--- a/src/HOL/NumberTheory/WilsonBij.thy Fri Oct 05 23:58:52 2001 +0200
+++ b/src/HOL/NumberTheory/WilsonBij.thy Sat Oct 06 00:02:46 2001 +0200
@@ -133,15 +133,15 @@
apply auto
done
-lemma aux3: "x \<le> p - # 2 ==> x < (p::int)"
+lemma aux3: "x \<le> p - 2 ==> x < (p::int)"
apply auto
done
-lemma aux4: "x \<le> p - # 2 ==> x < (p::int)-Numeral1"
+lemma aux4: "x \<le> p - 2 ==> x < (p::int)-Numeral1"
apply auto
done
-lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - # 2))"
+lemma inv_inj: "p \<in> zprime ==> inj_on (inv p) (d22set (p - 2))"
apply (unfold inj_on_def)
apply auto
apply (rule zcong_zless_imp_eq)
@@ -160,7 +160,7 @@
done
lemma inv_d22set_d22set:
- "p \<in> zprime ==> inv p ` d22set (p - # 2) = d22set (p - # 2)"
+ "p \<in> zprime ==> inv p ` d22set (p - 2) = d22set (p - 2)"
apply (rule endo_inj_surj)
apply (rule d22set_fin)
apply (erule_tac [2] inv_inj)
@@ -173,9 +173,9 @@
done
lemma d22set_d22set_bij:
- "p \<in> zprime ==> (d22set (p - # 2), d22set (p - # 2)) \<in> bijR (reciR p)"
+ "p \<in> zprime ==> (d22set (p - 2), d22set (p - 2)) \<in> bijR (reciR p)"
apply (unfold reciR_def)
- apply (rule_tac s = "(d22set (p - # 2), inv p ` d22set (p - # 2))" in subst)
+ apply (rule_tac s = "(d22set (p - 2), inv p ` d22set (p - 2))" in subst)
apply (simp add: inv_d22set_d22set)
apply (rule inj_func_bijR)
apply (rule_tac [3] d22set_fin)
@@ -187,7 +187,7 @@
apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
done
-lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - # 2))"
+lemma reciP_bijP: "p \<in> zprime ==> bijP (reciR p) (d22set (p - 2))"
apply (unfold reciR_def bijP_def)
apply auto
apply (rule d22set_mem)
@@ -217,7 +217,7 @@
apply auto
done
-lemma bijER_d22set: "p \<in> zprime ==> d22set (p - # 2) \<in> bijER (reciR p)"
+lemma bijER_d22set: "p \<in> zprime ==> d22set (p - 2) \<in> bijER (reciR p)"
apply (rule bijR_bijER)
apply (erule d22set_d22set_bij)
apply (erule reciP_bijP)
@@ -245,12 +245,12 @@
apply auto
done
-theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - Numeral1) = # -1] (mod p)"
- apply (subgoal_tac "zcong ((p - Numeral1) * zfact (p - # 2)) (# -1 * Numeral1) p")
+theorem Wilson_Bij: "p \<in> zprime ==> [zfact (p - Numeral1) = -1] (mod p)"
+ apply (subgoal_tac "zcong ((p - Numeral1) * zfact (p - 2)) (-1 * Numeral1) p")
apply (rule_tac [2] zcong_zmult)
apply (simp add: zprime_def)
apply (subst zfact.simps)
- apply (rule_tac t = "p - Numeral1 - Numeral1" and s = "p - # 2" in subst)
+ apply (rule_tac t = "p - Numeral1 - Numeral1" and s = "p - 2" in subst)
apply auto
apply (simp add: zcong_def)
apply (subst d22set_prod_zfact [symmetric])