src/HOL/NumberTheory/WilsonBij.thy
changeset 11701 3d51fbf81c17
parent 11049 7eef34adb852
child 11704 3c50a2cd6f00
--- a/src/HOL/NumberTheory/WilsonBij.thy	Fri Oct 05 21:50:37 2001 +0200
+++ b/src/HOL/NumberTheory/WilsonBij.thy	Fri Oct 05 21:52:39 2001 +0200
@@ -20,19 +20,19 @@
 constdefs
   reciR :: "int => int => int => bool"
   "reciR p ==
-    \<lambda>a b. zcong (a * b) #1 p \<and> #1 < a \<and> a < p - #1 \<and> #1 < b \<and> b < p - #1"
+    \<lambda>a b. zcong (a * b) Numeral1 p \<and> Numeral1 < a \<and> a < p - Numeral1 \<and> Numeral1 < b \<and> b < p - Numeral1"
   inv :: "int => int => int"
   "inv p a ==
-    if p \<in> zprime \<and> #0 < a \<and> a < p then
-      (SOME x. #0 \<le> x \<and> x < p \<and> zcong (a * x) #1 p)
-    else #0"
+    if p \<in> zprime \<and> Numeral0 < a \<and> a < p then
+      (SOME x. Numeral0 \<le> x \<and> x < p \<and> zcong (a * x) Numeral1 p)
+    else Numeral0"
 
 
 text {* \medskip Inverse *}
 
 lemma inv_correct:
-  "p \<in> zprime ==> #0 < a ==> a < p
-    ==> #0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = #1] (mod p)"
+  "p \<in> zprime ==> Numeral0 < a ==> a < p
+    ==> Numeral0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = Numeral1] (mod p)"
   apply (unfold inv_def)
   apply (simp (no_asm_simp))
   apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex])
@@ -46,53 +46,53 @@
 lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard]
 
 lemma inv_not_0:
-  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #0"
+  "p \<in> zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \<noteq> Numeral0"
   -- {* same as @{text WilsonRuss} *}
   apply safe
   apply (cut_tac a = a and p = p in inv_is_inv)
      apply (unfold zcong_def)
      apply auto
-  apply (subgoal_tac "\<not> p dvd #1")
+  apply (subgoal_tac "\<not> p dvd Numeral1")
    apply (rule_tac [2] zdvd_not_zless)
-    apply (subgoal_tac "p dvd #1")
+    apply (subgoal_tac "p dvd Numeral1")
      prefer 2
      apply (subst zdvd_zminus_iff [symmetric])
      apply auto
   done
 
 lemma inv_not_1:
-  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> #1"
+  "p \<in> zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \<noteq> Numeral1"
   -- {* same as @{text WilsonRuss} *}
   apply safe
   apply (cut_tac a = a and p = p in inv_is_inv)
      prefer 4
      apply simp
-     apply (subgoal_tac "a = #1")
+     apply (subgoal_tac "a = Numeral1")
       apply (rule_tac [2] zcong_zless_imp_eq)
           apply auto
   done
 
-lemma aux: "[a * (p - #1) = #1] (mod p) = [a = p - #1] (mod p)"
+lemma aux: "[a * (p - Numeral1) = Numeral1] (mod p) = [a = p - Numeral1] (mod p)"
   -- {* same as @{text WilsonRuss} *}
   apply (unfold zcong_def)
   apply (simp add: zdiff_zdiff_eq zdiff_zdiff_eq2 zdiff_zmult_distrib2)
-  apply (rule_tac s = "p dvd -((a + #1) + (p * -a))" in trans)
+  apply (rule_tac s = "p dvd -((a + Numeral1) + (p * -a))" in trans)
    apply (simp add: zmult_commute zminus_zdiff_eq)
   apply (subst zdvd_zminus_iff)
   apply (subst zdvd_reduce)
-  apply (rule_tac s = "p dvd (a + #1) + (p * -#1)" in trans)
+  apply (rule_tac s = "p dvd (a + Numeral1) + (p * -Numeral1)" in trans)
    apply (subst zdvd_reduce)
    apply auto
   done
 
 lemma inv_not_p_minus_1:
-  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a \<noteq> p - #1"
+  "p \<in> zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a \<noteq> p - Numeral1"
   -- {* same as @{text WilsonRuss} *}
   apply safe
   apply (cut_tac a = a and p = p in inv_is_inv)
      apply auto
   apply (simp add: aux)
-  apply (subgoal_tac "a = p - #1")
+  apply (subgoal_tac "a = p - Numeral1")
    apply (rule_tac [2] zcong_zless_imp_eq)
        apply auto
   done
@@ -102,9 +102,9 @@
   but use ``@{text correct}'' theorems.
 *}
 
-lemma inv_g_1: "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> #1 < inv p a"
-  apply (subgoal_tac "inv p a \<noteq> #1")
-   apply (subgoal_tac "inv p a \<noteq> #0")
+lemma inv_g_1: "p \<in> zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> Numeral1 < inv p a"
+  apply (subgoal_tac "inv p a \<noteq> Numeral1")
+   apply (subgoal_tac "inv p a \<noteq> Numeral0")
     apply (subst order_less_le)
     apply (subst zle_add1_eq_le [symmetric])
     apply (subst order_less_le)
@@ -116,7 +116,7 @@
   done
 
 lemma inv_less_p_minus_1:
-  "p \<in> zprime ==> #1 < a ==> a < p - #1 ==> inv p a < p - #1"
+  "p \<in> zprime ==> Numeral1 < a ==> a < p - Numeral1 ==> inv p a < p - Numeral1"
   -- {* ditto *}
   apply (subst order_less_le)
   apply (simp add: inv_not_p_minus_1 inv_less)
@@ -125,23 +125,23 @@
 
 text {* \medskip Bijection *}
 
-lemma aux1: "#1 < x ==> #0 \<le> (x::int)"
+lemma aux1: "Numeral1 < x ==> Numeral0 \<le> (x::int)"
   apply auto
   done
 
