Fri, 13 Jul 2001 18:28:46 +0200
changeset 11424 aa0571fb96b9
parent 11423 49312d90cf1f
child 11425 4988fd27d6e6
--- a/doc-src/TutorialI/tutorial.ind	Fri Jul 13 18:22:13 2001 +0200
+++ b/doc-src/TutorialI/tutorial.ind	Fri Jul 13 18:28:46 2001 +0200
@@ -1,25 +1,28 @@
-  \item \emph {$\forall \tmspace +\thinmuskip {.1667em}$}, \bold{3}, 
-		\bold{189}
+  \item \emph {$\forall \tmspace +\thinmuskip {.1667em}$}, \bold{189}
+  \item \isasymforall, \bold{3}
   \item \ttall, \bold{189}
-  \item \emph {$\exists \tmspace +\thinmuskip {.1667em}$}, \bold{3}, 
-		\bold{189}
+  \item \emph {$\exists \tmspace +\thinmuskip {.1667em}$}, \bold{189}
+  \item \isasymexists, \bold{3}
   \item \texttt{?}, \hyperpage{5}, \bold{189}
   \item \emph {$\varepsilon $}, \bold{189}
   \item \isasymuniqex, \bold{3}, \bold{189}
   \item \ttuniquex, \bold{189}
-  \item \emph {$\wedge $}, \bold{3}, \bold{189}
+  \item \emph {$\wedge $}, \bold{189}
+  \item \isasymand, \bold{3}
   \item {\texttt {\&}}, \bold{189}
   \item \texttt {=}, \bold{3}
-  \item \emph {$\DOTSB \relbar \joinrel \rightarrow $}, \bold{3}, 
-		\bold{189}
+  \item \emph {$\DOTSB \relbar \joinrel \rightarrow $}, \bold{189}
+  \item \isasymimp, \bold{3}
   \item \texttt {-->}, \bold{189}
-  \item \emph {$\neg $}, \bold{3}, \bold{189}
+  \item \emph {$\neg $}, \bold{189}
+  \item \isasymnot, \bold{3}
   \item \verb$~$, \bold{189}
   \item \emph {$\not =$}, \bold{189}
   \item \verb$~=$, \bold{189}
-  \item \emph {$\vee $}, \bold{3}, \bold{189}
+  \item \emph {$\vee $}, \bold{189}
+  \item \isasymor, \bold{3}
   \item \ttor, \bold{189}
   \item \emph {$\circ $}, \bold{189}
   \item \emph {$\mid $}\nobreakspace {}\emph {$\mid $}, \bold{189}
@@ -50,9 +53,9 @@
   \item \ttAnd, \bold{189}
   \item \emph {$\equiv $}, \bold{23}, \bold{189}
   \item \texttt {==}, \bold{189}
-  \item \emph {$\rightleftharpoons $}, \bold{23}, \bold{189}
-  \item \emph {$\rightharpoonup $}, \bold{23}, \bold{189}
-  \item \emph {$\leftharpoondown $}, \bold{23}, \bold{189}
+  \item \emph {$\rightleftharpoons $}, \bold{24}, \bold{189}
+  \item \emph {$\rightharpoonup $}, \bold{24}, \bold{189}
+  \item \emph {$\leftharpoondown $}, \bold{24}, \bold{189}
   \item \emph {$\Rightarrow $}, \bold{3}, \bold{189}
   \item \texttt {=>}, \bold{189}
   \item \texttt {<=}, \bold{189}
@@ -77,33 +80,27 @@
-  \item \isa {0}, \bold{20}
-  \item \texttt {0}, \bold{21}
+  \item \isa {0} (constant), \hyperpage{20, 21}, \hyperpage{133}
+  \item \isa {1} (symbol), \hyperpage{133}
+  \item \isa {2} (symbol), \hyperpage{133}
   \item abandon proof, \bold{11}
   \item abandon theory, \bold{14}
+  \item \isa {abs} (constant), \hyperpage{135}
   \item \texttt {abs}, \bold{189}
-  \item \isa {abs_mult} (theorem), \bold{135}
-  \item \isa {add_2_eq_Suc} (theorem), \bold{133}
-  \item \isa {add_2_eq_Suc'} (theorem), \bold{133}
+  \item absolute value, \hyperpage{135}
   \item \isa {add_assoc} (theorem), \bold{134}
   \item \isa {add_commute} (theorem), \bold{134}
-  \item \isa {add_left_commute} (theorem), \bold{134}
