1 \begin{theindex} |
1 \begin{theindex} |
2 |
2 |
3 \item \emph {$\forall \tmspace +\thinmuskip {.1667em}$}, \bold{3}, |
3 \item \emph {$\forall \tmspace +\thinmuskip {.1667em}$}, \bold{189} |
4 \bold{189} |
4 \item \isasymforall, \bold{3} |
5 \item \ttall, \bold{189} |
5 \item \ttall, \bold{189} |
6 \item \emph {$\exists \tmspace +\thinmuskip {.1667em}$}, \bold{3}, |
6 \item \emph {$\exists \tmspace +\thinmuskip {.1667em}$}, \bold{189} |
7 \bold{189} |
7 \item \isasymexists, \bold{3} |
8 \item \texttt{?}, \hyperpage{5}, \bold{189} |
8 \item \texttt{?}, \hyperpage{5}, \bold{189} |
9 \item \emph {$\varepsilon $}, \bold{189} |
9 \item \emph {$\varepsilon $}, \bold{189} |
10 \item \isasymuniqex, \bold{3}, \bold{189} |
10 \item \isasymuniqex, \bold{3}, \bold{189} |
11 \item \ttuniquex, \bold{189} |
11 \item \ttuniquex, \bold{189} |
12 \item \emph {$\wedge $}, \bold{3}, \bold{189} |
12 \item \emph {$\wedge $}, \bold{189} |
|
13 \item \isasymand, \bold{3} |
13 \item {\texttt {\&}}, \bold{189} |
14 \item {\texttt {\&}}, \bold{189} |
14 \item \texttt {=}, \bold{3} |
15 \item \texttt {=}, \bold{3} |
15 \item \emph {$\DOTSB \relbar \joinrel \rightarrow $}, \bold{3}, |
16 \item \emph {$\DOTSB \relbar \joinrel \rightarrow $}, \bold{189} |
16 \bold{189} |
17 \item \isasymimp, \bold{3} |
17 \item \texttt {-->}, \bold{189} |
18 \item \texttt {-->}, \bold{189} |
18 \item \emph {$\neg $}, \bold{3}, \bold{189} |
19 \item \emph {$\neg $}, \bold{189} |
|
20 \item \isasymnot, \bold{3} |
19 \item \verb$~$, \bold{189} |
21 \item \verb$~$, \bold{189} |
20 \item \emph {$\not =$}, \bold{189} |
22 \item \emph {$\not =$}, \bold{189} |
21 \item \verb$~=$, \bold{189} |
23 \item \verb$~=$, \bold{189} |
22 \item \emph {$\vee $}, \bold{3}, \bold{189} |
24 \item \emph {$\vee $}, \bold{189} |
|
25 \item \isasymor, \bold{3} |
23 \item \ttor, \bold{189} |
26 \item \ttor, \bold{189} |
24 \item \emph {$\circ $}, \bold{189} |
27 \item \emph {$\circ $}, \bold{189} |
25 \item \emph {$\mid $}\nobreakspace {}\emph {$\mid $}, \bold{189} |
28 \item \emph {$\mid $}\nobreakspace {}\emph {$\mid $}, \bold{189} |
26 \item \texttt {*}, \bold{20, 21}, \bold{189} |
29 \item \texttt {*}, \bold{20, 21}, \bold{189} |
27 \item \texttt {+}, \bold{20, 21} |
30 \item \texttt {+}, \bold{20, 21} |
75 \item \isa {?} (tactical), \hyperpage{83} |
78 \item \isa {?} (tactical), \hyperpage{83} |
76 \item \texttt{|} (tactical), \hyperpage{83} |
79 \item \texttt{|} (tactical), \hyperpage{83} |
77 |
80 |
78 \indexspace |
81 \indexspace |
79 |
82 |
80 \item \isa {0}, \bold{20} |
83 \item \isa {0} (constant), \hyperpage{20, 21}, \hyperpage{133} |
81 \item \texttt {0}, \bold{21} |
84 \item \isa {1} (symbol), \hyperpage{133} |
|
85 \item \isa {2} (symbol), \hyperpage{133} |
82 |
86 |
83 \indexspace |
87 \indexspace |
84 |
88 |
85 \item abandon proof, \bold{11} |
89 \item abandon proof, \bold{11} |
86 \item abandon theory, \bold{14} |
90 \item abandon theory, \bold{14} |
|
91 \item \isa {abs} (constant), \hyperpage{135} |
87 \item \texttt {abs}, \bold{189} |
92 \item \texttt {abs}, \bold{189} |
88 \item \isa {abs_mult} (theorem), \bold{135} |
93 \item absolute value, \hyperpage{135} |
89 \item \isa {add_2_eq_Suc} (theorem), \bold{133} |
|
90 \item \isa {add_2_eq_Suc'} (theorem), \bold{133} |
|
91 \item \isa {add_assoc} (theorem), \bold{134} |
94 \item \isa {add_assoc} (theorem), \bold{134} |
92 \item \isa {add_commute} (theorem), \bold{134} |
95 \item \isa {add_commute} (theorem), \bold{134} |
93 \item \isa {add_left_commute} (theorem), \bold{134} |
|
94 \item \isa {add_mult_distrib} (theorem), \bold{133} |
96 \item \isa {add_mult_distrib} (theorem), \bold{133} |
95 \item \texttt {ALL}, \bold{189} |
97 \item \texttt {ALL}, \bold{189} |
96 \item \isa {All} (constant), \hyperpage{93} |
98 \item \isa {All} (constant), \hyperpage{93} |
97 \item \isa {allE} (theorem), \bold{65} |
99 \item \isa {allE} (theorem), \bold{65} |
