27 fn _ => Quantifier1.rearrange_Ball |
27 fn _ => Quantifier1.rearrange_Ball |
28 (fn ctxt => unfold_tac ctxt @{thms Ball_def}) |
28 (fn ctxt => unfold_tac ctxt @{thms Ball_def}) |
29 \<close> |
29 \<close> |
30 |
30 |
31 |
31 |
32 (** Lemmas for showing that <a,b> uniquely determines a and b **) |
32 (** Lemmas for showing that \<langle>a,b\<rangle> uniquely determines a and b **) |
33 |
33 |
34 lemma singleton_eq_iff [iff]: "{a} = {b} \<longleftrightarrow> a=b" |
34 lemma singleton_eq_iff [iff]: "{a} = {b} \<longleftrightarrow> a=b" |
35 by (rule extension [THEN iff_trans], blast) |
35 by (rule extension [THEN iff_trans], blast) |
36 |
36 |
37 lemma doubleton_eq_iff: "{a,b} = {c,d} \<longleftrightarrow> (a=c \<and> b=d) | (a=d \<and> b=c)" |
37 lemma doubleton_eq_iff: "{a,b} = {c,d} \<longleftrightarrow> (a=c \<and> b=d) | (a=d \<and> b=c)" |
38 by (rule extension [THEN iff_trans], blast) |
38 by (rule extension [THEN iff_trans], blast) |
39 |
39 |
40 lemma Pair_iff [simp]: "<a,b> = <c,d> \<longleftrightarrow> a=c \<and> b=d" |
40 lemma Pair_iff [simp]: "\<langle>a,b\<rangle> = \<langle>c,d\<rangle> \<longleftrightarrow> a=c \<and> b=d" |
41 by (simp add: Pair_def doubleton_eq_iff, blast) |
41 by (simp add: Pair_def doubleton_eq_iff, blast) |
42 |
42 |
43 lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!] |
43 lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, elim!] |
44 |
44 |
45 lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1] |
45 lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1] |
46 lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2] |
46 lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2] |
47 |
47 |
48 lemma Pair_not_0: "<a,b> \<noteq> 0" |
48 lemma Pair_not_0: "\<langle>a,b\<rangle> \<noteq> 0" |
49 apply (unfold Pair_def) |
49 apply (unfold Pair_def) |
50 apply (blast elim: equalityE) |
50 apply (blast elim: equalityE) |
51 done |
51 done |
52 |
52 |
53 lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!] |
53 lemmas Pair_neq_0 = Pair_not_0 [THEN notE, elim!] |
54 |
54 |
55 declare sym [THEN Pair_neq_0, elim!] |
55 declare sym [THEN Pair_neq_0, elim!] |
56 |
56 |
57 lemma Pair_neq_fst: "<a,b>=a \<Longrightarrow> P" |
57 lemma Pair_neq_fst: "\<langle>a,b\<rangle>=a \<Longrightarrow> P" |
58 proof (unfold Pair_def) |
58 proof (unfold Pair_def) |
59 assume eq: "{{a, a}, {a, b}} = a" |
59 assume eq: "{{a, a}, {a, b}} = a" |
60 have "{a, a} \<in> {{a, a}, {a, b}}" by (rule consI1) |
60 have "{a, a} \<in> {{a, a}, {a, b}}" by (rule consI1) |
61 hence "{a, a} \<in> a" by (simp add: eq) |
61 hence "{a, a} \<in> a" by (simp add: eq) |
62 moreover have "a \<in> {a, a}" by (rule consI1) |
62 moreover have "a \<in> {a, a}" by (rule consI1) |
63 ultimately show "P" by (rule mem_asym) |
63 ultimately show "P" by (rule mem_asym) |
64 qed |
64 qed |
65 |
65 |
66 lemma Pair_neq_snd: "<a,b>=b \<Longrightarrow> P" |
66 lemma Pair_neq_snd: "\<langle>a,b\<rangle>=b \<Longrightarrow> P" |
67 proof (unfold Pair_def) |
67 proof (unfold Pair_def) |