   \item \isa {add_mult_distrib} (theorem), \bold{133}
   \item \texttt {ALL}, \bold{189}
   \item \isa {All} (constant), \hyperpage{93}
   \item \isa {allE} (theorem), \bold{65}
   \item \isa {allI} (theorem), \bold{64}
-  \item \isa {analz_Crypt_if} (theorem), \bold{186}
-  \item \isa {analz_idem} (theorem), \bold{180}
-  \item \isa {analz_mono} (theorem), \bold{180}
-  \item \isa {analz_synth} (theorem), \bold{180}
-  \item \isa {append_take_drop_id} (theorem), \bold{127}
-  \item apply, \bold{13}
+  \item \isacommand {apply} (command), \hyperpage{13}
   \item \isa {arg_cong} (theorem), \bold{80}
-  \item \isa {arith}, \bold{21}
+  \item \isa {arith} (method), \hyperpage{21}, \hyperpage{131}
   \item arithmetic, \hyperpage{20--21}, \hyperpage{31}
   \item \textsc {ascii} symbols, \bold{189}
   \item associative-commutative function, \hyperpage{158}
@@ -152,15 +149,10 @@
   \item \isa {classical} (theorem), \bold{57}
   \item closure
     \subitem reflexive and transitive, \hyperpage{96--98}
-  \item \isa {coinduct} (theorem), \bold{100}
   \item coinduction, \bold{100}
   \item \isa {Collect} (constant), \hyperpage{93}
-  \item \isa {Collect_mem_eq} (theorem), \bold{91}
   \item \isa {comp_def} (theorem), \bold{96}
-  \item \isa {comp_mono} (theorem), \bold{96}
   \item \isa {Compl_iff} (theorem), \bold{90}
-  \item \isa {Compl_partition} (theorem), \bold{90}
-  \item \isa {Compl_Un} (theorem), \bold{90}
   \item complement
     \subitem of a set, \hyperpage{89}
   \item composition
@@ -171,22 +163,16 @@
   \item \isa {conjI} (theorem), \bold{52}
   \item \isa {Cons}, \bold{7}
   \item \isa {constdefs}, \bold{23}
-  \item \isa {contrapos_nn} (theorem), \bold{57}
-  \item \isa {contrapos_np} (theorem), \bold{57}
-  \item \isa {contrapos_pn} (theorem), \bold{57}
-  \item \isa {contrapos_pp} (theorem), \bold{57}
   \item contrapositives, \hyperpage{57}
   \item converse
     \subitem of a relation, \bold{96}
-  \item \isa {converse_comp} (theorem), \bold{96}
   \item \isa {converse_iff} (theorem), \bold{96}
   \item CTL, \hyperpage{100--110}
   \item \isa {datatype}, \hyperpage{7}, \hyperpage{36--42}
-  \item \isa {defer}, \bold{14}
-  \item \isacommand {defer} (command), \hyperpage{84}
+  \item \isacommand {defer} (command), \hyperpage{14}, \hyperpage{84}
   \item definition, \bold{23}
     \subitem unfolding, \bold{28}
   \item \isa {defs}, \bold{23}
@@ -195,32 +181,26 @@
     \subitem indefinite, \hyperpage{70}
   \item \isa {dest} (attribute), \hyperpage{86}
   \item destruction rules, \hyperpage{55}
-  \item \isa {Diff_disjoint} (theorem), \bold{90}
   \item \isa {diff_mult_distrib} (theorem), \bold{133}
   \item difference
     \subitem of sets, \bold{90}
   \item \isa {disjCI} (theorem), \bold{58}
   \item \isa {disjE} (theorem), \bold{54}
   \item \isa {div}, \bold{20}
-  \item \isa {div_le_mono} (theorem), \bold{133}
-  \item \isa {div_mult1_eq} (theorem), \bold{133}
-  \item \isa {div_mult2_eq} (theorem), \bold{133}
-  \item \isa {div_mult_mult1} (theorem), \bold{133}
-  \item divides relation, \bold{68}, \hyperpage{78}, \hyperpage{85--87}