98 \item \isa {allI} (theorem), \bold{64} |
100 \item \isa {allI} (theorem), \bold{64} |
99 \item \isa {analz_Crypt_if} (theorem), \bold{186} |
101 \item \isacommand {apply} (command), \hyperpage{13} |
100 \item \isa {analz_idem} (theorem), \bold{180} |
|
101 \item \isa {analz_mono} (theorem), \bold{180} |
|
102 \item \isa {analz_synth} (theorem), \bold{180} |
|
103 \item \isa {append_take_drop_id} (theorem), \bold{127} |
|
104 \item apply, \bold{13} |
|
105 \item \isa {arg_cong} (theorem), \bold{80} |
102 \item \isa {arg_cong} (theorem), \bold{80} |
106 \item \isa {arith}, \bold{21} |
103 \item \isa {arith} (method), \hyperpage{21}, \hyperpage{131} |
107 \item arithmetic, \hyperpage{20--21}, \hyperpage{31} |
104 \item arithmetic, \hyperpage{20--21}, \hyperpage{31} |
108 \item \textsc {ascii} symbols, \bold{189} |
105 \item \textsc {ascii} symbols, \bold{189} |
109 \item associative-commutative function, \hyperpage{158} |
106 \item associative-commutative function, \hyperpage{158} |
110 \item \isa {assumption} (method), \hyperpage{53} |
107 \item \isa {assumption} (method), \hyperpage{53} |
111 \item assumptions |
108 \item assumptions |
150 \item \isa {clarify} (method), \hyperpage{74}, \hyperpage{76} |
147 \item \isa {clarify} (method), \hyperpage{74}, \hyperpage{76} |
151 \item \isa {clarsimp} (method), \hyperpage{75, 76} |
148 \item \isa {clarsimp} (method), \hyperpage{75, 76} |
152 \item \isa {classical} (theorem), \bold{57} |
149 \item \isa {classical} (theorem), \bold{57} |
153 \item closure |
150 \item closure |
154 \subitem reflexive and transitive, \hyperpage{96--98} |
151 \subitem reflexive and transitive, \hyperpage{96--98} |
155 \item \isa {coinduct} (theorem), \bold{100} |
|
156 \item coinduction, \bold{100} |
152 \item coinduction, \bold{100} |
157 \item \isa {Collect} (constant), \hyperpage{93} |
153 \item \isa {Collect} (constant), \hyperpage{93} |
158 \item \isa {Collect_mem_eq} (theorem), \bold{91} |
|
159 \item \isa {comp_def} (theorem), \bold{96} |
154 \item \isa {comp_def} (theorem), \bold{96} |
160 \item \isa {comp_mono} (theorem), \bold{96} |
|
161 \item \isa {Compl_iff} (theorem), \bold{90} |
155 \item \isa {Compl_iff} (theorem), \bold{90} |
162 \item \isa {Compl_partition} (theorem), \bold{90} |
|
163 \item \isa {Compl_Un} (theorem), \bold{90} |
|
164 \item complement |
156 \item complement |
165 \subitem of a set, \hyperpage{89} |
157 \subitem of a set, \hyperpage{89} |
166 \item composition |
158 \item composition |
167 \subitem of functions, \bold{94} |
159 \subitem of functions, \bold{94} |
168 \subitem of relations, \bold{96} |
160 \subitem of relations, \bold{96} |
169 \item congruence rules, \bold{157} |
161 \item congruence rules, \bold{157} |
170 \item \isa {conjE} (theorem), \bold{55} |
162 \item \isa {conjE} (theorem), \bold{55} |
171 \item \isa {conjI} (theorem), \bold{52} |
163 \item \isa {conjI} (theorem), \bold{52} |
172 \item \isa {Cons}, \bold{7} |
164 \item \isa {Cons}, \bold{7} |
173 \item \isa {constdefs}, \bold{23} |
165 \item \isa {constdefs}, \bold{23} |
174 \item \isa {contrapos_nn} (theorem), \bold{57} |
|
175 \item \isa {contrapos_np} (theorem), \bold{57} |
|
176 \item \isa {contrapos_pn} (theorem), \bold{57} |
|
177 \item \isa {contrapos_pp} (theorem), \bold{57} |
|
178 \item contrapositives, \hyperpage{57} |
166 \item contrapositives, \hyperpage{57} |
179 \item converse |
167 \item converse |
180 \subitem of a relation, \bold{96} |
168 \subitem of a relation, \bold{96} |
181 \item \isa {converse_comp} (theorem), \bold{96} |
|
182 \item \isa {converse_iff} (theorem), \bold{96} |
169 \item \isa {converse_iff} (theorem), \bold{96} |
183 \item CTL, \hyperpage{100--110} |
170 \item CTL, \hyperpage{100--110} |
184 |
171 |
185 \indexspace |
172 \indexspace |
186 |
173 |
187 \item \isa {datatype}, \hyperpage{7}, \hyperpage{36--42} |
174 \item \isa {datatype}, \hyperpage{7}, \hyperpage{36--42} |
