src/ZF/Nat_ZF.thy
changeset 26056 6a0801279f4c
child 32960 69916a850301
equal deleted inserted replaced
26055:a7a537e0413a 26056:6a0801279f4c
       
     1 (*  Title:      ZF/Nat.thy
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1994  University of Cambridge
       
     5 
       
     6 *)
       
     7 
       
     8 header{*The Natural numbers As a Least Fixed Point*}
       
     9 
       
    10 theory Nat_ZF imports OrdQuant Bool begin
       
    11 
       
    12 definition
       
    13   nat :: i  where
       
    14     "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})"
       
    15 
       
    16 definition
       
    17   quasinat :: "i => o"  where
       
    18     "quasinat(n) == n=0 | (\<exists>m. n = succ(m))"
       
    19 
       
    20 definition
       
    21   (*Has an unconditional succ case, which is used in "recursor" below.*)
       
    22   nat_case :: "[i, i=>i, i]=>i"  where
       
    23     "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))"
       
    24 
       
    25 definition
       
    26   nat_rec :: "[i, i, [i,i]=>i]=>i"  where
       
    27     "nat_rec(k,a,b) ==   
       
    28           wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"
       
    29 
       
    30   (*Internalized relations on the naturals*)
       
    31   
       
    32 definition
       
    33   Le :: i  where
       
    34     "Le == {<x,y>:nat*nat. x le y}"
       
    35 
       
    36 definition
       
    37   Lt :: i  where
       
    38     "Lt == {<x, y>:nat*nat. x < y}"
       
    39   
       
    40 definition
       
    41   Ge :: i  where
       
    42     "Ge == {<x,y>:nat*nat. y le x}"
       
    43 
       
    44 definition
       
    45   Gt :: i  where
       
    46     "Gt == {<x,y>:nat*nat. y < x}"
       
    47 
       
    48 definition
       
    49   greater_than :: "i=>i"  where
       
    50     "greater_than(n) == {i:nat. n < i}"
       
    51 
       
    52 text{*No need for a less-than operator: a natural number is its list of
       
    53 predecessors!*}
       
    54 
       
    55 
       
    56 lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} Un {succ(i). i:X})"
       
    57 apply (rule bnd_monoI)
       
    58 apply (cut_tac infinity, blast, blast) 
       
    59 done
       
    60 
       
    61 (* nat = {0} Un {succ(x). x:nat} *)
       
    62 lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold], standard]
       
    63 
       
    64 (** Type checking of 0 and successor **)
       
    65 
       
    66 lemma nat_0I [iff,TC]: "0 : nat"
       
    67 apply (subst nat_unfold)
       
    68 apply (rule singletonI [THEN UnI1])
       
    69 done
       
    70 
       
    71 lemma nat_succI [intro!,TC]: "n : nat ==> succ(n) : nat"
       
    72 apply (subst nat_unfold)
       
    73 apply (erule RepFunI [THEN UnI2])
       
    74 done
       
    75 
       
    76 lemma nat_1I [iff,TC]: "1 : nat"
       
    77 by (rule nat_0I [THEN nat_succI])
       
    78 
       
    79 lemma nat_2I [iff,TC]: "2 : nat"
       
    80 by (rule nat_1I [THEN nat_succI])
       
    81 
       
    82 lemma bool_subset_nat: "bool <= nat"
       
    83 by (blast elim!: boolE)
       
    84 
       
    85 lemmas bool_into_nat = bool_subset_nat [THEN subsetD, standard]
       
    86 
       
    87 
       
    88 subsection{*Injectivity Properties and Induction*}
       
    89 
       
    90 (*Mathematical induction*)
       
    91 lemma nat_induct [case_names 0 succ, induct set: nat]:
       
    92     "[| n: nat;  P(0);  !!x. [| x: nat;  P(x) |] ==> P(succ(x)) |] ==> P(n)"
       
    93 by (erule def_induct [OF nat_def nat_bnd_mono], blast)
       
    94 
       
    95 lemma natE:
       
    96     "[| n: nat;  n=0 ==> P;  !!x. [| x: nat; n=succ(x) |] ==> P |] ==> P"
       
    97 by (erule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE], auto) 
       
    98 
       
    99 lemma nat_into_Ord [simp]: "n: nat ==> Ord(n)"
       
   100 by (erule nat_induct, auto)
       
   101 
       
   102 (* i: nat ==> 0 le i; same thing as 0<succ(i)  *)
       
   103 lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le, standard]
       
