src/ZF/fixedpt.ML
changeset 0 a5a9c433f639
child 14 1c0926788772
equal deleted inserted replaced
-1:000000000000 0:a5a9c433f639
       
     1 (*  Title: 	ZF/fixedpt.ML
       
     2     ID:         $Id$
       
     3     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   1992  University of Cambridge
       
     5 
       
     6 For fixedpt.thy.  Least and greatest fixed points; the Knaster-Tarski Theorem
       
     7 
       
     8 Proved in the lattice of subsets of D, namely Pow(D), with Inter as glb
       
     9 *)
       
    10 
       
    11 open Fixedpt;
       
    12 
       
    13 (*** Monotone operators ***)
       
    14 
       
    15 val prems = goalw Fixedpt.thy [bnd_mono_def]
       
    16     "[| h(D)<=D;  \
       
    17 \       !!W X. [| W<=D;  X<=D;  W<=X |] ==> h(W) <= h(X)  \
       
    18 \    |] ==> bnd_mono(D,h)";  
       
    19 by (REPEAT (ares_tac (prems@[conjI,allI,impI]) 1
       
    20      ORELSE etac subset_trans 1));
       
    21 val bnd_monoI = result();
       
    22 
       
    23 val [major] = goalw Fixedpt.thy [bnd_mono_def] "bnd_mono(D,h) ==> h(D) <= D";
       
    24 by (rtac (major RS conjunct1) 1);
       
    25 val bnd_monoD1 = result();
       
    26 
       
    27 val major::prems = goalw Fixedpt.thy [bnd_mono_def]
       
    28     "[| bnd_mono(D,h);  W<=X;  X<=D |] ==> h(W) <= h(X)";
       
    29 by (rtac (major RS conjunct2 RS spec RS spec RS mp RS mp) 1);
       
    30 by (REPEAT (resolve_tac prems 1));
       
    31 val bnd_monoD2 = result();
       
    32 
       
    33 val [major,minor] = goal Fixedpt.thy
       
    34     "[| bnd_mono(D,h);  X<=D |] ==> h(X) <= D";
       
    35 by (rtac (major RS bnd_monoD2 RS subset_trans) 1);
       
    36 by (rtac (major RS bnd_monoD1) 3);
       
    37 by (rtac minor 1);
       
    38 by (rtac subset_refl 1);
       
    39 val bnd_mono_subset = result();
       
    40 
       
    41 goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
       
    42 \                         h(A) Un h(B) <= h(A Un B)";
       
    43 by (REPEAT (ares_tac [Un_upper1, Un_upper2, Un_least] 1
       
    44      ORELSE etac bnd_monoD2 1));
       
    45 val bnd_mono_Un = result();
       
    46 
       
    47 (*Useful??*)
       
    48 goal Fixedpt.thy "!!A B. [| bnd_mono(D,h);  A <= D;  B <= D |] ==> \
       
    49 \                        h(A Int B) <= h(A) Int h(B)";
       
    50 by (REPEAT (ares_tac [Int_lower1, Int_lower2, Int_greatest] 1
       
    51      ORELSE etac bnd_monoD2 1));
       
    52 val bnd_mono_Int = result();
       
    53 
       
    54 (**** Proof of Knaster-Tarski Theorem for the lfp ****)
       
    55 
       
    56 (*lfp is contained in each pre-fixedpoint*)
       
    57 val prems = goalw Fixedpt.thy [lfp_def]
       
    58     "[| h(A) <= A;  A<=D |] ==> lfp(D,h) <= A";
       
    59 by (rtac (PowI RS CollectI RS Inter_lower) 1);
       
    60 by (REPEAT (resolve_tac prems 1));
       
    61 val lfp_lowerbound = result();
       
    62 
       
    63 (*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
       
    64 goalw Fixedpt.thy [lfp_def,Inter_def] "lfp(D,h) <= D";
       
    65 by (fast_tac ZF_cs 1);
       
