src/HOL/NumberTheory/Fib.thy
changeset 11049 7eef34adb852
parent 10147 178deaacb244
child 11377 0f16ad464c62
equal deleted inserted replaced
11048:2f4976370b7a 11049:7eef34adb852
     1 (*  Title:      ex/Fib
     1 (*  Title:      HOL/NumberTheory/Fib.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     4     Copyright   1997  University of Cambridge
     4     Copyright   1997  University of Cambridge
     5 
       
     6 The Fibonacci function.  Demonstrates the use of recdef.
       
     7 *)
     5 *)
     8 
     6 
     9 Fib = Primes +
     7 header {* The Fibonacci function *}
    10 
     8 
    11 consts fib  :: "nat => nat"
     9 theory Fib = Primes:
    12 recdef fib "less_than"
    10 
    13   zero    "fib 0 = 0"
    11 text {*
    14   one     "fib 1 = 1"
    12   Fibonacci numbers: proofs of laws taken from:
    15   Suc_Suc "fib (Suc (Suc x)) = fib x + fib (Suc x)"
    13   R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
       
    14   (Addison-Wesley, 1989)
       
    15 
       
    16   \bigskip
       
    17 *}
       
    18 
       
    19 consts fib :: "nat => nat"
       
    20 recdef fib  less_than
       
    21   zero: "fib 0 = 0"
       
    22   one:  "fib 1 = 1"
       
    23   Suc_Suc: "fib (Suc (Suc x)) = fib x + fib (Suc x)"
       
    24 
       
    25 text {*
       
    26   \medskip The difficulty in these proofs is to ensure that the
       
    27   induction hypotheses are applied before the definition of @{term
       
    28   fib}.  Towards this end, the @{term fib} equations are not declared
       
    29   to the Simplifier and are applied very selectively at first.
       
    30 *}
       
    31 
       
    32 declare fib.Suc_Suc [simp del]
       
    33 
       
    34 lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
       
    35   apply (rule fib.Suc_Suc)
       
    36   done
       
    37 
       
    38 
       
    39 text {* \medskip Concrete Mathematics, page 280 *}
       
    40 
       
    41 lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
       
    42   apply (induct n rule: fib.induct)
       
    43     prefer 3
       
    44     txt {* simplify the LHS just enough to apply the induction hypotheses *}
       
    45     apply (simp add: fib.Suc_Suc [of "Suc (m + n)", standard])
       
    46     apply (simp_all (no_asm_simp) add: fib.Suc_Suc add_mult_distrib add_mult_distrib2)
       
    47     done
       
    48 
       
    49 lemma fib_Suc_neq_0 [simp]: "fib (Suc n) \<noteq> 0"
       
    50   apply (induct n rule: fib.induct)
       
    51     apply (simp_all add: fib.Suc_Suc)
       
    52   done
       
    53 
       
    54 lemma [simp]: "0 < fib (Suc n)"
       
    55   apply (simp add: neq0_conv [symmetric])
       
    56   done
       
    57 
       
    58 lemma fib_gr_0: "0 < n ==> 0 < fib n"
       
    59   apply (rule not0_implies_Suc [THEN exE])
       
    60    apply auto
       
    61   done
       
    62 
       
    63 
       
    64 text {*
       
    65   \medskip Concrete Mathematics, page 278: Cassini's identity.  It is
       
    66   much easier to prove using integers!
       
    67 *}
       
    68 
       
    69 lemma fib_Cassini: "int (fib (Suc (Suc n)) * fib n) =
       
    70   (if n mod #2 = 0 then int (fib (Suc n) * fib (Suc n)) - #1
       
    71    else int (fib (Suc n) * fib (Suc n)) + #1)"
       
    72   apply (induct n rule: fib.induct)
       
    73     apply (simp add: fib.Suc_Suc)
       
    74    apply (simp add: fib.Suc_Suc mod_Suc)
       
    75   apply (simp add: fib.Suc_Suc
       
    76     add_mult_distrib add_mult_distrib2 mod_Suc zmult_int [symmetric] zmult_ac)
       
    77   done
       
    78 
       
    79 
       
    80 text {* \medskip Towards Law 6.111 of Concrete Mathematics *}
       
    81 
       
    82 lemma gcd_fib_Suc_eq_1: "gcd (fib n, fib (Suc n)) = 1"
       
    83   apply (induct n rule: fib.induct)
       
    84     prefer 3
       
    85     apply (simp add: gcd_commute fib_Suc3)
       
    86    apply (simp_all add: fib.Suc_Suc)
       
    87   done
       
    88 
       
    89 lemma gcd_fib_add: "gcd (fib m, fib (n + m)) = gcd (fib m, fib n)"
       
    90   apply (simp (no_asm) add: gcd_commute [of "fib m"])
       
    91   apply (case_tac "m = 0")
       
    92    apply simp
       
    93   apply (clarify dest!: not0_implies_Suc)
       
    94   apply (simp add: fib_add)
       
    95   apply (simp add: add_commute gcd_non_0)
       
    96   apply (simp add: gcd_non_0 [symmetric])
       
    97   apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
       
    98   done
       
    99 
       
   100 lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)"
       
   101   apply (rule gcd_fib_add [symmetric, THEN trans])
       
   102   apply simp
       
   103   done
       
   104 
       
   105 lemma gcd_fib_mod: "0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)"
       
   106   apply (induct n rule: nat_less_induct)
       
   107   apply (subst mod_if)
       
   108   apply (simp add: gcd_fib_diff mod_geq not_less_iff_le diff_less)
       
   109   done
       
   110 
       
   111 lemma fib_gcd: "fib (gcd (m, n)) = gcd (fib m, fib n)"  -- {* Law 6.111 *}
       
   112   apply (induct m n rule: gcd_induct)
       
   113    apply simp
       
   114   apply (simp add: gcd_non_0)
       
   115   apply (simp add: gcd_commute gcd_fib_mod)
       
   116   done
       
   117 
       
   118 lemma fib_mult_eq_setsum:
       
   119     "fib (Suc n) * fib n = setsum (\<lambda>k. fib k * fib k) (atMost n)"
       
   120   apply (induct n rule: fib.induct)
       
   121     apply (auto simp add: atMost_Suc fib.Suc_Suc)
       
   122   apply (simp add: add_mult_distrib add_mult_distrib2)
       
   123   done
    16 
   124 
    17 end
   125 end