src/HOL/NumberTheory/Fib.thy
changeset 11049 7eef34adb852
parent 10147 178deaacb244
child 11377 0f16ad464c62
--- a/src/HOL/NumberTheory/Fib.thy	Sat Feb 03 17:43:34 2001 +0100
+++ b/src/HOL/NumberTheory/Fib.thy	Sun Feb 04 19:31:13 2001 +0100
@@ -1,17 +1,125 @@
-(*  Title:      ex/Fib
+(*  Title:      HOL/NumberTheory/Fib.thy
     ID:         $Id$
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1997  University of Cambridge
-
-The Fibonacci function.  Demonstrates the use of recdef.
 *)
 
-Fib = Primes +
+header {* The Fibonacci function *}
+
+theory Fib = Primes:
+
+text {*
+  Fibonacci numbers: proofs of laws taken from:
+  R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
+  (Addison-Wesley, 1989)
+
+  \bigskip
+*}
+
+consts fib :: "nat => nat"
+recdef fib  less_than
+  zero: "fib 0 = 0"
+  one:  "fib 1 = 1"
+  Suc_Suc: "fib (Suc (Suc x)) = fib x + fib (Suc x)"
+
+text {*
+  \medskip The difficulty in these proofs is to ensure that the
+  induction hypotheses are applied before the definition of @{term
+  fib}.  Towards this end, the @{term fib} equations are not declared
+  to the Simplifier and are applied very selectively at first.
+*}
+
+declare fib.Suc_Suc [simp del]
+
+lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
+  apply (rule fib.Suc_Suc)
+  done
+
+
+text {* \medskip Concrete Mathematics, page 280 *}
+
+lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
+  apply (induct n rule: fib.induct)
+    prefer 3
+    txt {* simplify the LHS just enough to apply the induction hypotheses *}
+    apply (simp add: fib.Suc_Suc [of "Suc (m + n)", standard])
+    apply (simp_all (no_asm_simp) add: fib.Suc_Suc add_mult_distrib add_mult_distrib2)
+    done
+
+lemma fib_Suc_neq_0 [simp]: "fib (Suc n) \<noteq> 0"
+  apply (induct n rule: fib.induct)
+    apply (simp_all add: fib.Suc_Suc)
+  done
+
+lemma [simp]: "0 < fib (Suc n)"
+  apply (simp add: neq0_conv [symmetric])
+  done
+
+lemma fib_gr_0: "0 < n ==> 0 < fib n"
+  apply (rule not0_implies_Suc [THEN exE])
+   apply auto
+  done
+
 
-consts fib  :: "nat => nat"
-recdef fib "less_than"
-  zero    "fib 0 = 0"
-  one     "fib 1 = 1"
-  Suc_Suc "fib (Suc (Suc x)) = fib x + fib (Suc x)"
+text {*
+  \medskip Concrete Mathematics, page 278: Cassini's identity.  It is
+  much easier to prove using integers!
+*}
+
+lemma fib_Cassini: "int (fib (Suc (Suc n)) * fib n) =
+  (if n mod #2 = 0 then int (fib (Suc n) * fib (Suc n)) - #1
+   else int (fib (Suc n) * fib (Suc n)) + #1)"
+  apply (induct n rule: fib.induct)
+    apply (simp add: fib.Suc_Suc)
+   apply (simp add: fib.Suc_Suc mod_Suc)
+  apply (simp add: fib.Suc_Suc
+    add_mult_distrib add_mult_distrib2 mod_Suc zmult_int [symmetric] zmult_ac)
+  done
+
+
+text {* \medskip Towards Law 6.111 of Concrete Mathematics *}
+
+lemma gcd_fib_Suc_eq_1: "gcd (fib n, fib (Suc n)) = 1"
+  apply (induct n rule: fib.induct)
+    prefer 3
+    apply (simp add: gcd_commute fib_Suc3)
+   apply (simp_all add: fib.Suc_Suc)
+  done
+
+lemma gcd_fib_add: "gcd (fib m, fib (n + m)) = gcd (fib m, fib n)"
+  apply (simp (no_asm) add: gcd_commute [of "fib m"])
+  apply (case_tac "m = 0")
+   apply simp
+  apply (clarify dest!: not0_implies_Suc)
+  apply (simp add: fib_add)
+  apply (simp add: add_commute gcd_non_0)
+  apply (simp add: gcd_non_0 [symmetric])
+  apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
+  done
+
+lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m, fib (n - m)) = gcd (fib m, fib n)"
+  apply (rule gcd_fib_add [symmetric, THEN trans])
+  apply simp
+  done
+
+lemma gcd_fib_mod: "0 < m ==> gcd (fib m, fib (n mod m)) = gcd (fib m, fib n)"
+  apply (induct n rule: nat_less_induct)
+  apply (subst mod_if)
+  apply (simp add: gcd_fib_diff mod_geq not_less_iff_le diff_less)
+  done
+
+lemma fib_gcd: "fib (gcd (m, n)) = gcd (fib m, fib n)"  -- {* Law 6.111 *}
+  apply (induct m n rule: gcd_induct)
+   apply simp
+  apply (simp add: gcd_non_0)
+  apply (simp add: gcd_commute gcd_fib_mod)
+  done
+
+lemma fib_mult_eq_setsum:
+    "fib (Suc n) * fib n = setsum (\<lambda>k. fib k * fib k) (atMost n)"
+  apply (induct n rule: fib.induct)
+    apply (auto simp add: atMost_Suc fib.Suc_Suc)
+  apply (simp add: add_mult_distrib add_mult_distrib2)
+  done
 
 end