188 \item \isa {defer}, \bold{14} |
175 \item \isacommand {defer} (command), \hyperpage{14}, \hyperpage{84} |
189 \item \isacommand {defer} (command), \hyperpage{84} |
|
190 \item definition, \bold{23} |
176 \item definition, \bold{23} |
191 \subitem unfolding, \bold{28} |
177 \subitem unfolding, \bold{28} |
192 \item \isa {defs}, \bold{23} |
178 \item \isa {defs}, \bold{23} |
193 \item descriptions |
179 \item descriptions |
194 \subitem definite, \hyperpage{69} |
180 \subitem definite, \hyperpage{69} |
195 \subitem indefinite, \hyperpage{70} |
181 \subitem indefinite, \hyperpage{70} |
196 \item \isa {dest} (attribute), \hyperpage{86} |
182 \item \isa {dest} (attribute), \hyperpage{86} |
197 \item destruction rules, \hyperpage{55} |
183 \item destruction rules, \hyperpage{55} |
198 \item \isa {Diff_disjoint} (theorem), \bold{90} |
|
199 \item \isa {diff_mult_distrib} (theorem), \bold{133} |
184 \item \isa {diff_mult_distrib} (theorem), \bold{133} |
200 \item difference |
185 \item difference |
201 \subitem of sets, \bold{90} |
186 \subitem of sets, \bold{90} |
202 \item \isa {disjCI} (theorem), \bold{58} |
187 \item \isa {disjCI} (theorem), \bold{58} |
203 \item \isa {disjE} (theorem), \bold{54} |
188 \item \isa {disjE} (theorem), \bold{54} |
204 \item \isa {div}, \bold{20} |
189 \item \isa {div}, \bold{20} |
205 \item \isa {div_le_mono} (theorem), \bold{133} |
190 \item divides relation, \hyperpage{68}, \hyperpage{78}, |
206 \item \isa {div_mult1_eq} (theorem), \bold{133} |
191 \hyperpage{85--87}, \hyperpage{134} |
207 \item \isa {div_mult2_eq} (theorem), \bold{133} |
192 \item division |
208 \item \isa {div_mult_mult1} (theorem), \bold{133} |
193 \subitem by negative numbers, \hyperpage{135} |
209 \item divides relation, \bold{68}, \hyperpage{78}, \hyperpage{85--87} |
194 \subitem by zero, \hyperpage{134} |
210 \item \isa {DIVISION_BY_ZERO_DIV} (theorem), \bold{134} |
195 \subitem for type \protect\isa{nat}, \hyperpage{133} |
211 \item \isa {DIVISION_BY_ZERO_MOD} (theorem), \bold{134} |
|
212 \item domain |
196 \item domain |
213 \subitem of a relation, \hyperpage{96} |
197 \subitem of a relation, \hyperpage{96} |
214 \item \isa {Domain_iff} (theorem), \bold{96} |
198 \item \isa {Domain_iff} (theorem), \bold{96} |
215 \item done, \bold{11} |
199 \item done, \bold{11} |
216 \item \isa {drule_tac} (method), \hyperpage{60}, \hyperpage{80} |
200 \item \isa {drule_tac} (method), \hyperpage{60}, \hyperpage{80} |
217 \item \isa {dvd_add} (theorem), \bold{79}, \bold{134} |
201 \item \isa {dvd_add} (theorem), \bold{134} |
218 \item \isa {dvd_anti_sym} (theorem), \bold{134} |
202 \item \isa {dvd_anti_sym} (theorem), \bold{134} |
219 \item \isa {dvd_def} (theorem), \bold{68}, \bold{78}, \bold{134} |
203 \item \isa {dvd_def} (theorem), \bold{134} |
220 \item \isa {dvd_mod} (theorem), \bold{87} |
|
221 \item \isa {dvd_mod_imp_dvd} (theorem), \bold{86} |
|
222 \item \isa {dvd_refl} (theorem), \bold{79} |
|
223 \item \isa {dvd_trans} (theorem), \bold{87} |
|
224 |
204 |
225 \indexspace |
205 \indexspace |
226 |
206 |
227 \item \isa {elim!} (attribute), \hyperpage{115} |
207 \item \isa {elim!} (attribute), \hyperpage{115} |
228 \item elimination rules, \hyperpage{53--54} |
208 \item elimination rules, \hyperpage{53--54} |
325 \item \isa {inj_on_def} (theorem), \bold{94} |
293 \item \isa {inj_on_def} (theorem), \bold{94} |
326 \item injections, \hyperpage{94} |
294 \item injections, \hyperpage{94} |
327 \item inner syntax, \bold{9} |
295 \item inner syntax, \bold{9} |
328 \item \isa {insert} (constant), \hyperpage{91} |
296 \item \isa {insert} (constant), \hyperpage{91} |
329 \item \isa {insert} (method), \hyperpage{80--82} |
297 \item \isa {insert} (method), \hyperpage{80--82} |
330 \item \isa {insert_is_Un} (theorem), \bold{91} |
|
331 \item instance, \bold{145} |
298 \item instance, \bold{145} |
332 \item \texttt {INT}, \bold{189} |