    66 val lfp_subset = result();
       
    67 
       
    68 (*Used in datatype package*)
       
    69 val [rew] = goal Fixedpt.thy "A==lfp(D,h) ==> A <= D";
       
    70 by (rewtac rew);
       
    71 by (rtac lfp_subset 1);
       
    72 val def_lfp_subset = result();
       
    73 
       
    74 val subset0_cs = FOL_cs
       
    75   addSIs [ballI, InterI, CollectI, PowI, empty_subsetI]
       
    76   addIs [bexI, UnionI, ReplaceI, RepFunI]
       
    77   addSEs [bexE, make_elim PowD, UnionE, ReplaceE, RepFunE,
       
    78 	  CollectE, emptyE]
       
    79   addEs [rev_ballE, InterD, make_elim InterD, subsetD];
       
    80 
       
    81 val subset_cs = subset0_cs 
       
    82   addSIs [subset_refl,cons_subsetI,subset_consI,Union_least,UN_least,Un_least,
       
    83 	  Inter_greatest,Int_greatest,RepFun_subset]
       
    84   addSIs [Un_upper1,Un_upper2,Int_lower1,Int_lower2]
       
    85   addIs  [Union_upper,Inter_lower]
       
    86   addSEs [cons_subsetE];
       
    87 
       
    88 val prems = goalw Fixedpt.thy [lfp_def]
       
    89     "[| h(D) <= D;  !!X. [| h(X) <= X;  X<=D |] ==> A<=X |] ==> \
       
    90 \    A <= lfp(D,h)";
       
    91 br (Pow_top RS CollectI RS Inter_greatest) 1;
       
    92 by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [CollectE,PowD] 1));
       
    93 val lfp_greatest = result();
       
    94 
       
    95 val hmono::prems = goal Fixedpt.thy
       
    96     "[| bnd_mono(D,h);  h(A)<=A;  A<=D |] ==> h(lfp(D,h)) <= A";
       
    97 by (rtac (hmono RS bnd_monoD2 RS subset_trans) 1);
       
    98 by (rtac lfp_lowerbound 1);
       
    99 by (REPEAT (resolve_tac prems 1));
       
   100 val lfp_lemma1 = result();
       
   101 
       
   102 val [hmono] = goal Fixedpt.thy
       
   103     "bnd_mono(D,h) ==> h(lfp(D,h)) <= lfp(D,h)";
       
   104 by (rtac (bnd_monoD1 RS lfp_greatest) 1);
       
   105 by (rtac lfp_lemma1 2);
       
   106 by (REPEAT (ares_tac [hmono] 1));
       
   107 val lfp_lemma2 = result();
       
   108 
       
   109 val [hmono] = goal Fixedpt.thy
       
   110     "bnd_mono(D,h) ==> lfp(D,h) <= h(lfp(D,h))";
       
   111 by (rtac lfp_lowerbound 1);
       
   112 by (rtac (hmono RS bnd_monoD2) 1);
       
   113 by (rtac (hmono RS lfp_lemma2) 1);
       
   114 by (rtac (hmono RS bnd_mono_subset) 2);
       
   115 by (REPEAT (rtac lfp_subset 1));
       
   116 val lfp_lemma3 = result();
       
   117 
       
   118 val prems = goal Fixedpt.thy
       
   119     "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))";
       
   120 by (REPEAT (resolve_tac (prems@[equalityI,lfp_lemma2,lfp_lemma3]) 1));
       
   121 val lfp_Tarski = result();
       
   122 
       
   123 (*Definition form, to control unfolding*)
       
   124 val [rew,mono] = goal Fixedpt.thy
       
   125     "[| A==lfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
       
   126 by (rewtac rew);
       
   127 by (rtac (mono RS lfp_Tarski) 1);
       
   128 val def_lfp_Tarski = result();
       
   129 
       
   130 (*** General induction rule for least fixedpoints ***)
       