   104 
       
   105 (* i: nat ==> i le i; same thing as i<succ(i)  *)
       
   106 lemmas nat_le_refl = nat_into_Ord [THEN le_refl, standard]
       
   107 
       
   108 lemma Ord_nat [iff]: "Ord(nat)"
       
   109 apply (rule OrdI)
       
   110 apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])
       
   111 apply (unfold Transset_def)
       
   112 apply (rule ballI)
       
   113 apply (erule nat_induct, auto) 
       
   114 done
       
   115 
       
   116 lemma Limit_nat [iff]: "Limit(nat)"
       
   117 apply (unfold Limit_def)
       
   118 apply (safe intro!: ltI Ord_nat)
       
   119 apply (erule ltD)
       
   120 done
       
   121 
       
   122 lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
       
   123 by (induct a rule: nat_induct, auto)
       
   124 
       
   125 lemma succ_natD: "succ(i): nat ==> i: nat"
       
   126 by (rule Ord_trans [OF succI1], auto)
       
   127 
       
   128 lemma nat_succ_iff [iff]: "succ(n): nat <-> n: nat"
       
   129 by (blast dest!: succ_natD)
       
   130 
       
   131 lemma nat_le_Limit: "Limit(i) ==> nat le i"
       
   132 apply (rule subset_imp_le)
       
   133 apply (simp_all add: Limit_is_Ord) 
       
   134 apply (rule subsetI)
       
   135 apply (erule nat_induct)
       
   136  apply (erule Limit_has_0 [THEN ltD]) 
       
   137 apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)
       
   138 done
       
   139 
       
   140 (* [| succ(i): k;  k: nat |] ==> i: k *)
       
   141 lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]
       
   142 
       
   143 lemma lt_nat_in_nat: "[| m<n;  n: nat |] ==> m: nat"
       
   144 apply (erule ltE)
       
   145 apply (erule Ord_trans, assumption, simp) 
       
   146 done
       
   147 
       
   148 lemma le_in_nat: "[| m le n; n:nat |] ==> m:nat"
       
   149 by (blast dest!: lt_nat_in_nat)
       
   150 
       
   151 
       
   152 subsection{*Variations on Mathematical Induction*}
       
   153 
       
   154 (*complete induction*)
       
   155 
       
   156 lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]
       
   157 
       
   158 lemmas complete_induct_rule =  
       
   159 	complete_induct [rule_format, case_names less, consumes 1]
       
   160 
       
   161 
       
   162 lemma nat_induct_from_lemma [rule_format]: 
       
   163     "[| n: nat;  m: nat;   
       
   164         !!x. [| x: nat;  m le x;  P(x) |] ==> P(succ(x)) |] 
       
   165      ==> m le n --> P(m) --> P(n)"
       
   166 apply (erule nat_induct) 
       
   167 apply (simp_all add: distrib_simps le0_iff le_succ_iff)
       
   168 done
       
   169 
       
   170 (*Induction starting from m rather than 0*)
       
   171 lemma nat_induct_from: 
       
   172     "[| m le n;  m: nat;  n: nat;   
       
   173         P(m);   
       
   174         !!x. [| x: nat;  m le x;  P(x) |] ==> P(succ(x)) |]
       
   175      ==> P(n)"
       
   176 apply (blast intro: nat_induct_from_lemma)
       
   177 done
       
   178 
       
   179 (*Induction suitable for subtraction and less-than*)
       
   180 lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:
       
   181     "[| m: nat;  n: nat;   
       
   182         !!x. x: nat ==> P(x,0);   
       
   183         !!y. y: nat ==> P(0,succ(y));   
       
   184         !!x y. [| x: nat;  y: nat;  P(x,y) |] ==> P(succ(x),succ(y)) |]
       
   185      ==> P(m,n)"
       
   186 apply (erule_tac x = m in rev_bspec)
       
   187 apply (erule nat_induct, simp) 
       
   188 apply (rule ballI)
       
   189 apply (rename_tac i j)
       
   190 apply (erule_tac n=j in nat_induct, auto)  
       
   191 done
       
   192 
       
   193 
       
   194 (** Induction principle analogous to trancl_induct **)
       
   195 
       
   196 lemma succ_lt_induct_lemma [rule_format]:
       
   197      "m: nat ==> P(m,succ(m)) --> (ALL x: nat. P(m,x) --> P(m,succ(x))) -->  
       
   198                  (ALL n:nat. m<n --> P(m,n))"
       
   199 apply (erule nat_induct)
       
   200  apply (intro impI, rule nat_induct [THEN ballI])
       