299 \item \texttt {INT}, \bold{189} |
333 \item \texttt {Int}, \bold{189} |
300 \item \texttt {Int}, \bold{189} |
|
301 \item \isa {int} (type), \hyperpage{135} |
334 \item \isa {INT_iff} (theorem), \bold{92} |
302 \item \isa {INT_iff} (theorem), \bold{92} |
335 \item \isa {IntD1} (theorem), \bold{89} |
303 \item \isa {IntD1} (theorem), \bold{89} |
336 \item \isa {IntD2} (theorem), \bold{89} |
304 \item \isa {IntD2} (theorem), \bold{89} |
|
305 \item integers, \hyperpage{135} |
337 \item \isa {INTER} (constant), \hyperpage{93} |
306 \item \isa {INTER} (constant), \hyperpage{93} |
338 \item \texttt {Inter}, \bold{189} |
307 \item \texttt {Inter}, \bold{189} |
339 \item \isa {Inter_iff} (theorem), \bold{92} |
308 \item \isa {Inter_iff} (theorem), \bold{92} |
340 \item intersection, \hyperpage{89} |
309 \item intersection, \hyperpage{89} |
341 \subitem indexed, \hyperpage{92} |
310 \subitem indexed, \hyperpage{92} |
342 \item \isa {IntI} (theorem), \bold{89} |
311 \item \isa {IntI} (theorem), \bold{89} |
343 \item \isa {intro} (method), \hyperpage{58} |
312 \item \isa {intro} (method), \hyperpage{58} |
344 \item \isa {intro!} (attribute), \hyperpage{112} |
313 \item \isa {intro!} (attribute), \hyperpage{112} |
345 \item introduction rules, \hyperpage{52--53} |
314 \item introduction rules, \hyperpage{52--53} |
346 \item \isa {inv} (constant), \hyperpage{70} |
315 \item \isa {inv} (constant), \hyperpage{70} |
347 \item \isa {inv_def} (theorem), \bold{70} |
|
348 \item \isa {inv_f_f} (theorem), \bold{94} |
|
349 \item \isa {inv_image_def} (theorem), \bold{99} |
316 \item \isa {inv_image_def} (theorem), \bold{99} |
350 \item \isa {inv_inv_eq} (theorem), \bold{94} |
|
351 \item inverse |
317 \item inverse |
352 \subitem of a function, \bold{94} |
318 \subitem of a function, \bold{94} |
353 \subitem of a relation, \bold{96} |
319 \subitem of a relation, \bold{96} |
354 \item inverse image |
320 \item inverse image |
355 \subitem of a function, \hyperpage{95} |
321 \subitem of a function, \hyperpage{95} |
356 \subitem of a relation, \hyperpage{98} |
322 \subitem of a relation, \hyperpage{98} |
357 |
323 |
358 \indexspace |
324 \indexspace |
359 |
325 |
360 \item \isa {kill}, \bold{14} |
326 \item \isacommand {kill} (command), \hyperpage{14} |
361 |
327 |
362 \indexspace |
328 \indexspace |
363 |
329 |
364 \item \isa {le_less_trans} (theorem), \bold{171} |
330 \item \isa {LEAST}, \bold{21} |
365 \item \isa {LEAST}, \bold{20} |
|
366 \item least number operator, \hyperpage{69} |
331 \item least number operator, \hyperpage{69} |
367 \item lemma, \hyperpage{11} |
332 \item lemma, \hyperpage{11} |
368 \item \isa {lemma}, \bold{11} |
333 \item \isa {lemma}, \bold{11} |
369 \item \isacommand {lemmas} (command), \hyperpage{77}, \hyperpage{86} |
334 \item \isacommand {lemmas} (command), \hyperpage{77}, \hyperpage{86} |
370 \item \isa {length}, \bold{15} |
335 \item \isa {length} (symbol), \hyperpage{15} |
371 \item \isa {length_induct}, \bold{172} |
336 \item \isa {length_induct}, \bold{172} |
372 \item \isa {less_than} (constant), \hyperpage{98} |
337 \item \isa {less_than} (constant), \hyperpage{98} |
373 \item \isa {less_than_iff} (theorem), \bold{98} |
338 \item \isa {less_than_iff} (theorem), \bold{98} |
374 \item \isa {let}, \bold{3}, \hyperpage{4}, \hyperpage{29} |
339 \item \isa {let}, \bold{3}, \hyperpage{4}, \hyperpage{29} |
375 \item \isa {lex_prod_def} (theorem), \bold{99} |
340 \item \isa {lex_prod_def} (theorem), \bold{99} |
376 \item lexicographic product, \bold{99}, \hyperpage{160} |
341 \item lexicographic product, \bold{99}, \hyperpage{160} |
377 \item {\texttt{lfp}} |
342 \item {\texttt{lfp}} |
378 \subitem applications of, \see{CTL}{100} |
343 \subitem applications of, \see{CTL}{100} |
379 \item \isa {lfp_induct} (theorem), \bold{100} |
344 \item linear arithmetic, \bold{21}, \hyperpage{131} |
380 \item \isa {lfp_unfold} (theorem), \bold{100} |