-lemma aux2: "#1 < x ==> #0 < (x::int)"
+lemma aux2: "Numeral1 < x ==> Numeral0 < (x::int)"
   apply auto
   done
 
-lemma aux3: "x \<le> p - #2 ==> x < (p::int)"
+lemma aux3: "x \<le> p - # 2 ==> x < (p::int)"
   apply auto
   done
 
-lemma aux4: "x \<le> p - #2 ==> x < (p::int)-#1"
+lemma aux4: "x \<le> p - # 2 ==> x < (p::int)-Numeral1"
   apply auto
   done
 
-lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - #2))"
+lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - # 2))"
   apply (unfold inj_on_def)
   apply auto
   apply (rule zcong_zless_imp_eq)
@@ -160,22 +160,22 @@
   done
 
 lemma inv_d22set_d22set:
-    "p \<in> zprime ==> inv p ` d22set (p - #2) = d22set (p - #2)"
+    "p \<in> zprime ==> inv p ` d22set (p - # 2) = d22set (p - # 2)"
   apply (rule endo_inj_surj)
     apply (rule d22set_fin)
    apply (erule_tac [2] inv_inj)
   apply auto
   apply (rule d22set_mem)
    apply (erule inv_g_1)
-    apply (subgoal_tac [3] "inv p xa < p - #1")
+    apply (subgoal_tac [3] "inv p xa < p - Numeral1")
      apply (erule_tac [4] inv_less_p_minus_1)
       apply (auto intro: d22set_g_1 d22set_le aux4)
   done
 
 lemma d22set_d22set_bij:
-    "p \<in> zprime ==> (d22set (p - #2), d22set (p - #2)) \<in> bijR (reciR p)"
+    "p \<in> zprime ==> (d22set (p - # 2), d22set (p - # 2)) \<in> bijR (reciR p)"
   apply (unfold reciR_def)
-  apply (rule_tac s = "(d22set (p - #2), inv p ` d22set (p - #2))" in subst)
+  apply (rule_tac s = "(d22set (p - # 2), inv p ` d22set (p - # 2))" in subst)
    apply (simp add: inv_d22set_d22set)
   apply (rule inj_func_bijR)
     apply (rule_tac [3] d22set_fin)
@@ -187,7 +187,7 @@
          apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
   done
 
-lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - #2))"
+lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - # 2))"
   apply (unfold reciR_def bijP_def)
   apply auto
   apply (rule d22set_mem)
@@ -217,7 +217,7 @@
   apply auto
   done
 
-lemma bijER_d22set: "p \<in> zprime ==> d22set (p - #2) \<in> bijER (reciR p)"
+lemma bijER_d22set: "p \<in> zprime ==> d22set (p - # 2) \<in> bijER (reciR p)"
   apply (rule bijR_bijER)
      apply (erule d22set_d22set_bij)
     apply (erule reciP_bijP)
@@ -229,28 +229,28 @@
 subsection {* Wilson *}
 
 lemma bijER_zcong_prod_1:
-    "p \<in> zprime ==> A \<in> bijER (reciR p) ==> [setprod A = #1] (mod p)"
+    "p \<in> zprime ==> A \<in> bijER (reciR p) ==> [setprod A = Numeral1] (mod p)"
   apply (unfold reciR_def)
   apply (erule bijER.induct)
-    apply (subgoal_tac [2] "a = #1 \<or> a = p - #1")
+    apply (subgoal_tac [2] "a = Numeral1 \<or> a = p - Numeral1")
      apply (rule_tac [3] zcong_square_zless)
         apply auto
   apply (subst setprod_insert)
     prefer 3
     apply (subst setprod_insert)
       apply (auto simp add: fin_bijER)
-  apply (subgoal_tac "zcong ((a * b) * setprod A) (#1 * #1) p")
+  apply (subgoal_tac "zcong ((a * b) * setprod A) (Numeral1 * Numeral1) p")
    apply (simp add: zmult_assoc)
   apply (rule zcong_zmult)
    apply auto
   done
 
-theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - #1) = #-1] (mod p)"
-  apply (subgoal_tac "zcong ((p - #1) * zfact (p - #2)) (#-1 * #1) p")
+theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - Numeral1) = # -1] (mod p)"
+  apply (subgoal_tac "zcong ((p - Numeral1) * zfact (p - # 2)) (# -1 * Numeral1) p")
    apply (rule_tac [2] zcong_zmult)
     apply (simp add: zprime_def)
     apply (subst zfact.simps)
-    apply (rule_tac t = "p - #1 - #1" and s = "p - #2" in subst)
+    apply (rule_tac t = "p - Numeral1 - Numeral1" and s = "p - # 2" in subst)
      apply auto
    apply (simp add: zcong_def)
   apply (subst d22set_prod_zfact [symmetric])