   131 
       
   132 val [hmono,indstep] = goal Fixedpt.thy
       
   133     "[| bnd_mono(D,h);  !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) \
       
   134 \    |] ==> h(Collect(lfp(D,h),P)) <= Collect(lfp(D,h),P)";
       
   135 by (rtac subsetI 1);
       
   136 by (rtac CollectI 1);
       
   137 by (etac indstep 2);
       
   138 by (rtac (hmono RS lfp_lemma2 RS subsetD) 1);
       
   139 by (rtac (hmono RS bnd_monoD2 RS subsetD) 1);
       
   140 by (REPEAT (ares_tac [Collect_subset, lfp_subset] 1));
       
   141 val Collect_is_pre_fixedpt = result();
       
   142 
       
   143 (*This rule yields an induction hypothesis in which the components of a
       
   144   data structure may be assumed to be elements of lfp(D,h)*)
       
   145 val prems = goal Fixedpt.thy
       
   146     "[| bnd_mono(D,h);  a : lfp(D,h);   		\
       
   147 \       !!x. x : h(Collect(lfp(D,h),P)) ==> P(x) 	\
       
   148 \    |] ==> P(a)";
       
   149 by (rtac (Collect_is_pre_fixedpt RS lfp_lowerbound RS subsetD RS CollectD2) 1);
       
   150 by (rtac (lfp_subset RS (Collect_subset RS subset_trans)) 3);
       
   151 by (REPEAT (ares_tac prems 1));
       
   152 val induct = result();
       
   153 
       
   154 (*Definition form, to control unfolding*)
       
   155 val rew::prems = goal Fixedpt.thy
       
   156     "[| A == lfp(D,h);  bnd_mono(D,h);  a:A;   \
       
   157 \       !!x. x : h(Collect(A,P)) ==> P(x) \
       
   158 \    |] ==> P(a)";
       
   159 by (rtac induct 1);
       
   160 by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
       
   161 val def_induct = result();
       
   162 
       
   163 (*This version is useful when "A" is not a subset of D;
       
   164   second premise could simply be h(D Int A) <= D or !!X. X<=D ==> h(X)<=D *)
       
   165 val [hsub,hmono] = goal Fixedpt.thy
       
   166     "[| h(D Int A) <= A;  bnd_mono(D,h) |] ==> lfp(D,h) <= A";
       
   167 by (rtac (lfp_lowerbound RS subset_trans) 1);
       
   168 by (rtac (hmono RS bnd_mono_subset RS Int_greatest) 1);
       
   169 by (REPEAT (resolve_tac [hsub,Int_lower1,Int_lower2] 1));
       
   170 val lfp_Int_lowerbound = result();
       
   171 
       
   172 (*Monotonicity of lfp, where h precedes i under a domain-like partial order
       
   173   monotonicity of h is not strictly necessary; h must be bounded by D*)
       
   174 val [hmono,imono,subhi] = goal Fixedpt.thy
       
   175     "[| bnd_mono(D,h);  bnd_mono(E,i); 		\
       
   176 \       !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(E,i)";
       
   177 br (bnd_monoD1 RS lfp_greatest) 1;
       
   178 br imono 1;
       
   179 by (rtac (hmono RSN (2, lfp_Int_lowerbound)) 1);
       
   180 by (rtac (Int_lower1 RS subhi RS subset_trans) 1);
       
   181 by (rtac (imono RS bnd_monoD2 RS subset_trans) 1);
       
   182 by (REPEAT (ares_tac [Int_lower2] 1));
       
   183 val lfp_mono = result();
       
   184 
       
   185 (*This (unused) version illustrates that monotonicity is not really needed,
       
   186   but both lfp's must be over the SAME set D;  Inter is anti-monotonic!*)
       
   187 val [isubD,subhi] = goal Fixedpt.thy
       
   188     "[| i(D) <= D;  !!X. X<=D ==> h(X) <= i(X)  |] ==> lfp(D,h) <= lfp(D,i)";
       
