src/HOL/NumberTheory/WilsonBij.thy
changeset 11049 7eef34adb852
parent 9508 4d01dbf6ded7
child 11701 3d51fbf81c17
equal deleted inserted replaced
11048:2f4976370b7a 11049:7eef34adb852
     1 (*  Title:	WilsonBij.thy
     1 (*  Title:      HOL/NumberTheory/WilsonBij.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:	Thomas M. Rasmussen
     3     Author:     Thomas M. Rasmussen
     4     Copyright	2000  University of Cambridge
     4     Copyright   2000  University of Cambridge
     5 *)
     5 *)
     6 
     6 
     7 WilsonBij = BijectionRel + IntFact +
     7 header {* Wilson's Theorem using a more abstract approach *}
     8 
     8 
     9 consts
     9 theory WilsonBij = BijectionRel + IntFact:
    10   reciR  :: "int => [int,int] => bool"
    10 
    11   inv    :: "[int,int] => int"
    11 text {*
    12 
    12   Wilson's Theorem using a more ``abstract'' approach based on
    13 defs
    13   bijections between sets.  Does not use Fermat's Little Theorem
    14   reciR_def "reciR p == (%a b. zcong (a*b) #1 p & 
    14   (unlike Russinoff).
    15                                #1<a & a<p-#1 & #1<b & b<p-#1)"
    15 *}
    16   inv_def   "inv p a == (if p:zprime & #0<a & a<p then
    16 
    17                            (@x. #0<=x & x<p & zcong (a*x) #1 p)
    17 
    18                          else #0)"
    18 subsection {* Definitions and lemmas *}
       
    19 
       
    20 constdefs
       
    21   reciR :: "int => int => int => bool"
       
    22   "reciR p ==
       
    23     \<lambda>a b. zcong (a * b) #1 p \<and> #1 < a \<and> a < p - #1 \<and> #1 < b \<and> b < p - #1"
       
    24   inv :: "int => int => int"
       
    25   "inv p a ==
       
    26     if p \<in> zprime \<and> #0 < a \<and> a < p then
       
    27       (SOME x. #0 \<le> x \<and> x < p \<and> zcong (a * x) #1 p)
       
    28     else #0"
       
    29 
       
    30 
       
    31 text {* \medskip Inverse *}
       
    32 
       
    33 lemma inv_correct:
       
    34   "p \<in> zprime ==> #0 < a ==> a < p
       
    35     ==> #0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = #1] (mod p)"
       
    36   apply (unfold inv_def)
       
    37   apply (simp (no_asm_simp))
       
    38   apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex])
       
    39    apply (erule_tac [2] zless_zprime_imp_zrelprime)
       
    40     apply (unfold zprime_def)
       
    41     apply auto
       
    42   done
       
    43 
       
    44 lemmas inv_ge = inv_correct [THEN conjunct1, standard]
       
    45 lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard]
       
    46 lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard]
       
    47 
       
    48 lemma inv_not_0:
       
    49   "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #0"
       
    50   -- {* same as @{text WilsonRuss} *}
       
    51   apply safe
       
    52   apply (cut_tac a = a and p = p in inv_is_inv)
       
    53      apply (unfold zcong_def)
       
    54      apply auto
       
    55   apply (subgoal_tac "\<not> p dvd #1")
       
    56    apply (rule_tac [2] zdvd_not_zless)
       
    57     apply (subgoal_tac "p dvd #1")
       
    58      prefer 2
       
    59      apply (subst zdvd_zminus_iff [symmetric])
       
    60      apply auto
       
    61   done
       
    62 
       
    63 lemma inv_not_1:
       
    64   "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #1"
       
    65   -- {* same as @{text WilsonRuss} *}
       
    66   apply safe
       
    67   apply (cut_tac a = a and p = p in inv_is_inv)
       
    68      prefer 4
       
    69      apply simp
       
    70      apply (subgoal_tac "a = #1")
       
    71       apply (rule_tac [2] zcong_zless_imp_eq)
       
    72           apply auto
       
    73   done
       
    74 
       
    75 lemma aux: "[a * (p - #1) = #1] (mod p) = [a = p - #1] (mod p)"
       
    76   -- {* same as @{text WilsonRuss} *}
       
    77   apply (unfold zcong_def)
       
    78   apply (simp add: zdiff_zdiff_eq zdiff_zdiff_eq2 zdiff_zmult_distrib2)
       
