src/HOL/Analysis/Bounded_Continuous_Function.thy
changeset 65036 ab7e11730ad8
parent 64267 b9a1486e79be
child 65204 d23eded35a33
equal deleted inserted replaced
65035:b46fe5138cb0 65036:ab7e11730ad8
   188     f_bound: "\<forall>x. dist (Rep_bcontfun (f N) x) undefined \<le> b"
   188     f_bound: "\<forall>x. dist (Rep_bcontfun (f N) x) undefined \<le> b"
   189     by force
   189     by force
   190   have "g \<in> bcontfun"  \<comment> \<open>The limit function is bounded and continuous\<close>
   190   have "g \<in> bcontfun"  \<comment> \<open>The limit function is bounded and continuous\<close>
   191   proof (intro bcontfunI)
   191   proof (intro bcontfunI)
   192     show "continuous_on UNIV g"
   192     show "continuous_on UNIV g"
   193       using bcontfunE[OF Rep_bcontfun] limit_function
   193       apply (rule bcontfunE[OF Rep_bcontfun])
   194       by (intro continuous_uniform_limit[where f="\<lambda>n. Rep_bcontfun (f n)" and F="sequentially"])
   194       using limit_function
   195         (auto simp add: eventually_sequentially trivial_limit_def dist_norm)
   195       by (auto simp add: uniform_limit_sequentially_iff intro: uniform_limit_theorem[where f="\<lambda>n. Rep_bcontfun (f n)" and F="sequentially"])
   196   next
   196   next
   197     fix x
   197     fix x
   198     from fg_dist have "dist (g x) (Rep_bcontfun (f N) x) < 1"
   198     from fg_dist have "dist (g x) (Rep_bcontfun (f N) x) < 1"
   199       by (simp add: dist_norm norm_minus_commute)
   199       by (simp add: dist_norm norm_minus_commute)
   200     with dist_triangle[of "g x" undefined "Rep_bcontfun (f N) x"]
   200     with dist_triangle[of "g x" undefined "Rep_bcontfun (f N) x"]