-  \item \isa {DIVISION_BY_ZERO_DIV} (theorem), \bold{134}
-  \item \isa {DIVISION_BY_ZERO_MOD} (theorem), \bold{134}
+  \item divides relation, \hyperpage{68}, \hyperpage{78}, 
+		\hyperpage{85--87}, \hyperpage{134}
+  \item division
+    \subitem by negative numbers, \hyperpage{135}
+    \subitem by zero, \hyperpage{134}
+    \subitem for type \protect\isa{nat}, \hyperpage{133}
   \item domain
     \subitem of a relation, \hyperpage{96}
   \item \isa {Domain_iff} (theorem), \bold{96}
   \item done, \bold{11}
   \item \isa {drule_tac} (method), \hyperpage{60}, \hyperpage{80}
-  \item \isa {dvd_add} (theorem), \bold{79}, \bold{134}
+  \item \isa {dvd_add} (theorem), \bold{134}
   \item \isa {dvd_anti_sym} (theorem), \bold{134}
-  \item \isa {dvd_def} (theorem), \bold{68}, \bold{78}, \bold{134}
-  \item \isa {dvd_mod} (theorem), \bold{87}
-  \item \isa {dvd_mod_imp_dvd} (theorem), \bold{86}
-  \item \isa {dvd_refl} (theorem), \bold{79}
-  \item \isa {dvd_trans} (theorem), \bold{87}
+  \item \isa {dvd_def} (theorem), \bold{134}
@@ -237,15 +217,10 @@
   \item Euclid's algorithm, \hyperpage{85--87}
   \item even numbers
     \subitem defining inductively, \hyperpage{111--115}
-  \item \isa {even.cases} (theorem), \bold{114}
-  \item \isa {even.induct} (theorem), \bold{112}
-  \item \isa {even.step} (theorem), \bold{112}
-  \item \isa {} (theorem), \bold{112}
   \item \texttt {EX}, \bold{189}
   \item \isa {Ex} (constant), \hyperpage{93}
   \item \isa {exE} (theorem), \bold{66}
   \item \isa {exI} (theorem), \bold{66}
-  \item \isa {expand_fun_eq} (theorem), \bold{94}
   \item \isa {ext} (theorem), \bold{93}
   \item extensionality
     \subitem for functions, \bold{93, 94}
@@ -267,25 +242,21 @@
   \item \isa {frule} (method), \hyperpage{67}
   \item \isa {frule_tac} (method), \hyperpage{60}
   \item \isa {fst}, \bold{21}
-  \item \isa {fun_upd_apply} (theorem), \bold{94}
-  \item \isa {fun_upd_upd} (theorem), \bold{94}
   \item functions, \hyperpage{93--95}
   \item \isa {gcd} (constant), \hyperpage{76--78}, \hyperpage{85--87}
-  \item \isa {gcd_mult_distrib2} (theorem), \bold{77}
   \item generalizing for induction, \hyperpage{113}
-  \item \isa {gfp_unfold} (theorem), \bold{100}
   \item Girard, Jean-Yves, \fnote{55}
   \item ground terms example, \hyperpage{119--124}
-  \item \isa {gterm_Apply_elim} (theorem), \bold{123}
-  \item \isa {hd}, \bold{15}
+  \item \isa {hd} (constant), \hyperpage{15}
   \item higher-order pattern, \bold{159}
   \item Hilbert's $\varepsilon$-operator, \hyperpage{69--71}
+  \item {\textit {hypreal}} (type), \hyperpage{137}
@@ -303,11 +274,8 @@
   \item image
     \subitem under a function, \bold{95}
     \subitem under a relation, \bold{96}
-  \item \isa {image_compose} (theorem), \bold{95}
   \item \isa {image_def} (theorem), \bold{95}
   \item \isa {Image_iff} (theorem), \bold{96}
-  \item \isa {image_Int} (theorem), \bold{95}
-  \item \isa {image_Un} (theorem), \bold{95}
   \item \isa {impI} (theorem), \bold{56}
   \item implication, \hyperpage{56--57}