    79   apply (rule_tac s = "p dvd -((a + #1) + (p * -a))" in trans)
       
    80    apply (simp add: zmult_commute zminus_zdiff_eq)
       
    81   apply (subst zdvd_zminus_iff)
       
    82   apply (subst zdvd_reduce)
       
    83   apply (rule_tac s = "p dvd (a + #1) + (p * -#1)" in trans)
       
    84    apply (subst zdvd_reduce)
       
    85    apply auto
       
    86   done
       
    87 
       
    88 lemma inv_not_p_minus_1:
       
    89   "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> p - #1"
       
    90   -- {* same as @{text WilsonRuss} *}
       
    91   apply safe
       
    92   apply (cut_tac a = a and p = p in inv_is_inv)
       
    93      apply auto
       
    94   apply (simp add: aux)
       
    95   apply (subgoal_tac "a = p - #1")
       
    96    apply (rule_tac [2] zcong_zless_imp_eq)
       
    97        apply auto
       
    98   done
       
    99 
       
   100 text {*
       
   101   Below is slightly different as we don't expand @{term [source] inv}
       
   102   but use ``@{text correct}'' theorems.
       
   103 *}
       
   104 
       
   105 lemma inv_g_1: "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> #1 < inv p a"
       
   106   apply (subgoal_tac "inv p a \<noteq> #1")
       
   107    apply (subgoal_tac "inv p a \<noteq> #0")
       
   108     apply (subst order_less_le)
       
   109     apply (subst zle_add1_eq_le [symmetric])
       
   110     apply (subst order_less_le)
       
   111     apply (rule_tac [2] inv_not_0)
       
   112       apply (rule_tac [5] inv_not_1)
       
   113         apply auto
       
   114   apply (rule inv_ge)
       
   115     apply auto
       
   116   done
       
   117 
       
   118 lemma inv_less_p_minus_1:
       
   119   "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a < p - #1"
       
   120   -- {* ditto *}
       
   121   apply (subst order_less_le)
       
   122   apply (simp add: inv_not_p_minus_1 inv_less)
       
   123   done
       
   124 
       
   125 
       
   126 text {* \medskip Bijection *}
       
   127 
       
   128 lemma aux1: "#1 < x ==> #0 \<le> (x::int)"
       
   129   apply auto
       
   130   done
       
   131 
       
   132 lemma aux2: "#1 < x ==> #0 < (x::int)"
       
   133   apply auto
       
   134   done
       
   135 
       
   136 lemma aux3: "x \<le> p - #2 ==> x < (p::int)"
       
   137   apply auto
       
   138   done
       
   139 
       
   140 lemma aux4: "x \<le> p - #2 ==> x < (p::int)-#1"
       
   141   apply auto
       
   142   done
       
   143 
       
   144 lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - #2))"
       
   145   apply (unfold inj_on_def)
       
   146   apply auto
       
   147   apply (rule zcong_zless_imp_eq)
       
   148       apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
       
   149         apply (rule_tac [7] zcong_trans)
       
   150          apply (tactic {* stac (thm "zcong_sym") 8 *})
       
   151          apply (erule_tac [7] inv_is_inv)
       
   152           apply (tactic "Asm_simp_tac 9")
       
   153           apply (erule_tac [9] inv_is_inv)
       
   154            apply (rule_tac [6] zless_zprime_imp_zrelprime)
       
   155              apply (rule_tac [8] inv_less)
       
   156                apply (rule_tac [7] inv_g_1 [THEN aux2])
       
   157                  apply (unfold zprime_def)
       
   158                  apply (auto intro: d22set_g_1 d22set_le
       
   159 		   aux1 aux2 aux3 aux4)
       
   160   done
       
   161 
       
   162 lemma inv_d22set_d22set:
       
   163     "p \<in> zprime ==> inv p ` d22set (p - #2) = d22set (p - #2)"
       
   164   apply (rule endo_inj_surj)
       
   165     apply (rule d22set_fin)
       
   166    apply (erule_tac [2] inv_inj)
       
   167   apply auto
       
   168   apply (rule d22set_mem)
       
   169    apply (erule inv_g_1)
       
   170     apply (subgoal_tac [3] "inv p xa < p - #1")
       
   171      apply (erule_tac [4] inv_less_p_minus_1)
       
   172       apply (auto intro: d22set_g_1 d22set_le aux4)
       
   173   done
       
   174 
       
   175 lemma d22set_d22set_bij:
       
