src/HOL/Library/Nonpos_Ints.thy
changeset 62049 b0f941e207cf
child 62055 755fda743c49
equal deleted inserted replaced
62048:fefd79f6b232 62049:b0f941e207cf
       
     1 (*
       
     2   Title:    HOL/Library/Nonpos_Ints.thy
       
     3   Author:   Manuel Eberl, TU München
       
     4   
       
     5   The set of non-positive integers on a ring. (in analogy to the set of non-negative
       
     6   integers @{term "\<nat>"}) This is useful e.g. for the Gamma function.
       
     7 *)
       
     8 theory Nonpos_Ints
       
     9 imports Complex_Main
       
    10 begin
       
    11 
       
    12 subsection \<open>Non-positive integers\<close>
       
    13 
       
    14 definition nonpos_Ints ("\<int>\<^sub>\<le>\<^sub>0") where "\<int>\<^sub>\<le>\<^sub>0 = {of_int n |n. n \<le> 0}"
       
    15 
       
    16 lemma zero_in_nonpos_Ints [simp,intro]: "0 \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    17   unfolding nonpos_Ints_def by (auto intro!: exI[of _ "0::int"])
       
    18 
       
    19 lemma neg_one_in_nonpos_Ints [simp,intro]: "-1 \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    20   unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-1::int"])
       
    21 
       
    22 lemma neg_numeral_in_nonpos_Ints [simp,intro]: "-numeral n \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    23   unfolding nonpos_Ints_def by (auto intro!: exI[of _ "-numeral n::int"])
       
    24 
       
    25 lemma one_notin_nonpos_Ints [simp]: "(1 :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0"
       
    26   by (auto simp: nonpos_Ints_def)
       
    27 
       
    28 lemma numeral_notin_nonpos_Ints [simp]: "(numeral n :: 'a :: ring_char_0) \<notin> \<int>\<^sub>\<le>\<^sub>0"
       
    29   by (auto simp: nonpos_Ints_def)
       
    30 
       
    31 
       
    32 lemma minus_of_nat_in_nonpos_Ints [simp, intro]: "- of_nat n \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    33 proof -
       
    34   have "- of_nat n = of_int (-int n)" by simp
       
    35   also have "-int n \<le> 0" by simp
       
    36   hence "of_int (-int n) \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast
       
    37   finally show ?thesis .
       
    38 qed
       
    39 
       
    40 lemma of_nat_in_nonpos_Ints_iff: "(of_nat n :: 'a :: {ring_1,ring_char_0}) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n = 0"
       
    41 proof
       
    42   assume "(of_nat n :: 'a) \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    43   then obtain m where "of_nat n = (of_int m :: 'a)" "m \<le> 0" by (auto simp: nonpos_Ints_def)
       
    44   hence "(of_int m :: 'a) = of_nat n" by simp
       
    45   also have "... = of_int (int n)" by simp
       
    46   finally have "m = int n" by (subst (asm) of_int_eq_iff)
       
    47   with `m \<le> 0` show "n = 0" by auto
       
    48 qed simp
       
    49 
       
    50 lemma nonpos_Ints_of_int: "n \<le> 0 \<Longrightarrow> of_int n \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    51   unfolding nonpos_Ints_def by blast
       
    52 
       
    53 lemma nonpos_IntsI: 
       
    54   "x \<in> \<int> \<Longrightarrow> x \<le> 0 \<Longrightarrow> (x :: 'a :: linordered_idom) \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    55   using assms unfolding nonpos_Ints_def Ints_def by auto
       
    56 
       
    57 lemma nonpos_Ints_subset_Ints: "\<int>\<^sub>\<le>\<^sub>0 \<subseteq> \<int>"
       
    58   unfolding nonpos_Ints_def Ints_def by blast
       
    59 
       
    60 lemma nonpos_Ints_nonpos [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<le> (0 :: 'a :: linordered_idom)"
       
    61   unfolding nonpos_Ints_def by auto
       
    62 
       
    63 lemma nonpos_Ints_Int [dest]: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x \<in> \<int>"
       
    64   unfolding nonpos_Ints_def Ints_def by blast
       
    65 
       
    66 lemma nonpos_Ints_cases:
       
    67   assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    68   obtains n where "x = of_int n" "n \<le> 0"
       
    69   using assms unfolding nonpos_Ints_def by (auto elim!: Ints_cases)
       
    70 
       
    71 lemma nonpos_Ints_cases':
       
    72   assumes "x \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    73   obtains n where "x = -of_nat n"
       