68 assume eq: "{{a, a}, {a, b}} = b" |
68 assume eq: "{{a, a}, {a, b}} = b" |
69 have "{a, b} \<in> {{a, a}, {a, b}}" by blast |
69 have "{a, b} \<in> {{a, a}, {a, b}}" by blast |
70 hence "{a, b} \<in> b" by (simp add: eq) |
70 hence "{a, b} \<in> b" by (simp add: eq) |
71 moreover have "b \<in> {a, b}" by blast |
71 moreover have "b \<in> {a, b}" by blast |
75 |
75 |
76 subsection\<open>Sigma: Disjoint Union of a Family of Sets\<close> |
76 subsection\<open>Sigma: Disjoint Union of a Family of Sets\<close> |
77 |
77 |
78 text\<open>Generalizes Cartesian product\<close> |
78 text\<open>Generalizes Cartesian product\<close> |
79 |
79 |
80 lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) \<longleftrightarrow> a \<in> A \<and> b \<in> B(a)" |
80 lemma Sigma_iff [simp]: "\<langle>a,b\<rangle>: Sigma(A,B) \<longleftrightarrow> a \<in> A \<and> b \<in> B(a)" |
81 by (simp add: Sigma_def) |
81 by (simp add: Sigma_def) |
82 |
82 |
83 lemma SigmaI [TC,intro!]: "\<lbrakk>a \<in> A; b \<in> B(a)\<rbrakk> \<Longrightarrow> <a,b> \<in> Sigma(A,B)" |
83 lemma SigmaI [TC,intro!]: "\<lbrakk>a \<in> A; b \<in> B(a)\<rbrakk> \<Longrightarrow> \<langle>a,b\<rangle> \<in> Sigma(A,B)" |
84 by simp |
84 by simp |
85 |
85 |
86 lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1] |
86 lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1] |
87 lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2] |
87 lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2] |
88 |
88 |
89 (*The general elimination rule*) |
89 (*The general elimination rule*) |
90 lemma SigmaE [elim!]: |
90 lemma SigmaE [elim!]: |
91 "\<lbrakk>c \<in> Sigma(A,B); |
91 "\<lbrakk>c \<in> Sigma(A,B); |
92 \<And>x y.\<lbrakk>x \<in> A; y \<in> B(x); c=<x,y>\<rbrakk> \<Longrightarrow> P |
92 \<And>x y.\<lbrakk>x \<in> A; y \<in> B(x); c=\<langle>x,y\<rangle>\<rbrakk> \<Longrightarrow> P |
93 \<rbrakk> \<Longrightarrow> P" |
93 \<rbrakk> \<Longrightarrow> P" |
94 by (unfold Sigma_def, blast) |
94 by (unfold Sigma_def, blast) |
95 |
95 |
96 lemma SigmaE2 [elim!]: |
96 lemma SigmaE2 [elim!]: |
97 "\<lbrakk><a,b> \<in> Sigma(A,B); |
97 "\<lbrakk>\<langle>a,b\<rangle> \<in> Sigma(A,B); |
98 \<lbrakk>a \<in> A; b \<in> B(a)\<rbrakk> \<Longrightarrow> P |
98 \<lbrakk>a \<in> A; b \<in> B(a)\<rbrakk> \<Longrightarrow> P |
99 \<rbrakk> \<Longrightarrow> P" |
99 \<rbrakk> \<Longrightarrow> P" |
100 by (unfold Sigma_def, blast) |
100 by (unfold Sigma_def, blast) |
101 |
101 |
102 lemma Sigma_cong: |
102 lemma Sigma_cong: |
137 |
137 |
138 |
138 |
139 subsection\<open>The Eliminator, \<^term>\<open>split\<close>\<close> |
139 subsection\<open>The Eliminator, \<^term>\<open>split\<close>\<close> |
140 |
140 |
141 (*A META-equality, so that it applies to higher types as well...*) |
141 (*A META-equality, so that it applies to higher types as well...*) |
142 lemma split [simp]: "split(%x y. c(x,y), <a,b>) \<equiv> c(a,b)" |
142 lemma split [simp]: "split(\<lambda>x y. c(x,y), \<langle>a,b\<rangle>) \<equiv> c(a,b)" |
143 by (simp add: split_def) |