   176     "p \<in> zprime ==> (d22set (p - #2), d22set (p - #2)) \<in> bijR (reciR p)"
       
   177   apply (unfold reciR_def)
       
   178   apply (rule_tac s = "(d22set (p - #2), inv p ` d22set (p - #2))" in subst)
       
   179    apply (simp add: inv_d22set_d22set)
       
   180   apply (rule inj_func_bijR)
       
   181     apply (rule_tac [3] d22set_fin)
       
   182    apply (erule_tac [2] inv_inj)
       
   183   apply auto
       
   184       apply (erule inv_is_inv)
       
   185        apply (erule_tac [5] inv_g_1)
       
   186         apply (erule_tac [7] inv_less_p_minus_1)
       
   187          apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
       
   188   done
       
   189 
       
   190 lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - #2))"
       
   191   apply (unfold reciR_def bijP_def)
       
   192   apply auto
       
   193   apply (rule d22set_mem)
       
   194    apply auto
       
   195   done
       
   196 
       
   197 lemma reciP_uniq: "p \<in> zprime ==> uniqP (reciR p)"
       
   198   apply (unfold reciR_def uniqP_def)
       
   199   apply auto
       
   200    apply (rule zcong_zless_imp_eq)
       
   201        apply (tactic {* stac (thm "zcong_cancel2" RS sym) 5 *})
       
   202          apply (rule_tac [7] zcong_trans)
       
   203           apply (tactic {* stac (thm "zcong_sym") 8 *})
       
   204           apply (rule_tac [6] zless_zprime_imp_zrelprime)
       
   205             apply auto
       
   206   apply (rule zcong_zless_imp_eq)
       
   207       apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
       
   208         apply (rule_tac [7] zcong_trans)
       
   209          apply (tactic {* stac (thm "zcong_sym") 8 *})
       
   210          apply (rule_tac [6] zless_zprime_imp_zrelprime)
       
   211            apply auto
       
   212   done
       
   213 
       
   214 lemma reciP_sym: "p \<in> zprime ==> symP (reciR p)"
       
   215   apply (unfold reciR_def symP_def)
       
   216   apply (simp add: zmult_commute)
       
   217   apply auto
       
   218   done
       
   219 
       
   220 lemma bijER_d22set: "p \<in> zprime ==> d22set (p - #2) \<in> bijER (reciR p)"
       
   221   apply (rule bijR_bijER)
       
   222      apply (erule d22set_d22set_bij)
       
   223     apply (erule reciP_bijP)
       
   224    apply (erule reciP_uniq)
       
   225   apply (erule reciP_sym)
       
   226   done
       
   227 
       
   228 
       
   229 subsection {* Wilson *}
       
   230 
       
   231 lemma bijER_zcong_prod_1:
       
   232     "p \<in> zprime ==> A \<in> bijER (reciR p) ==> [setprod A = #1] (mod p)"
       
   233   apply (unfold reciR_def)
       
   234   apply (erule bijER.induct)
       
   235     apply (subgoal_tac [2] "a = #1 \<or> a = p - #1")
       
   236      apply (rule_tac [3] zcong_square_zless)
       
   237         apply auto
       
   238   apply (subst setprod_insert)
       
   239     prefer 3
       
   240     apply (subst setprod_insert)
       
   241       apply (auto simp add: fin_bijER)
       
   242   apply (subgoal_tac "zcong ((a * b) * setprod A) (#1 * #1) p")
       
   243    apply (simp add: zmult_assoc)
       
   244   apply (rule zcong_zmult)
       
   245    apply auto
       
   246   done
       
   247 
       
   248 theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - #1) = #-1] (mod p)"
       
   249   apply (subgoal_tac "zcong ((p - #1) * zfact (p - #2)) (#-1 * #1) p")
       
   250    apply (rule_tac [2] zcong_zmult)
       
   251     apply (simp add: zprime_def)
       
   252     apply (subst zfact.simps)
       
   253     apply (rule_tac t = "p - #1 - #1" and s = "p - #2" in subst)
       
   254      apply auto
       
   255    apply (simp add: zcong_def)
       
   256   apply (subst d22set_prod_zfact [symmetric])
       
   257   apply (rule bijER_zcong_prod_1)
       
   258    apply (rule_tac [2] bijER_d22set)
       
   259    apply auto
       
   260   done
    19 
   261 
    20 end
   262 end