    74 proof -
       
    75   from assms obtain m where "x = of_int m" and m: "m \<le> 0" by (auto elim!: nonpos_Ints_cases)
       
    76   hence "x = - of_int (-m)" by auto
       
    77   also from m have "(of_int (-m) :: 'a) = of_nat (nat (-m))" by simp_all
       
    78   finally show ?thesis by (rule that)
       
    79 qed
       
    80 
       
    81 lemma of_real_in_nonpos_Ints_iff: "(of_real x :: 'a :: real_algebra_1) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    82 proof
       
    83   assume "of_real x \<in> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)"
       
    84   then obtain n where "(of_real x :: 'a) = of_int n" "n \<le> 0" by (erule nonpos_Ints_cases)
       
    85   note `of_real x = of_int n`
       
    86   also have "of_int n = of_real (of_int n)" by (rule of_real_of_int_eq [symmetric])
       
    87   finally have "x = of_int n" by (subst (asm) of_real_eq_iff)
       
    88   with `n \<le> 0` show "x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: nonpos_Ints_of_int)
       
    89 qed (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)
       
    90 
       
    91 lemma nonpos_Ints_altdef: "\<int>\<^sub>\<le>\<^sub>0 = {n \<in> \<int>. (n :: 'a :: linordered_idom) \<le> 0}"
       
    92   by (auto intro!: nonpos_IntsI elim!: nonpos_Ints_cases)
       
    93 
       
    94 lemma uminus_in_Nats_iff: "-x \<in> \<nat> \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"
       
    95 proof
       
    96   assume "-x \<in> \<nat>"
       
    97   then obtain n where "n \<ge> 0" "-x = of_int n" by (auto simp: Nats_altdef1)
       
    98   hence "-n \<le> 0" "x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])
       
    99   thus "x \<in> \<int>\<^sub>\<le>\<^sub>0" unfolding nonpos_Ints_def by blast
       
   100 next
       
   101   assume "x \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   102   then obtain n where "n \<le> 0" "x = of_int n" by (auto simp: nonpos_Ints_def)
       
   103   hence "-n \<ge> 0" "-x = of_int (-n)" by (simp_all add: eq_commute minus_equation_iff[of x])
       
   104   thus "-x \<in> \<nat>" unfolding Nats_altdef1 by blast
       
   105 qed
       
   106 
       
   107 lemma uminus_in_nonpos_Ints_iff: "-x \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> x \<in> \<nat>"
       
   108   using uminus_in_Nats_iff[of "-x"] by simp
       
   109 
       
   110 lemma nonpos_Ints_mult: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<nat>"
       
   111   using Nats_mult[of "-x" "-y"] by (simp add: uminus_in_Nats_iff)
       
   112 
       
   113 lemma Nats_mult_nonpos_Ints: "x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   114   using Nats_mult[of x "-y"] by (simp add: uminus_in_Nats_iff)
       
   115 
       
   116 lemma nonpos_Ints_mult_Nats:
       
   117   "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x * y \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   118   using Nats_mult[of "-x" y] by (simp add: uminus_in_Nats_iff)
       
   119 
       
   120 lemma nonpos_Ints_add:
       
   121   "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x + y \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   122   using Nats_add[of "-x" "-y"] uminus_in_Nats_iff[of "y+x", simplified minus_add] 
       
   123   by (simp add: uminus_in_Nats_iff add.commute)
       
   124 
       
   125 lemma nonpos_Ints_diff_Nats:
       
   126   "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> y \<in> \<nat> \<Longrightarrow> x - y \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   127   using Nats_add[of "-x" "y"] uminus_in_Nats_iff[of "x-y", simplified minus_add] 
       
   128   by (simp add: uminus_in_Nats_iff add.commute)
       
   129 
       
   130 lemma Nats_diff_nonpos_Ints:
       
   131   "x \<in> \<nat> \<Longrightarrow> y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> x - y \<in> \<nat>"
       
   132   using Nats_add[of "x" "-y"] by (simp add: uminus_in_Nats_iff add.commute)
       
   133 
       
   134 lemma plus_of_nat_eq_0_imp: "z + of_nat n = 0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
       
   135 proof -
       
   136   assume "z + of_nat n = 0"
       
   137   hence A: "z = - of_nat n" by (simp add: eq_neg_iff_add_eq_0)
       
   138   show "z \<in> \<int>\<^sub>\<le>\<^sub>0" by (subst A) simp
       
   139 qed
       
   140 
       
   141 end