src/HOL/NumberTheory/WilsonBij.thy
changeset 11049 7eef34adb852
parent 9508 4d01dbf6ded7
child 11701 3d51fbf81c17
--- a/src/HOL/NumberTheory/WilsonBij.thy	Sat Feb 03 17:43:34 2001 +0100
+++ b/src/HOL/NumberTheory/WilsonBij.thy	Sun Feb 04 19:31:13 2001 +0100
@@ -1,20 +1,262 @@
-(*  Title:	WilsonBij.thy
+(*  Title:      HOL/NumberTheory/WilsonBij.thy
     ID:         $Id$
-    Author:	Thomas M. Rasmussen
-    Copyright	2000  University of Cambridge
+    Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
 *)
 
-WilsonBij = BijectionRel + IntFact +
+header {* Wilson's Theorem using a more abstract approach *}
+
+theory WilsonBij = BijectionRel + IntFact:
+
+text {*
+  Wilson's Theorem using a more ``abstract'' approach based on
+  bijections between sets.  Does not use Fermat's Little Theorem
+  (unlike Russinoff).
+*}
+
+
+subsection {* Definitions and lemmas *}
+
+constdefs
+  reciR :: "int => int => int => bool"
+  "reciR p ==
+    \<lambda>a b. zcong (a * b) #1 p \<and> #1 < a \<and> a < p - #1 \<and> #1 < b \<and> b < p - #1"
+  inv :: "int => int => int"
+  "inv p a ==
+    if p \<in> zprime \<and> #0 < a \<and> a < p then
+      (SOME x. #0 \<le> x \<and> x < p \<and> zcong (a * x) #1 p)
+    else #0"
+
+
+text {* \medskip Inverse *}
+
+lemma inv_correct:
+  "p \<in> zprime ==> #0 < a ==> a < p
+    ==> #0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = #1] (mod p)"
+  apply (unfold inv_def)
+  apply (simp (no_asm_simp))
+  apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex])
+   apply (erule_tac [2] zless_zprime_imp_zrelprime)
+    apply (unfold zprime_def)
+    apply auto
+  done
+
+lemmas inv_ge = inv_correct [THEN conjunct1, standard]
+lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard]
+lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard]
+
+lemma inv_not_0:
+  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #0"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     apply (unfold zcong_def)
+     apply auto
+  apply (subgoal_tac "\<not> p dvd #1")
+   apply (rule_tac [2] zdvd_not_zless)
+    apply (subgoal_tac "p dvd #1")
+     prefer 2
+     apply (subst zdvd_zminus_iff [symmetric])
+     apply auto
+  done
 
-consts
-  reciR  :: "int => [int,int] => bool"
-  inv    :: "[int,int] => int"
+lemma inv_not_1:
+  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #1"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     prefer 4
+     apply simp
+     apply (subgoal_tac "a = #1")
+      apply (rule_tac [2] zcong_zless_imp_eq)
+          apply auto
+  done
+
+lemma aux: "[a * (p - #1) = #1] (mod p) = [a = p - #1] (mod p)"
+  -- {* same as @{text WilsonRuss} *}
+  apply (unfold zcong_def)
+  apply (simp add: zdiff_zdiff_eq zdiff_zdiff_eq2 zdiff_zmult_distrib2)
+  apply (rule_tac s = "p dvd -((a + #1) + (p * -a))" in trans)
+   apply (simp add: zmult_commute zminus_zdiff_eq)
+  apply (subst zdvd_zminus_iff)
+  apply (subst zdvd_reduce)
+  apply (rule_tac s = "p dvd (a + #1) + (p * -#1)" in trans)
+   apply (subst zdvd_reduce)
+   apply auto
+  done
+
+lemma inv_not_p_minus_1:
+  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> p - #1"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     apply auto
+  apply (simp add: aux)
+  apply (subgoal_tac "a = p - #1")
+   apply (rule_tac [2] zcong_zless_imp_eq)
+       apply auto
+  done
+
+text {*
+  Below is slightly different as we don't expand @{term [source] inv}
+  but use ``@{text correct}'' theorems.
+*}
+
+lemma inv_g_1: "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> #1 < inv p a"
+  apply (subgoal_tac "inv p a \<noteq> #1")
+   apply (subgoal_tac "inv p a \<noteq> #0")
+    apply (subst order_less_le)
+    apply (subst zle_add1_eq_le [symmetric])
+    apply (subst order_less_le)
+    apply (rule_tac [2] inv_not_0)
+      apply (rule_tac [5] inv_not_1)
+        apply auto
+  apply (rule inv_ge)
+    apply auto
+  done
+
+lemma inv_less_p_minus_1:
+  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a < p - #1"
+  -- {* ditto *}
+  apply (subst order_less_le)
+  apply (simp add: inv_not_p_minus_1 inv_less)
+  done
+
+
+text {* \medskip Bijection *}
+
+lemma aux1: "#1 < x ==> #0 \<le> (x::int)"
+  apply auto
+  done
 