   \item \isa {induct_tac}, \hyperpage{10}, \hyperpage{17}, 
@@ -327,13 +295,14 @@
   \item inner syntax, \bold{9}
   \item \isa {insert} (constant), \hyperpage{91}
   \item \isa {insert} (method), \hyperpage{80--82}
-  \item \isa {insert_is_Un} (theorem), \bold{91}
   \item instance, \bold{145}
   \item \texttt {INT}, \bold{189}
   \item \texttt {Int}, \bold{189}
+  \item \isa {int} (type), \hyperpage{135}
   \item \isa {INT_iff} (theorem), \bold{92}
   \item \isa {IntD1} (theorem), \bold{89}
   \item \isa {IntD2} (theorem), \bold{89}
+  \item integers, \hyperpage{135}
   \item \isa {INTER} (constant), \hyperpage{93}
   \item \texttt {Inter}, \bold{189}
   \item \isa {Inter_iff} (theorem), \bold{92}
@@ -344,10 +313,7 @@
   \item \isa {intro!} (attribute), \hyperpage{112}
   \item introduction rules, \hyperpage{52--53}
   \item \isa {inv} (constant), \hyperpage{70}
-  \item \isa {inv_def} (theorem), \bold{70}
-  \item \isa {inv_f_f} (theorem), \bold{94}
   \item \isa {inv_image_def} (theorem), \bold{99}
-  \item \isa {inv_inv_eq} (theorem), \bold{94}
   \item inverse
     \subitem of a function, \bold{94}
     \subitem of a relation, \bold{96}
@@ -357,17 +323,16 @@
-  \item \isa {kill}, \bold{14}
+  \item \isacommand {kill} (command), \hyperpage{14}
-  \item \isa {le_less_trans} (theorem), \bold{171}
-  \item \isa {LEAST}, \bold{20}
+  \item \isa {LEAST}, \bold{21}
   \item least number operator, \hyperpage{69}
   \item lemma, \hyperpage{11}
   \item \isa {lemma}, \bold{11}
   \item \isacommand {lemmas} (command), \hyperpage{77}, \hyperpage{86}
-  \item \isa {length}, \bold{15}
+  \item \isa {length} (symbol), \hyperpage{15}
   \item \isa {length_induct}, \bold{172}
   \item \isa {less_than} (constant), \hyperpage{98}
   \item \isa {less_than_iff} (theorem), \bold{98}
@@ -376,11 +341,8 @@
   \item lexicographic product, \bold{99}, \hyperpage{160}
   \item {\texttt{lfp}}
     \subitem applications of, \see{CTL}{100}
-  \item \isa {lfp_induct} (theorem), \bold{100}
-  \item \isa {lfp_unfold} (theorem), \bold{100}
-  \item linear arithmetic, \bold{21}
+  \item linear arithmetic, \bold{21}, \hyperpage{131}
   \item \isa {list}, \hyperpage{2}, \bold{7}, \bold{15}
-  \item \isa {lists_Int_eq} (theorem), \bold{123}
   \item \isa {lists_mono} (theorem), \bold{121}
@@ -390,64 +352,52 @@
   \item \isa {max}, \bold{20, 21}
   \item measure function, \bold{45}, \bold{98}
   \item \isa {measure_def} (theorem), \bold{99}
-  \item \isa {mem_Collect_eq} (theorem), \bold{91}
   \item meta-logic, \bold{64}
-  \item method, \bold{14}
+  \item methods, \bold{14}
   \item \isa {min}, \bold{20, 21}
   \item \isa {mod}, \bold{20}
-  \item \isa {mod_div_equality} (theorem), \bold{81}, \bold{133}
-  \item \isa {mod_if} (theorem), \bold{133}
-  \item \isa {mod_mult1_eq} (theorem), \bold{133}
-  \item \isa {mod_mult2_eq} (theorem), \bold{133}
+  \item \isa {mod_div_equality} (theorem), \bold{133}
   \item \isa {mod_mult_distrib} (theorem), \bold{133}
-  \item \isa {mod_Suc} (theorem), \bold{80}
