
       
   290   "(P \<and> Q) = (\<not>(\<not>P \<or> \<not>Q))"
       
   291   "(P \<and> Q) = (\<not>(\<not>Q \<or> \<not>P))"
       
   292   "(\<not>P \<and> Q) = (\<not>(P \<or> \<not>Q))"
       
   293   "(\<not>P \<and> Q) = (\<not>(\<not>Q \<or> P))"
       
   294   "(P \<and> \<not>Q) = (\<not>(\<not>P \<or> Q))"
       
   295   "(P \<and> \<not>Q) = (\<not>(Q \<or> \<not>P))"
       
   296   "(\<not>P \<and> \<not>Q) = (\<not>(P \<or> Q))"
       
   297   "(\<not>P \<and> \<not>Q) = (\<not>(Q \<or> P))"
       
   298   by auto
       
   299 
       
   300 lemma [z3_new_rule]:
       
   301   "(P \<longrightarrow> Q) = (Q \<or> \<not>P)"
       
   302   "(\<not>P \<longrightarrow> Q) = (P \<or> Q)"
       
   303   "(\<not>P \<longrightarrow> Q) = (Q \<or> P)"
       
   304   "(True \<longrightarrow> P) = P"
       
   305   "(P \<longrightarrow> True) = True"
       
   306   "(False \<longrightarrow> P) = True"
       
   307   "(P \<longrightarrow> P) = True"
       
   308   by auto
       
   309 
       
   310 lemma [z3_new_rule]:
       
   311   "((P = Q) \<longrightarrow> R) = (R | (Q = (\<not>P)))"
       
   312   by auto
       
   313 
       
   314 lemma [z3_new_rule]:
       
   315   "(\<not>True) = False"
       
   316   "(\<not>False) = True"
       
   317   "(x = x) = True"
       
   318   "(P = True) = P"
       
   319   "(True = P) = P"
       
   320   "(P = False) = (\<not>P)"
       
   321   "(False = P) = (\<not>P)"
       
   322   "((\<not>P) = P) = False"
       
   323   "(P = (\<not>P)) = False"
       
   324   "((\<not>P) = (\<not>Q)) = (P = Q)"
       
   325   "\<not>(P = (\<not>Q)) = (P = Q)"
       
   326   "\<not>((\<not>P) = Q) = (P = Q)"
       
   327   "(P \<noteq> Q) = (Q = (\<not>P))"
       
   328   "(P = Q) = ((\<not>P \<or> Q) \<and> (P \<or> \<not>Q))"
       
   329   "(P \<noteq> Q) = ((\<not>P \<or> \<not>Q) \<and> (P \<or> Q))"
       
   330   by auto
       
   331 
       
   332 lemma [z3_new_rule]:
       
   333   "(if P then P else \<not>P) = True"
       
   334   "(if \<not>P then \<not>P else P) = True"
       
   335   "(if P then True else False) = P"
       
   336   "(if P then False else True) = (\<not>P)"
       
   337   "(if P then Q else True) = ((\<not>P) \<or> Q)"
       
   338   "(if P then Q else True) = (Q \<or> (\<not>P))"
       
   339   "(if P then Q else \<not>Q) = (P = Q)"
       
   340   "(if P then Q else \<not>Q) = (Q = P)"
       
   341   "(if P then \<not>Q else Q) = (P = (\<not>Q))"
       
   342   "(if P then \<not>Q else Q) = ((\<not>Q) = P)"
       
   343   "(if \<not>P then x else y) = (if P then y else x)"
       
   344   "(if P then (if Q then x else y) else x) = (if P \<and> (\<not>Q) then y else x)"
       
   345   "(if P then (if Q then x else y) else x) = (if (\<not>Q) \<and> P then y else x)"
       
   346   "(if P then (if Q then x else y) else y) = (if P \<and> Q then x else y)"
       
   347   "(if P then (if Q then x else y) else y) = (if Q \<and> P then x else y)"
       
   348   "(if P then x else if P then y else z) = (if P then x else z)"
       
   349   "(if P then x else if Q then x else y) = (if P \<or> Q then x else y)"
       
   350   "(if P then x else if Q then x else y) = (if Q \<or> P then x else y)"
       
   351   "(if P then x = y else x = z) = (x = (if P then y else z))"
       
   352   "(if P then x = y else y = z) = (y = (if P then x else z))"
       
   353   "(if P then x = y else z = y) = (y = (if P then x else z))"
       
   354   by auto
       
   355 
       
   356 lemma [z3_new_rule]:
       
   357   "0 + (x::int) = x"
       
   358   "x + 0 = x"
       
   359   "x + x = 2 * x"
       
   360   "0 * x = 0"
       
   361   "1 * x = x"
       
   362   "x + y = y + x"
       
   363   by auto
       
   364 
       
   365 lemma [z3_new_rule]:  (* for def-axiom *)
       
   366   "P = Q \<or> P \<or> Q"
       
   367   "P = Q \<or> \<not>P \<or> \<not>Q"
       
   368   "(\<not>P) = Q \<or> \<not>P \<or> Q"
       
   369   "(\<not>P) = Q \<or> P \<or> \<not>Q"
       
   370   "P = (\<not>Q) \<or> \<not>P \<or> Q"
       
   371   "P = (\<not>Q) \<or> P \<or> \<not>Q"
       
   372   "P \<noteq> Q \<or> P \<or> \<not>Q"
       
   373   "P \<noteq> Q \<or> \<not>P \<or> Q"
       
   374   "P \<noteq> (\<not>Q) \<or> P \<or> Q"
       
   375   "(\<not>P) \<noteq> Q \<or> P \<or> Q"
       
   376   "P \<or> Q \<or> P \<noteq> (\<not>Q)"
       
   377   "P \<or> Q \<or> (\<not>P) \<noteq> Q"
       
   378   "P \<or> \<not>Q \<or> P \<noteq> Q"
       
   379   "\<not>P \<or> Q \<or> P \<noteq> Q"
       
   380   "P \<or> y = (if P then x else y)"
       
   381   "P \<or> (if P then x else y) = y"
       
   382   "\<not>P \<or> x = (if P then x else y)"
       
   383   "\<not>P \<or>  (if P then x else y) = x"
       
   384   "P \<or> R \<or> \<not>(if P then Q else R)"
       
   385   "\<not>P \<or> Q \<or> \<not>(if P then Q else R)"
       
   386   "\<not>(if P then Q else R) \<or> \<not>P \<or> Q"
       
   387   "\<not>(if P then Q else R) \<or> P \<or> R"
       
   388   "(if P then Q else R) \<or> \<not>P \<or> \<not>Q"
       
   389   "(if P then Q else R) \<or> P \<or> \<not>R"
       
   390   "(if P then \<not>Q else R) \<or> \<not>P \<or> Q"
       
   391   "(if P then Q else \<not>R) \<or> P \<or> R"
       
   392   by auto
       
   393 
       
   394 hide_type (open) pattern
       
   395 hide_const fun_app z3div z3mod
       
   396 hide_const (open) trigger pat nopat weight
       
   397 
       
   398 end