   201    prefer 4 apply (intro impI, rule nat_induct [THEN ballI])
       
   202 apply (auto simp add: le_iff) 
       
   203 done
       
   204 
       
   205 lemma succ_lt_induct:
       
   206     "[| m<n;  n: nat;                                    
       
   207         P(m,succ(m));                                    
       
   208         !!x. [| x: nat;  P(m,x) |] ==> P(m,succ(x)) |]
       
   209      ==> P(m,n)"
       
   210 by (blast intro: succ_lt_induct_lemma lt_nat_in_nat) 
       
   211 
       
   212 subsection{*quasinat: to allow a case-split rule for @{term nat_case}*}
       
   213 
       
   214 text{*True if the argument is zero or any successor*}
       
   215 lemma [iff]: "quasinat(0)"
       
   216 by (simp add: quasinat_def)
       
   217 
       
   218 lemma [iff]: "quasinat(succ(x))"
       
   219 by (simp add: quasinat_def)
       
   220 
       
   221 lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"
       
   222 by (erule natE, simp_all)
       
   223 
       
   224 lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0" 
       
   225 by (simp add: quasinat_def nat_case_def) 
       
   226 
       
   227 lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"
       
   228 apply (case_tac "k=0", simp) 
       
   229 apply (case_tac "\<exists>m. k = succ(m)") 
       
   230 apply (simp_all add: quasinat_def) 
       
   231 done
       
   232 
       
   233 lemma nat_cases:
       
   234      "[|k=0 ==> P;  !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"
       
   235 by (insert nat_cases_disj [of k], blast) 
       
   236 
       
   237 (** nat_case **)
       
   238 
       
   239 lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"
       
   240 by (simp add: nat_case_def)
       
   241 
       
   242 lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)" 
       
   243 by (simp add: nat_case_def)
       
   244 
       
   245 lemma nat_case_type [TC]:
       
   246     "[| n: nat;  a: C(0);  !!m. m: nat ==> b(m): C(succ(m)) |] 
       
   247      ==> nat_case(a,b,n) : C(n)";
       
   248 by (erule nat_induct, auto) 
       
   249 
       
   250 lemma split_nat_case:
       
   251   "P(nat_case(a,b,k)) <-> 
       
   252    ((k=0 --> P(a)) & (\<forall>x. k=succ(x) --> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"
       
   253 apply (rule nat_cases [of k]) 
       
   254 apply (auto simp add: non_nat_case)
       
   255 done
       
   256 
       
   257 
       
   258 subsection{*Recursion on the Natural Numbers*}
       
   259 
       
   260 (** nat_rec is used to define eclose and transrec, then becomes obsolete.
       
   261     The operator rec, from arith.thy, has fewer typing conditions **)
       
   262 
       
   263 lemma nat_rec_0: "nat_rec(0,a,b) = a"
       
   264 apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
       
   265  apply (rule wf_Memrel) 
       
   266 apply (rule nat_case_0)
       
   267 done
       
   268 
       
   269 lemma nat_rec_succ: "m: nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"
       
   270 apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
       
   271  apply (rule wf_Memrel) 
       
   272 apply (simp add: vimage_singleton_iff)
       
   273 done
       
   274 
       
   275 (** The union of two natural numbers is a natural number -- their maximum **)
       
   276 
       
   277 lemma Un_nat_type [TC]: "[| i: nat; j: nat |] ==> i Un j: nat"
       
   278 apply (rule Un_least_lt [THEN ltD])
       
   279 apply (simp_all add: lt_def) 
       
   280 done
       
   281 
       
   282 lemma Int_nat_type [TC]: "[| i: nat; j: nat |] ==> i Int j: nat"
       
   283 apply (rule Int_greatest_lt [THEN ltD])
       
   284 apply (simp_all add: lt_def) 
       
   285 done
       
   286 
       
   287 (*needed to simplify unions over nat*)
       
   288 lemma nat_nonempty [simp]: "nat ~= 0"
       
   289 by blast
       
   290 
       
   291 text{*A natural number is the set of its predecessors*}
       
   292 lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
       
   293 apply (rule equalityI)
       
   294 apply (blast dest: ltD)  
       
   295 apply (auto simp add: Ord_mem_iff_lt)
       
   296 apply (blast intro: lt_trans) 
       
   297 done
       
   298 
       
   299 lemma Le_iff [iff]: "<x,y> : Le <-> x le y & x : nat & y : nat"
       
   300 by (force simp add: Le_def)
       
   301 
       
   302 end