   189 br lfp_greatest 1;
       
   190 br isubD 1;
       
   191 by (rtac lfp_lowerbound 1);
       
   192 be (subhi RS subset_trans) 1;
       
   193 by (REPEAT (assume_tac 1));
       
   194 val lfp_mono2 = result();
       
   195 
       
   196 
       
   197 (**** Proof of Knaster-Tarski Theorem for the gfp ****)
       
   198 
       
   199 (*gfp contains each post-fixedpoint that is contained in D*)
       
   200 val prems = goalw Fixedpt.thy [gfp_def]
       
   201     "[| A <= h(A);  A<=D |] ==> A <= gfp(D,h)";
       
   202 by (rtac (PowI RS CollectI RS Union_upper) 1);
       
   203 by (REPEAT (resolve_tac prems 1));
       
   204 val gfp_upperbound = result();
       
   205 
       
   206 goalw Fixedpt.thy [gfp_def] "gfp(D,h) <= D";
       
   207 by (fast_tac ZF_cs 1);
       
   208 val gfp_subset = result();
       
   209 
       
   210 (*Used in datatype package*)
       
   211 val [rew] = goal Fixedpt.thy "A==gfp(D,h) ==> A <= D";
       
   212 by (rewtac rew);
       
   213 by (rtac gfp_subset 1);
       
   214 val def_gfp_subset = result();
       
   215 
       
   216 val hmono::prems = goalw Fixedpt.thy [gfp_def]
       
   217     "[| bnd_mono(D,h);  !!X. [| X <= h(X);  X<=D |] ==> X<=A |] ==> \
       
   218 \    gfp(D,h) <= A";
       
   219 by (fast_tac (subset_cs addIs ((hmono RS bnd_monoD1)::prems)) 1);
       
   220 val gfp_least = result();
       
   221 
       
   222 val hmono::prems = goal Fixedpt.thy
       
   223     "[| bnd_mono(D,h);  A<=h(A);  A<=D |] ==> A <= h(gfp(D,h))";
       
   224 by (rtac (hmono RS bnd_monoD2 RSN (2,subset_trans)) 1);
       
   225 by (rtac gfp_subset 3);
       
   226 by (rtac gfp_upperbound 2);
       
   227 by (REPEAT (resolve_tac prems 1));
       
   228 val gfp_lemma1 = result();
       
   229 
       
   230 val [hmono] = goal Fixedpt.thy
       
   231     "bnd_mono(D,h) ==> gfp(D,h) <= h(gfp(D,h))";
       
   232 by (rtac gfp_least 1);
       
   233 by (rtac gfp_lemma1 2);
       
   234 by (REPEAT (ares_tac [hmono] 1));
       
   235 val gfp_lemma2 = result();
       
   236 
       
   237 val [hmono] = goal Fixedpt.thy
       
   238     "bnd_mono(D,h) ==> h(gfp(D,h)) <= gfp(D,h)";
       
   239 by (rtac gfp_upperbound 1);
       
   240 by (rtac (hmono RS bnd_monoD2) 1);
       
   241 by (rtac (hmono RS gfp_lemma2) 1);
       
   242 by (REPEAT (rtac ([hmono, gfp_subset] MRS bnd_mono_subset) 1));
       
   243 val gfp_lemma3 = result();
       
   244 
       
   245 val prems = goal Fixedpt.thy
       
   246     "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))";
       
   247 by (REPEAT (resolve_tac (prems@[equalityI,gfp_lemma2,gfp_lemma3]) 1));
       
   248 val gfp_Tarski = result();
       
   249 
       
   250 (*Definition form, to control unfolding*)
       
   251 val [rew,mono] = goal Fixedpt.thy
       
   252     "[| A==gfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)";
       
   253 by (rewtac rew);
       
   254 by (rtac (mono RS gfp_Tarski) 1);
       
   255 val def_gfp_Tarski = result();
       