   \item \emph{modus ponens}, \hyperpage{51}, \hyperpage{56}
   \item \isa {mono_def} (theorem), \bold{100}
-  \item \isa {mono_Int} (theorem), \bold{123}
-  \item \isa {monoD} (theorem), \bold{100}
-  \item \isa {monoI} (theorem), \bold{100}
   \item monotone functions, \bold{100}, \hyperpage{123}
     \subitem and inductive definitions, \hyperpage{121--122}
   \item \isa {mp} (theorem), \bold{56}
-  \item \isa {mult_commute} (theorem), \bold{61}
-  \item \isa {mult_le_mono} (theorem), \bold{133}
-  \item \isa {mult_le_mono1} (theorem), \bold{80}
-  \item \isa {mult_less_mono1} (theorem), \bold{133}
   \item multiset ordering, \bold{99}
-  \item \isa {n_subsets} (theorem), \bold{93}
-  \item \isa {nat}, \hyperpage{2}, \bold{20}
-  \item \isa {nat_diff_split} (theorem), \bold{134}
+  \item \isa {nat}, \hyperpage{2}
+  \item \isa {nat} (type), \hyperpage{133--134}
+  \item {\textit {nat}} (type), \hyperpage{20}
   \item natural deduction, \hyperpage{51--52}
-  \item \isa {neg_mod_bound} (theorem), \bold{135}
-  \item \isa {neg_mod_sign} (theorem), \bold{135}
+  \item natural numbers, \hyperpage{133--134}
   \item negation, \hyperpage{57--59}
   \item \isa {Nil}, \bold{7}
   \item \isa {no_asm}, \bold{27}
   \item \isa {no_asm_simp}, \bold{27}
   \item \isa {no_asm_use}, \bold{28}
+  \item non-standard reals, \hyperpage{137}
   \item \isa {None}, \bold{22}
   \item \isa {notE} (theorem), \bold{57}
   \item \isa {notI} (theorem), \bold{57}
-  \item \isa {numeral_0_eq_0} (theorem), \bold{133}
-  \item \isa {numeral_1_eq_1} (theorem), \bold{133}
+  \item numeric literals, \hyperpage{132}
+    \subitem for type \protect\isa{nat}, \hyperpage{133}
+    \subitem for type \protect\isa{real}, \hyperpage{136}
   \item \isa {O} (symbol), \hyperpage{96}
   \item \texttt {o}, \bold{189}
-  \item \isa {o_assoc} (theorem), \bold{94}
   \item \isa {o_def} (theorem), \bold{94}
   \item \isa {OF} (attribute), \hyperpage{78--79}
   \item \isa {of} (attribute), \hyperpage{77}, \hyperpage{79}
   \item \isa {oops}, \bold{11}
   \item \isa {option}, \bold{22}
-  \item \isa {order_antisym} (theorem), \bold{69}
   \item ordered rewriting, \bold{158}
   \item outer syntax, \bold{9}
   \item overloading, \hyperpage{144--146}
+    \subitem and arithmetic, \hyperpage{132}
@@ -457,12 +407,8 @@
   \item pattern, higher-order, \bold{159}
   \item PDL, \hyperpage{102--105}
   \item permutative rewrite rule, \bold{158}
-  \item \isa {pos_mod_bound} (theorem), \bold{135}
-  \item \isa {pos_mod_sign} (theorem), \bold{135}
-  \item \isa {pr}, \bold{14}
-  \item \isacommand {pr} (command), \hyperpage{83}
-  \item \isa {prefer}, \bold{14}
-  \item \isacommand {prefer} (command), \hyperpage{84}
+  \item \isacommand {pr} (command), \hyperpage{14}, \hyperpage{83}
+  \item \isacommand {prefer} (command), \hyperpage{14}, \hyperpage{84}
   \item primitive recursion, \bold{16}
   \item \isa {primrec}, \hyperpage{8}, \bold{16}, \hyperpage{36--42}
   \item product type, \see{pair}{1}
@@ -485,33 +431,26 @@
   \item \isa {r_into_rtrancl} (theorem), \bold{96}