-defs
-  reciR_def "reciR p == (%a b. zcong (a*b) #1 p & 
-                               #1<a & a<p-#1 & #1<b & b<p-#1)"
-  inv_def   "inv p a == (if p:zprime & #0<a & a<p then
-                           (@x. #0<=x & x<p & zcong (a*x) #1 p)
-                         else #0)"
+lemma aux2: "#1 < x ==> #0 < (x::int)"
+  apply auto
+  done
+
+lemma aux3: "x \<le> p - #2 ==> x < (p::int)"
+  apply auto
+  done
+
+lemma aux4: "x \<le> p - #2 ==> x < (p::int)-#1"
+  apply auto
+  done
+
+lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - #2))"
+  apply (unfold inj_on_def)
+  apply auto
+  apply (rule zcong_zless_imp_eq)
+      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
+        apply (rule_tac [7] zcong_trans)
+         apply (tactic {* stac (thm "zcong_sym") 8 *})
+         apply (erule_tac [7] inv_is_inv)
+          apply (tactic "Asm_simp_tac 9")
+          apply (erule_tac [9] inv_is_inv)
+           apply (rule_tac [6] zless_zprime_imp_zrelprime)
+             apply (rule_tac [8] inv_less)
+               apply (rule_tac [7] inv_g_1 [THEN aux2])
+                 apply (unfold zprime_def)
+                 apply (auto intro: d22set_g_1 d22set_le
+		   aux1 aux2 aux3 aux4)
+  done
+
+lemma inv_d22set_d22set:
+    "p \<in> zprime ==> inv p ` d22set (p - #2) = d22set (p - #2)"
+  apply (rule endo_inj_surj)
+    apply (rule d22set_fin)
+   apply (erule_tac [2] inv_inj)
+  apply auto
+  apply (rule d22set_mem)
+   apply (erule inv_g_1)
+    apply (subgoal_tac [3] "inv p xa < p - #1")
+     apply (erule_tac [4] inv_less_p_minus_1)
+      apply (auto intro: d22set_g_1 d22set_le aux4)
+  done
+
+lemma d22set_d22set_bij:
+    "p \<in> zprime ==> (d22set (p - #2), d22set (p - #2)) \<in> bijR (reciR p)"
+  apply (unfold reciR_def)
+  apply (rule_tac s = "(d22set (p - #2), inv p ` d22set (p - #2))" in subst)
+   apply (simp add: inv_d22set_d22set)
+  apply (rule inj_func_bijR)
+    apply (rule_tac [3] d22set_fin)
+   apply (erule_tac [2] inv_inj)
+  apply auto
+      apply (erule inv_is_inv)
+       apply (erule_tac [5] inv_g_1)
+        apply (erule_tac [7] inv_less_p_minus_1)
+         apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
+  done
+
+lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - #2))"
+  apply (unfold reciR_def bijP_def)
+  apply auto
+  apply (rule d22set_mem)
+   apply auto
+  done
+
+lemma reciP_uniq: "p \<in> zprime ==> uniqP (reciR p)"
+  apply (unfold reciR_def uniqP_def)
+  apply auto
+   apply (rule zcong_zless_imp_eq)
+       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 5 *})
+         apply (rule_tac [7] zcong_trans)
+          apply (tactic {* stac (thm "zcong_sym") 8 *})
+          apply (rule_tac [6] zless_zprime_imp_zrelprime)
+            apply auto
+  apply (rule zcong_zless_imp_eq)
+      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
+        apply (rule_tac [7] zcong_trans)
+         apply (tactic {* stac (thm "zcong_sym") 8 *})
+         apply (rule_tac [6] zless_zprime_imp_zrelprime)
+           apply auto
+  done
+
+lemma reciP_sym: "p \<in> zprime ==> symP (reciR p)"
+  apply (unfold reciR_def symP_def)
+  apply (simp add: zmult_commute)
+  apply auto
+  done
+
+lemma bijER_d22set: "p \<in> zprime ==> d22set (p - #2) \<in> bijER (reciR p)"
+  apply (rule bijR_bijER)
+     apply (erule d22set_d22set_bij)
+    apply (erule reciP_bijP)
+   apply (erule reciP_uniq)
+  apply (erule reciP_sym)
+  done
+
+
+subsection {* Wilson *}
+
+lemma bijER_zcong_prod_1:
+    "p \<in> zprime ==> A \<in> bijER (reciR p) ==> [setprod A = #1] (mod p)"
+  apply (unfold reciR_def)
+  apply (erule bijER.induct)
+    apply (subgoal_tac [2] "a = #1 \<or> a = p - #1")
+     apply (rule_tac [3] zcong_square_zless)
+        apply auto
+  apply (subst setprod_insert)
+    prefer 3
+    apply (subst setprod_insert)
+      apply (auto simp add: fin_bijER)
+  apply (subgoal_tac "zcong ((a * b) * setprod A) (#1 * #1) p")
+   apply (simp add: zmult_assoc)
+  apply (rule zcong_zmult)
+   apply auto
+  done
+
+theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - #1) = #-1] (mod p)"
+  apply (subgoal_tac "zcong ((p - #1) * zfact (p - #2)) (#-1 * #1) p")
+   apply (rule_tac [2] zcong_zmult)
+    apply (simp add: zprime_def)
+    apply (subst zfact.simps)
+    apply (rule_tac t = "p - #1 - #1" and s = "p - #2" in subst)
+     apply auto
+   apply (simp add: zcong_def)
+  apply (subst d22set_prod_zfact [symmetric])
+  apply (rule bijER_zcong_prod_1)
+   apply (rule_tac [2] bijER_d22set)
+   apply auto
+  done
 
 end