|
381 \item linear arithmetic, \bold{21} |
|
382 \item \isa {list}, \hyperpage{2}, \bold{7}, \bold{15} |
345 \item \isa {list}, \hyperpage{2}, \bold{7}, \bold{15} |
383 \item \isa {lists_Int_eq} (theorem), \bold{123} |
|
384 \item \isa {lists_mono} (theorem), \bold{121} |
346 \item \isa {lists_mono} (theorem), \bold{121} |
385 |
347 |
386 \indexspace |
348 \indexspace |
387 |
349 |
388 \item \isa {Main}, \bold{2} |
350 \item \isa {Main}, \bold{2} |
389 \item major premise, \bold{59} |
351 \item major premise, \bold{59} |
390 \item \isa {max}, \bold{20, 21} |
352 \item \isa {max}, \bold{20, 21} |
391 \item measure function, \bold{45}, \bold{98} |
353 \item measure function, \bold{45}, \bold{98} |
392 \item \isa {measure_def} (theorem), \bold{99} |
354 \item \isa {measure_def} (theorem), \bold{99} |
393 \item \isa {mem_Collect_eq} (theorem), \bold{91} |
|
394 \item meta-logic, \bold{64} |
355 \item meta-logic, \bold{64} |
395 \item method, \bold{14} |
356 \item methods, \bold{14} |
396 \item \isa {min}, \bold{20, 21} |
357 \item \isa {min}, \bold{20, 21} |
397 \item \isa {mod}, \bold{20} |
358 \item \isa {mod}, \bold{20} |
398 \item \isa {mod_div_equality} (theorem), \bold{81}, \bold{133} |
359 \item \isa {mod_div_equality} (theorem), \bold{133} |
399 \item \isa {mod_if} (theorem), \bold{133} |
|
400 \item \isa {mod_mult1_eq} (theorem), \bold{133} |
|
401 \item \isa {mod_mult2_eq} (theorem), \bold{133} |
|
402 \item \isa {mod_mult_distrib} (theorem), \bold{133} |
360 \item \isa {mod_mult_distrib} (theorem), \bold{133} |
403 \item \isa {mod_Suc} (theorem), \bold{80} |
|
404 \item \emph{modus ponens}, \hyperpage{51}, \hyperpage{56} |
361 \item \emph{modus ponens}, \hyperpage{51}, \hyperpage{56} |
405 \item \isa {mono_def} (theorem), \bold{100} |
362 \item \isa {mono_def} (theorem), \bold{100} |
406 \item \isa {mono_Int} (theorem), \bold{123} |
|
407 \item \isa {monoD} (theorem), \bold{100} |
|
408 \item \isa {monoI} (theorem), \bold{100} |
|
409 \item monotone functions, \bold{100}, \hyperpage{123} |
363 \item monotone functions, \bold{100}, \hyperpage{123} |
410 \subitem and inductive definitions, \hyperpage{121--122} |
364 \subitem and inductive definitions, \hyperpage{121--122} |
411 \item \isa {mp} (theorem), \bold{56} |
365 \item \isa {mp} (theorem), \bold{56} |
412 \item \isa {mult_commute} (theorem), \bold{61} |
|
413 \item \isa {mult_le_mono} (theorem), \bold{133} |
|
414 \item \isa {mult_le_mono1} (theorem), \bold{80} |
|
415 \item \isa {mult_less_mono1} (theorem), \bold{133} |
|
416 \item multiset ordering, \bold{99} |
366 \item multiset ordering, \bold{99} |
417 |
367 |
418 \indexspace |
368 \indexspace |
419 |
369 |
420 \item \isa {n_subsets} (theorem), \bold{93} |
370 \item \isa {nat}, \hyperpage{2} |
421 \item \isa {nat}, \hyperpage{2}, \bold{20} |
371 \item \isa {nat} (type), \hyperpage{133--134} |
422 \item \isa {nat_diff_split} (theorem), \bold{134} |
372 \item {\textit {nat}} (type), \hyperpage{20} |
423 \item natural deduction, \hyperpage{51--52} |
373 \item natural deduction, \hyperpage{51--52} |
424 \item \isa {neg_mod_bound} (theorem), \bold{135} |
374 \item natural numbers, \hyperpage{133--134} |
425 \item \isa {neg_mod_sign} (theorem), \bold{135} |
|
426 \item negation, \hyperpage{57--59} |
375 \item negation, \hyperpage{57--59} |
427 \item \isa {Nil}, \bold{7} |
376 \item \isa {Nil}, \bold{7} |
428 \item \isa {no_asm}, \bold{27} |
377 \item \isa {no_asm}, \bold{27} |
429 \item \isa {no_asm_simp}, \bold{27} |
378 \item \isa {no_asm_simp}, \bold{27} |
430 \item \isa {no_asm_use}, \bold{28} |
379 \item \isa {no_asm_use}, \bold{28} |
|
380 \item non-standard reals, \hyperpage{137} |
431 \item \isa {None}, \bold{22} |
381 \item \isa {None}, \bold{22} |
432 \item \isa {notE} (theorem), \bold{57} |
382 \item \isa {notE} (theorem), \bold{57} |
433 \item \isa {notI} (theorem), \bold{57} |
383 \item \isa {notI} (theorem), \bold{57} |