   \item \isa {r_into_trancl} (theorem), \bold{97}
-  \item \isa {R_O_Id} (theorem), \bold{96}
   \item range
     \subitem of a function, \hyperpage{95}
     \subitem of a relation, \hyperpage{96}
   \item \isa {range} (symbol), \hyperpage{95}
   \item \isa {Range_iff} (theorem), \bold{96}
-  \item \isa {real_add_divide_distrib} (theorem), \bold{136}
-  \item \isa {real_dense} (theorem), \bold{136}
-  \item \isa {real_divide_divide1_eq} (theorem), \bold{136}
-  \item \isa {real_divide_divide2_eq} (theorem), \bold{136}
-  \item \isa {real_divide_minus_eq} (theorem), \bold{136}
-  \item \isa {real_minus_divide_eq} (theorem), \bold{136}
-  \item \isa {real_times_divide1_eq} (theorem), \bold{136}
-  \item \isa {real_times_divide2_eq} (theorem), \bold{136}
-  \item \isa {realpow_abs} (theorem), \bold{136}
+  \item \isa {real} (type), \hyperpage{136--137}
+  \item real numbers, \hyperpage{136--137}
   \item \isa {recdef}, \hyperpage{45--50}, \hyperpage{160--168}
   \item \isacommand {recdef} (command), \hyperpage{98}
+  \item \protect\isacommand{recdef} (command)
+    \subitem and numeric literals, \hyperpage{132}
   \item \isa {recdef_cong}, \bold{164}
   \item \isa {recdef_simp}, \bold{47}
   \item \isa {recdef_wf}, \bold{162}
   \item recursion
     \subitem well-founded, \bold{161}
   \item recursion induction, \hyperpage{49--50}
-  \item \isa {redo}, \bold{14}
+  \item \isacommand {redo} (command), \hyperpage{14}
   \item relations, \hyperpage{95--98}
     \subitem well-founded, \hyperpage{98--99}
-  \item \isa {relprime_dvd_mult} (theorem), \bold{78}
   \item \isa {rename_tac} (method), \hyperpage{66--67}
   \item \isa {rev}, \bold{8}
   \item rewrite rule, \bold{26}
@@ -519,11 +458,8 @@
   \item rewriting, \bold{26}
     \subitem ordered, \bold{158}
   \item \isa {rotate_tac}, \bold{28}
-  \item \isa {rtrancl_idemp} (theorem), \bold{97}
-  \item \isa {rtrancl_induct} (theorem), \bold{97}
   \item \isa {rtrancl_refl} (theorem), \bold{96}
   \item \isa {rtrancl_trans} (theorem), \bold{96}
-  \item \isa {rtrancl_unfold} (theorem), \bold{96}
   \item rule induction, \hyperpage{112--114}
   \item rule inversion, \hyperpage{114--115}, \hyperpage{123--124}
   \item \isa {rule_tac} (method), \hyperpage{60}
@@ -555,15 +491,15 @@
   \item simplification rule, \bold{26}, \hyperpage{159--160}
   \item \isa {simplified} (attribute), \hyperpage{77}, \hyperpage{79}
   \item simplifier, \bold{25}
-  \item \isa {size}, \bold{15}
+  \item \isa {size} (constant), \hyperpage{15}
   \item \isa {snd}, \bold{21}
   \item \isa {SOME} (symbol), \hyperpage{69}
   \item \texttt {SOME}, \bold{189}
   \item \isa {Some}, \bold{22}
   \item \isa {some_equality} (theorem), \bold{69}
-  \item \isa {someI} (theorem), \bold{70}, \bold{75}
+  \item \isa {someI} (theorem), \bold{70}
   \item \isa {someI2} (theorem), \bold{70}
-  \item \isa {someI_ex} (theorem, \bold){71}
+  \item \isa {someI_ex} (theorem), \bold{71}
   \item sort, \bold{150}
   \item \isa {spec} (theorem), \bold{64}
   \item \isa {split} (constant), \bold{137}
@@ -578,11 +514,8 @@
