equal
deleted
inserted
replaced
|
1 module Classes where { |
|
2 |
|
3 import Nat; |
|
4 import Integer; |
|
5 |
|
6 class Semigroup a where { |
|
7 mult :: a -> a -> a; |
|
8 }; |
|
9 |
|
10 class (Semigroup a) => Monoidl a where { |
|
11 neutral :: a; |
|
12 }; |
|
13 |
|
14 class (Monoidl a) => Group a where { |
|
15 inverse :: a -> a; |
|
16 }; |
|
17 |
|
18 inverse_int :: Integer -> Integer; |
|
19 inverse_int i = negate i; |
|
20 |
|
21 neutral_int :: Integer; |
|
22 neutral_int = 0; |
|
23 |
|
24 mult_int :: Integer -> Integer -> Integer; |
|
25 mult_int i j = i + j; |
|
26 |
|
27 instance Semigroup Integer where { |
|
28 mult = mult_int; |
|
29 }; |
|
30 |
|
31 instance Monoidl Integer where { |
|
32 neutral = neutral_int; |
|
33 }; |
|
34 |
|
35 instance Group Integer where { |
|
36 inverse = inverse_int; |
|
37 }; |
|
38 |
|
39 pow_nat :: (Monoidl a) => Nat -> a -> a; |
|
40 pow_nat (Suc n) x = mult x (pow_nat n x); |
|
41 pow_nat Zero_nat x = neutral; |
|
42 |
|
43 pow_int :: (Group a) => Integer -> a -> a; |
|
44 pow_int k x = |
|
45 (if 0 <= k then pow_nat (nat k) x |
|
46 else inverse (pow_nat (nat (negate k)) x)); |
|
47 |
|
48 example :: Integer; |
|
49 example = pow_int 10 (-2); |
|
50 |
|
51 } |