434 \item \isa {numeral_0_eq_0} (theorem), \bold{133} |
384 \item numeric literals, \hyperpage{132} |
435 \item \isa {numeral_1_eq_1} (theorem), \bold{133} |
385 \subitem for type \protect\isa{nat}, \hyperpage{133} |
|
386 \subitem for type \protect\isa{real}, \hyperpage{136} |
436 |
387 |
437 \indexspace |
388 \indexspace |
438 |
389 |
439 \item \isa {O} (symbol), \hyperpage{96} |
390 \item \isa {O} (symbol), \hyperpage{96} |
440 \item \texttt {o}, \bold{189} |
391 \item \texttt {o}, \bold{189} |
441 \item \isa {o_assoc} (theorem), \bold{94} |
|
442 \item \isa {o_def} (theorem), \bold{94} |
392 \item \isa {o_def} (theorem), \bold{94} |
443 \item \isa {OF} (attribute), \hyperpage{78--79} |
393 \item \isa {OF} (attribute), \hyperpage{78--79} |
444 \item \isa {of} (attribute), \hyperpage{77}, \hyperpage{79} |
394 \item \isa {of} (attribute), \hyperpage{77}, \hyperpage{79} |
445 \item \isa {oops}, \bold{11} |
395 \item \isa {oops}, \bold{11} |
446 \item \isa {option}, \bold{22} |
396 \item \isa {option}, \bold{22} |
447 \item \isa {order_antisym} (theorem), \bold{69} |
|
448 \item ordered rewriting, \bold{158} |
397 \item ordered rewriting, \bold{158} |
449 \item outer syntax, \bold{9} |
398 \item outer syntax, \bold{9} |
450 \item overloading, \hyperpage{144--146} |
399 \item overloading, \hyperpage{144--146} |
|
400 \subitem and arithmetic, \hyperpage{132} |
451 |
401 |
452 \indexspace |
402 \indexspace |
453 |
403 |
454 \item pair, \bold{21}, \hyperpage{137--140} |
404 \item pair, \bold{21}, \hyperpage{137--140} |
455 \item parent theory, \bold{2} |
405 \item parent theory, \bold{2} |
456 \item partial function, \hyperpage{164} |
406 \item partial function, \hyperpage{164} |
457 \item pattern, higher-order, \bold{159} |
407 \item pattern, higher-order, \bold{159} |
458 \item PDL, \hyperpage{102--105} |
408 \item PDL, \hyperpage{102--105} |
459 \item permutative rewrite rule, \bold{158} |
409 \item permutative rewrite rule, \bold{158} |
460 \item \isa {pos_mod_bound} (theorem), \bold{135} |
410 \item \isacommand {pr} (command), \hyperpage{14}, \hyperpage{83} |
461 \item \isa {pos_mod_sign} (theorem), \bold{135} |
411 \item \isacommand {prefer} (command), \hyperpage{14}, \hyperpage{84} |
462 \item \isa {pr}, \bold{14} |
|
463 \item \isacommand {pr} (command), \hyperpage{83} |
|
464 \item \isa {prefer}, \bold{14} |
|
465 \item \isacommand {prefer} (command), \hyperpage{84} |
|
466 \item primitive recursion, \bold{16} |
412 \item primitive recursion, \bold{16} |
467 \item \isa {primrec}, \hyperpage{8}, \bold{16}, \hyperpage{36--42} |
413 \item \isa {primrec}, \hyperpage{8}, \bold{16}, \hyperpage{36--42} |
468 \item product type, \see{pair}{1} |
414 \item product type, \see{pair}{1} |
469 \item proof |
415 \item proof |
470 \subitem abandon, \bold{11} |
416 \subitem abandon, \bold{11} |
483 |
429 |
484 \indexspace |
430 \indexspace |
485 |
431 |
486 \item \isa {r_into_rtrancl} (theorem), \bold{96} |
432 \item \isa {r_into_rtrancl} (theorem), \bold{96} |
487 \item \isa {r_into_trancl} (theorem), \bold{97} |
433 \item \isa {r_into_trancl} (theorem), \bold{97} |
488 \item \isa {R_O_Id} (theorem), \bold{96} |
|
489 \item range |
434 \item range |
490 \subitem of a function, \hyperpage{95} |
435 \subitem of a function, \hyperpage{95} |
491 \subitem of a relation, \hyperpage{96} |
436 \subitem of a relation, \hyperpage{96} |
492 \item \isa {range} (symbol), \hyperpage{95} |
437 \item \isa {range} (symbol), \hyperpage{95} |
493 \item \isa {Range_iff} (theorem), \bold{96} |
438 \item \isa {Range_iff} (theorem), \bold{96} |
494 \item \isa {real_add_divide_distrib} (theorem), \bold{136} |
439 \item \isa {real} (type), \hyperpage{136--137} |
495 \item \isa {real_dense} (theorem), \bold{136} |
440 \item real numbers, \hyperpage{136--137} |
496 \item \isa {real_divide_divide1_eq} (theorem), \bold{136} |
|
497 \item \isa {real_divide_divide2_eq} (theorem), \bold{136} |