143 by (simp add: split_def) |
144 |
144 |
145 lemma split_type [TC]: |
145 lemma split_type [TC]: |
146 "\<lbrakk>p \<in> Sigma(A,B); |
146 "\<lbrakk>p \<in> Sigma(A,B); |
147 \<And>x y.\<lbrakk>x \<in> A; y \<in> B(x)\<rbrakk> \<Longrightarrow> c(x,y):C(<x,y>) |
147 \<And>x y.\<lbrakk>x \<in> A; y \<in> B(x)\<rbrakk> \<Longrightarrow> c(x,y):C(\<langle>x,y\<rangle>) |
148 \<rbrakk> \<Longrightarrow> split(%x y. c(x,y), p) \<in> C(p)" |
148 \<rbrakk> \<Longrightarrow> split(\<lambda>x y. c(x,y), p) \<in> C(p)" |
149 by (erule SigmaE, auto) |
149 by (erule SigmaE, auto) |
150 |
150 |
151 lemma expand_split: |
151 lemma expand_split: |
152 "u \<in> A*B \<Longrightarrow> |
152 "u \<in> A*B \<Longrightarrow> |
153 R(split(c,u)) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. u = <x,y> \<longrightarrow> R(c(x,y)))" |
153 R(split(c,u)) \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>B. u = \<langle>x,y\<rangle> \<longrightarrow> R(c(x,y)))" |
154 by (auto simp add: split_def) |
154 by (auto simp add: split_def) |
155 |
155 |
156 |
156 |
157 subsection\<open>A version of \<^term>\<open>split\<close> for Formulae: Result Type \<^typ>\<open>o\<close>\<close> |
157 subsection\<open>A version of \<^term>\<open>split\<close> for Formulae: Result Type \<^typ>\<open>o\<close>\<close> |
158 |
158 |
159 lemma splitI: "R(a,b) \<Longrightarrow> split(R, <a,b>)" |
159 lemma splitI: "R(a,b) \<Longrightarrow> split(R, \<langle>a,b\<rangle>)" |
160 by (simp add: split_def) |
160 by (simp add: split_def) |
161 |
161 |
162 lemma splitE: |
162 lemma splitE: |
163 "\<lbrakk>split(R,z); z \<in> Sigma(A,B); |
163 "\<lbrakk>split(R,z); z \<in> Sigma(A,B); |
164 \<And>x y. \<lbrakk>z = <x,y>; R(x,y)\<rbrakk> \<Longrightarrow> P |
164 \<And>x y. \<lbrakk>z = \<langle>x,y\<rangle>; R(x,y)\<rbrakk> \<Longrightarrow> P |
165 \<rbrakk> \<Longrightarrow> P" |
165 \<rbrakk> \<Longrightarrow> P" |
166 by (auto simp add: split_def) |
166 by (auto simp add: split_def) |
167 |
167 |
168 lemma splitD: "split(R,<a,b>) \<Longrightarrow> R(a,b)" |
168 lemma splitD: "split(R,\<langle>a,b\<rangle>) \<Longrightarrow> R(a,b)" |
169 by (simp add: split_def) |
169 by (simp add: split_def) |
170 |
170 |
171 text \<open> |
171 text \<open> |
172 \bigskip Complex rules for Sigma. |
172 \bigskip Complex rules for Sigma. |
173 \<close> |
173 \<close> |
174 |
174 |
175 lemma split_paired_Bex_Sigma [simp]: |
175 lemma split_paired_Bex_Sigma [simp]: |
176 "(\<exists>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))" |
176 "(\<exists>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(\<langle>x,y\<rangle>))" |
177 by blast |
177 by blast |
178 |
178 |
179 lemma split_paired_Ball_Sigma [simp]: |
179 lemma split_paired_Ball_Sigma [simp]: |
180 "(\<forall>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))" |
180 "(\<forall>z \<in> Sigma(A,B). P(z)) \<longleftrightarrow> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(\<langle>x,y\<rangle>))" |
181 by blast |
181 by blast |
182 |
182 |
183 end |
183 end |
184 |
184 |
185 |
185 |