   \item \isa {subsetI} (theorem), \bold{90}
   \item \isa {subst} (method), \hyperpage{61}
   \item substitution, \hyperpage{61--63}
-  \item \isa {Suc}, \bold{20}
-  \item \isa {Suc_leI} (theorem), \bold{171}
-  \item \isa {Suc_Suc_cases} (theorem), \bold{115}
+  \item \isa {Suc} (constant), \hyperpage{20}
   \item \isa {surj_def} (theorem), \bold{94}
-  \item \isa {surj_f_inv_f} (theorem), \bold{94}
   \item surjections, \hyperpage{94}
   \item \isa {sym} (theorem), \bold{77}
   \item syntax translation, \bold{23}
@@ -592,7 +525,7 @@
   \item tactic, \bold{10}
   \item tacticals, \hyperpage{82--83}
   \item term, \bold{3}
-  \item \isa {term}, \bold{14}
+  \item \isacommand {term} (command), \hyperpage{14}
   \item term rewriting, \bold{26}
   \item termination, \see{total function}{1}
   \item \isa {THEN} (attribute), \bold{77}, \hyperpage{79}, 
@@ -602,17 +535,16 @@
   \item theory, \bold{2}
     \subitem abandon, \bold{14}
   \item theory file, \bold{2}
-  \item \isa {thm}, \bold{14}
-  \item \isa {tl}, \bold{15}
+  \item \isacommand {thm} (command), \hyperpage{14}
+  \item \isa {tl} (constant), \hyperpage{15}
   \item total function, \hyperpage{9}
   \item \isa {trace_simp}, \bold{31}
   \item tracing the simplifier, \bold{31}
-  \item \isa {trancl_converse} (theorem), \bold{97}
   \item \isa {trancl_trans} (theorem), \bold{97}
-  \item \isa {translations}, \bold{23}
+  \item \isa {translations}, \bold{24}
   \item \isa {True}, \bold{3}
   \item tuple, \see{pair}{1}
-  \item \isa {typ}, \bold{14}
+  \item \isacommand {typ} (command), \hyperpage{14}
   \item type, \bold{2}
   \item type constraint, \bold{4}
   \item type declaration, \bold{150}
@@ -622,7 +554,7 @@
   \item type variable, \bold{3}
   \item \isa {typedecl}, \bold{151}
   \item \isa {typedef}, \bold{151}
-  \item \isa {types}, \bold{22}
+  \item \isa {types}, \bold{23}
@@ -633,7 +565,7 @@
   \item \isa {UN_iff} (theorem), \bold{92}
   \item \isa {Un_subset_iff} (theorem), \bold{90}
   \item underdefined function, \hyperpage{165}
-  \item \isa {undo}, \bold{14}
+  \item \isacommand {undo} (command), \hyperpage{14}
   \item \isa {unfold}, \bold{28}
   \item unification, \hyperpage{60--63}
   \item \isa {UNION} (constant), \hyperpage{93}
@@ -652,25 +584,11 @@
   \item variable, \bold{4}
     \subitem schematic, \bold{4}
     \subitem type, \bold{3}
-  \item \isa {vimage_Compl} (theorem), \bold{95}
   \item \isa {vimage_def} (theorem), \bold{95}
   \item \isa {wf_induct} (theorem), \bold{99}
-  \item \isa {wf_inv_image} (theorem), \bold{99}
-  \item \isa {wf_less_than} (theorem), \bold{98}
-  \item \isa {wf_lex_prod} (theorem), \bold{99}
-  \item \isa {wf_measure} (theorem), \bold{99}
   \item \isa {while}, \bold{167}
-  \indexspace
-  \item \isa {zdiv_zadd1_eq} (theorem), \bold{135}
-  \item \isa {zdiv_zmult1_eq} (theorem), \bold{135}
-  \item \isa {zdiv_zmult2_eq} (theorem), \bold{135}
-  \item \isa {zmod_zadd1_eq} (theorem), \bold{135}
-  \item \isa {zmod_zmult1_eq} (theorem), \bold{135}
-  \item \isa {zmod_zmult2_eq} (theorem), \bold{135}