|
498 \item \isa {real_divide_minus_eq} (theorem), \bold{136} |
|
499 \item \isa {real_minus_divide_eq} (theorem), \bold{136} |
|
500 \item \isa {real_times_divide1_eq} (theorem), \bold{136} |
|
501 \item \isa {real_times_divide2_eq} (theorem), \bold{136} |
|
502 \item \isa {realpow_abs} (theorem), \bold{136} |
|
503 \item \isa {recdef}, \hyperpage{45--50}, \hyperpage{160--168} |
441 \item \isa {recdef}, \hyperpage{45--50}, \hyperpage{160--168} |
504 \item \isacommand {recdef} (command), \hyperpage{98} |
442 \item \isacommand {recdef} (command), \hyperpage{98} |
|
443 \item \protect\isacommand{recdef} (command) |
|
444 \subitem and numeric literals, \hyperpage{132} |
505 \item \isa {recdef_cong}, \bold{164} |
445 \item \isa {recdef_cong}, \bold{164} |
506 \item \isa {recdef_simp}, \bold{47} |
446 \item \isa {recdef_simp}, \bold{47} |
507 \item \isa {recdef_wf}, \bold{162} |
447 \item \isa {recdef_wf}, \bold{162} |
508 \item recursion |
448 \item recursion |
509 \subitem well-founded, \bold{161} |
449 \subitem well-founded, \bold{161} |
510 \item recursion induction, \hyperpage{49--50} |
450 \item recursion induction, \hyperpage{49--50} |
511 \item \isa {redo}, \bold{14} |
451 \item \isacommand {redo} (command), \hyperpage{14} |
512 \item relations, \hyperpage{95--98} |
452 \item relations, \hyperpage{95--98} |
513 \subitem well-founded, \hyperpage{98--99} |
453 \subitem well-founded, \hyperpage{98--99} |
514 \item \isa {relprime_dvd_mult} (theorem), \bold{78} |
|
515 \item \isa {rename_tac} (method), \hyperpage{66--67} |
454 \item \isa {rename_tac} (method), \hyperpage{66--67} |
516 \item \isa {rev}, \bold{8} |
455 \item \isa {rev}, \bold{8} |
517 \item rewrite rule, \bold{26} |
456 \item rewrite rule, \bold{26} |
518 \subitem permutative, \bold{158} |
457 \subitem permutative, \bold{158} |
519 \item rewriting, \bold{26} |
458 \item rewriting, \bold{26} |
520 \subitem ordered, \bold{158} |
459 \subitem ordered, \bold{158} |
521 \item \isa {rotate_tac}, \bold{28} |
460 \item \isa {rotate_tac}, \bold{28} |
522 \item \isa {rtrancl_idemp} (theorem), \bold{97} |
|
523 \item \isa {rtrancl_induct} (theorem), \bold{97} |
|
524 \item \isa {rtrancl_refl} (theorem), \bold{96} |
461 \item \isa {rtrancl_refl} (theorem), \bold{96} |
525 \item \isa {rtrancl_trans} (theorem), \bold{96} |
462 \item \isa {rtrancl_trans} (theorem), \bold{96} |
526 \item \isa {rtrancl_unfold} (theorem), \bold{96} |
|
527 \item rule induction, \hyperpage{112--114} |
463 \item rule induction, \hyperpage{112--114} |
528 \item rule inversion, \hyperpage{114--115}, \hyperpage{123--124} |
464 \item rule inversion, \hyperpage{114--115}, \hyperpage{123--124} |
529 \item \isa {rule_tac} (method), \hyperpage{60} |
465 \item \isa {rule_tac} (method), \hyperpage{60} |
530 \subitem and renaming, \hyperpage{67} |
466 \subitem and renaming, \hyperpage{67} |
531 |
467 |
576 \item subset relation, \bold{90} |
512 \item subset relation, \bold{90} |
577 \item \isa {subsetD} (theorem), \bold{90} |
513 \item \isa {subsetD} (theorem), \bold{90} |
578 \item \isa {subsetI} (theorem), \bold{90} |
514 \item \isa {subsetI} (theorem), \bold{90} |
579 \item \isa {subst} (method), \hyperpage{61} |
515 \item \isa {subst} (method), \hyperpage{61} |
580 \item substitution, \hyperpage{61--63} |
516 \item substitution, \hyperpage{61--63} |
581 \item \isa {Suc}, \bold{20} |
517 \item \isa {Suc} (constant), \hyperpage{20} |
582 \item \isa {Suc_leI} (theorem), \bold{171} |
|
583 \item \isa {Suc_Suc_cases} (theorem), \bold{115} |
|
584 \item \isa {surj_def} (theorem), \bold{94} |
518 \item \isa {surj_def} (theorem), \bold{94} |
585 \item \isa {surj_f_inv_f} (theorem), \bold{94} |
|
586 \item surjections, \hyperpage{94} |
519 \item surjections, \hyperpage{94} |
587 \item \isa {sym} (theorem), \bold{77} |
520 \item \isa {sym} (theorem), \bold{77} |
588 \item syntax translation, \bold{23} |