   256 
       
   257 
       
   258 (*** Coinduction rules for greatest fixed points ***)
       
   259 
       
   260 (*weak version*)
       
   261 goal Fixedpt.thy "!!X h. [| a: X;  X <= h(X);  X <= D |] ==> a : gfp(D,h)";
       
   262 by (REPEAT (ares_tac [gfp_upperbound RS subsetD] 1));
       
   263 val weak_coinduct = result();
       
   264 
       
   265 val [subs_h,subs_D,mono] = goal Fixedpt.thy
       
   266     "[| X <= h(X Un gfp(D,h));  X <= D;  bnd_mono(D,h) |] ==>  \
       
   267 \    X Un gfp(D,h) <= h(X Un gfp(D,h))";
       
   268 by (rtac (subs_h RS Un_least) 1);
       
   269 by (rtac (mono RS gfp_lemma2 RS subset_trans) 1);
       
   270 by (rtac (Un_upper2 RS subset_trans) 1);
       
   271 by (rtac ([mono, subs_D, gfp_subset] MRS bnd_mono_Un) 1);
       
   272 val coinduct_lemma = result();
       
   273 
       
   274 (*strong version*)
       
   275 goal Fixedpt.thy
       
   276     "!!X D. [| bnd_mono(D,h);  a: X;  X <= h(X Un gfp(D,h));  X <= D |] ==> \
       
   277 \           a : gfp(D,h)";
       
   278 by (rtac (coinduct_lemma RSN (2, weak_coinduct)) 1);
       
   279 by (REPEAT (ares_tac [gfp_subset, UnI1, Un_least] 1));
       
   280 val coinduct = result();
       
   281 
       
   282 (*Definition form, to control unfolding*)
       
   283 val rew::prems = goal Fixedpt.thy
       
   284     "[| A == gfp(D,h);  bnd_mono(D,h);  a: X;  X <= h(X Un A);  X <= D |] ==> \
       
   285 \    a : A";
       
   286 by (rewtac rew);
       
   287 by (rtac coinduct 1);
       
   288 by (REPEAT (ares_tac (map (rewrite_rule [rew]) prems) 1));
       
   289 val def_coinduct = result();
       
   290 
       
   291 (*Lemma used immediately below!*)
       
   292 val [subsA,XimpP] = goal ZF.thy
       
   293     "[| X <= A;  !!z. z:X ==> P(z) |] ==> X <= Collect(A,P)";
       
   294 by (rtac (subsA RS subsetD RS CollectI RS subsetI) 1);
       
   295 by (assume_tac 1);
       
   296 by (etac XimpP 1);
       
   297 val subset_Collect = result();
       
   298 
       
   299 (*The version used in the induction/coinduction package*)
       
   300 val prems = goal Fixedpt.thy
       
   301     "[| A == gfp(D, %w. Collect(D,P(w)));  bnd_mono(D, %w. Collect(D,P(w)));  \
       
   302 \       a: X;  X <= D;  !!z. z: X ==> P(X Un A, z) |] ==> \
       
   303 \    a : A";
       
   304 by (rtac def_coinduct 1);
       
   305 by (REPEAT (ares_tac (subset_Collect::prems) 1));
       
   306 val def_Collect_coinduct = result();
       
   307 
       
   308 (*Monotonicity of gfp!*)
       
   309 val [hmono,subde,subhi] = goal Fixedpt.thy
       
   310     "[| bnd_mono(D,h);  D <= E; 		\
       
   311 \       !!X. X<=D ==> h(X) <= i(X)  |] ==> gfp(D,h) <= gfp(E,i)";
       
   312 by (rtac gfp_upperbound 1);
       
   313 by (rtac (hmono RS gfp_lemma2 RS subset_trans) 1);
       
   314 by (rtac (gfp_subset RS subhi) 1);
       
   315 by (rtac ([gfp_subset, subde] MRS subset_trans) 1);
       
   316 val gfp_mono = result();
       
   317