521 \item syntax translation, \bold{23} |
589 |
522 |
590 \indexspace |
523 \indexspace |
591 |
524 |
592 \item tactic, \bold{10} |
525 \item tactic, \bold{10} |
593 \item tacticals, \hyperpage{82--83} |
526 \item tacticals, \hyperpage{82--83} |
594 \item term, \bold{3} |
527 \item term, \bold{3} |
595 \item \isa {term}, \bold{14} |
528 \item \isacommand {term} (command), \hyperpage{14} |
596 \item term rewriting, \bold{26} |
529 \item term rewriting, \bold{26} |
597 \item termination, \see{total function}{1} |
530 \item termination, \see{total function}{1} |
598 \item \isa {THEN} (attribute), \bold{77}, \hyperpage{79}, |
531 \item \isa {THEN} (attribute), \bold{77}, \hyperpage{79}, |
599 \hyperpage{86} |
532 \hyperpage{86} |
600 \item theorem, \hyperpage{11} |
533 \item theorem, \hyperpage{11} |
601 \item \isa {theorem}, \bold{9}, \hyperpage{11} |
534 \item \isa {theorem}, \bold{9}, \hyperpage{11} |
602 \item theory, \bold{2} |
535 \item theory, \bold{2} |
603 \subitem abandon, \bold{14} |
536 \subitem abandon, \bold{14} |
604 \item theory file, \bold{2} |
537 \item theory file, \bold{2} |
605 \item \isa {thm}, \bold{14} |
538 \item \isacommand {thm} (command), \hyperpage{14} |
606 \item \isa {tl}, \bold{15} |
539 \item \isa {tl} (constant), \hyperpage{15} |
607 \item total function, \hyperpage{9} |
540 \item total function, \hyperpage{9} |
608 \item \isa {trace_simp}, \bold{31} |
541 \item \isa {trace_simp}, \bold{31} |
609 \item tracing the simplifier, \bold{31} |
542 \item tracing the simplifier, \bold{31} |
610 \item \isa {trancl_converse} (theorem), \bold{97} |
|
611 \item \isa {trancl_trans} (theorem), \bold{97} |
543 \item \isa {trancl_trans} (theorem), \bold{97} |
612 \item \isa {translations}, \bold{23} |
544 \item \isa {translations}, \bold{24} |
613 \item \isa {True}, \bold{3} |
545 \item \isa {True}, \bold{3} |
614 \item tuple, \see{pair}{1} |
546 \item tuple, \see{pair}{1} |
615 \item \isa {typ}, \bold{14} |
547 \item \isacommand {typ} (command), \hyperpage{14} |
616 \item type, \bold{2} |
548 \item type, \bold{2} |
617 \item type constraint, \bold{4} |
549 \item type constraint, \bold{4} |
618 \item type declaration, \bold{150} |
550 \item type declaration, \bold{150} |
619 \item type definition, \bold{151} |
551 \item type definition, \bold{151} |
620 \item type inference, \bold{3} |
552 \item type inference, \bold{3} |
621 \item type synonym, \bold{22} |
553 \item type synonym, \bold{22} |
622 \item type variable, \bold{3} |
554 \item type variable, \bold{3} |
623 \item \isa {typedecl}, \bold{151} |
555 \item \isa {typedecl}, \bold{151} |
624 \item \isa {typedef}, \bold{151} |
556 \item \isa {typedef}, \bold{151} |
625 \item \isa {types}, \bold{22} |
557 \item \isa {types}, \bold{23} |
626 |
558 |
627 \indexspace |
559 \indexspace |
628 |
560 |
629 \item \texttt {UN}, \bold{189} |
561 \item \texttt {UN}, \bold{189} |
630 \item \texttt {Un}, \bold{189} |
562 \item \texttt {Un}, \bold{189} |
631 \item \isa {UN_E} (theorem), \bold{92} |
563 \item \isa {UN_E} (theorem), \bold{92} |
632 \item \isa {UN_I} (theorem), \bold{92} |
564 \item \isa {UN_I} (theorem), \bold{92} |
633 \item \isa {UN_iff} (theorem), \bold{92} |
565 \item \isa {UN_iff} (theorem), \bold{92} |
634 \item \isa {Un_subset_iff} (theorem), \bold{90} |
566 \item \isa {Un_subset_iff} (theorem), \bold{90} |
635 \item underdefined function, \hyperpage{165} |
567 \item underdefined function, \hyperpage{165} |
636 \item \isa {undo}, \bold{14} |
568 \item \isacommand {undo} (command), \hyperpage{14} |
637 \item \isa {unfold}, \bold{28} |
569 \item \isa {unfold}, \bold{28} |
638 \item unification, \hyperpage{60--63} |
570 \item unification, \hyperpage{60--63} |
639 \item \isa {UNION} (constant), \hyperpage{93} |
571 \item \isa {UNION} (constant), \hyperpage{93} |
640 \item \texttt {Union}, \bold{189} |
572 \item \texttt {Union}, \bold{189} |
641 \item union |
573 \item union |